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Simulating Generalized Register Machines and

Generalized Counter Automata
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Abstract

In this paper we focus on two weak forms of cooperation in P
systems, namely, catalytic rules and matter/anti-matter annihila-
tion rules. These variants of P systems both are computationally
complete, while the corresponding rule complexity turns out to be
of special interest. For establishing considerably small universal
P systems in both cases, we found two suitable tools: generalized
register machines and generalized counter automata. Depending
on the features used in the different variants, we construct several
small universal P systems.

1 Introduction

Membrane systems with symbol objects are a theoretical framework
of parallel distributed multiset processing, for example, see [12, 13,
14]. While non-cooperative P systems are known to characterize the
regular languages, in case of unrestricted (even binary) cooperation,
showing computational completeness is straightforward, for example,
by simulating register machines. Hence, since many years researchers
have been interested in even weaker forms of cooperation.

A catalytic rule is a non-cooperative rule with an additional catalyst
on both the left side and the right side of the rule. Essentially, a catalyst
only inhibits parallelism of rules where it is indicated. The question
whether catalytic P systems are computationally complete (without
priorities or other additional features) has been open for a number of
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years, being finally answered positively, moreover, even showing that
two catalysts suffice (or three for the purely catalytic systems), see [7].

In the variant with anti-matter objects, in addition to non-
cooperative rules, specific cooperative erasing is allowed, namely, of
two objects related by a bijection “object-antiobject”. Anti-matter in
P systems is a rather recent direction, for instance, see [1].

Small universal P systems have been investigated for a number of
years. The smallest ones are those with string objects and splicing rules
where even five rules suffice, see [5]. In the case of symbol objects, if
full cooperation is allowed, then 23 rules suffice, see [6], and only 16
are needed if in addition inhibitors are allowed, see [8].

In this paper, we give an overview on small universal P systems
using anti-matter or catalysts as in [4] and we even improve the results
established there for (purely) catalytic P systems, based on recent re-
sults obtained in [3] as well as in [16] and [17].

2 Definitions

We assume the reader to be familiar with the basic notions and concepts
from formal language theory, for example, see textbooks as [15]; for the
area of P systems we refer to [12, 13, 14] and to [18] for actual news.

For an alphabet V , by V ∗ we denote the free monoid generated
by V under the operation of concatenation, i.e., containing all possible
strings over V . The empty string is denoted by λ.

In this paper we will not distinguish between a multiset, its string
representation (having as many occurrences of every symbol as its mul-
tiplicity in the multiset, the order in the string being irrelevant), and a
vector of multiplicities (assuming that the order of enumeration of sym-
bols from V is fixed). We mention that

∏

represents the concatenation
of an ordered list of strings, and if these strings represent multisets, this
corresponds to their union.
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2.1 Register Machines

Register machines are well-known universal devices for computing (gen-
erating or accepting) sets of (vectors of) natural numbers.

Definition 1 A register machine is a construct M = (m,B, l0, lh, P )
where

• m is the number of registers,

• P is the set of instructions bijectively labeled by elements of B,

• l0 ∈ B is the initial label, and

• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically
jump to instruction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero, then decrease the value of
register r by one (decrement case) and jump to instruction q,
otherwise jump to instruction s ( zero-test case).

• lh : HALT.
Stop the execution of the register machine.

A configuration of a register machine is described by the contents
of each register and by the value of the current label, which indicates
the next instruction to be executed. M is called deterministic if all the
ADD-instructions are of the form p : (ADD (r) , q).

In the accepting case, a computation starts with the input of a
k-vector of natural numbers in its first k registers and by executing
the first instruction of P (labeled with l0); it terminates with reaching
the HALT-instruction. Without loss of generality, we may assume all
registers to be empty at the end of the computation.
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A register machine MU is called universal, if, given the code of an
arbitrary register machine M , MU can simulate the computations of M
on any given input. We speak of strong universality, if both input and
output are given directly as numbers, whereas weak universality means
that both input and output are encoded by a recursive function f , e.g.,
f(n) = 2n; we also consider weak-strong universality with encoded
input, but unencoded output.

2.2 P Systems

In this paper, we will only consider membrane systems with the sim-
plest membrane structure µ = [ ]1, i.e., with even omitting µ, we con-
sider a (catalytic) P system as a construct Π = (O,C,w1, R1) where O
is the alphabet of objects, C ⊆ O is the set of catalysts, w1 the multiset
of objects present in the skin region at the beginning of a computation,
and R1 is a finite set of evolution rules, associated with the skin region.
In this paper we only use the maximally parallel derivation mode, i.e.,
in each derivation step we apply a non-extendable multiset of rules.

If a rule u → v has at least two objects in u, then it is called co-
operative, otherwise it is called non-cooperative. In catalytic P systems
we use non-cooperative as well as catalytic rules, which are of the form
ca → cv where c is a special object called catalyst, which never evolves
(this restriction can be relaxed), but it just assists object a to evolve to
the multiset v. In a purely catalytic P system we only allow catalytic
rules. If we allow catalysts to switch between different states, we speak
of multi-stable catalysts.

In P systems with anti-matter objects, each object a also has an
anti-matter object ā in O and, in addition to non-cooperative and cat-
alytic rules, matter/anti-matter annihilation rules aā → λ are allowed,
for instance, see [1].

In P systems with toxic objects, specific symbols are specified as
being toxic; a computation can only be continued by a non-extendable
multiset of rules which does not leave any toxic object idle. For more
details about toxic P systems, for example, see [2].
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3 Small Universal Register Machines

The universal register machines with the smallest known number of
instructions are those constructed by I. Korec in [10]. For the standard
instruction set (ADD-instructions and SUB-instructions, not counting
the halting one), these are the strongly universal machine U22 and the
weakly universal machine U20, see Figure 1.
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Figure 1. The strongly universal register machine U22 (left) and the
simulation block of the weakly universal register machine U20 (right).

3.1 Generalized Register Machines

We often observe that the most efficient (in terms of rule complex-
ity) simulations of register machines by P systems do not use separate
rules for ADD-instructions, but perform them as a part of the rules
simulating SUB-instructions. Hence, we recall from [4] the following
generalization of register machines, as a tool for such simulations.

The model of generalized register machines has only instructions of
one type except the halt instruction, i.e., generalized SUB-instructions
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of the form j : (SUB(r), A−(j)k,A0(j)l) where j, k, l ∈ B are instruction
labels and A−(j), A0(j) are (possibly empty) strings of increment com-
mands (sub-instructions) ADD(j′). Clearly, a standard register machine
(with ADD-instructions and SUB-instructions) can be obtained from a
generalized one, simply by introducing intermediate states, see [4] for
additional remarks.

3.2 With Multiple Registers

Below we present the (rules for the) strongly universal register machine
U22 of Korec, see [10] and Figure 1, left, in the form of a generalized
register machine:

q1 : (SUB(1), ADD(7)q1, ADD(6)q4), q16 : (SUB(5), q18, q23),
q4 : (SUB(5), ADD(6)q4, q7), q18 : (SUB(5), q20, q27),
q7 : (SUB(6), ADD(5)q10, q4), q23 : (SUB(2), q32, q25),
q10 : (SUB(7), ADD(1)q7, q13), q25 : (SUB(0), q1, q32),
q13 : (SUB(6), ADD(6)q14, q1), q27 : (SUB(3), q32, ADD(0)q1),
q14 : (SUB(4), q1, q16), q32 : (SUB(4), q1, qh),
q20 : (SUB(5), ADD(4)q16, ADD(2)ADD(3)q32).

In the generalized register machine form of the weakly universal
register machine U20 of Korec, see [10], q25 is no longer present, and
instructions q20, q23 and q27 are different, see Figure 1, right, and reg-
ister 3 is not needed any more:

q20 : (SUB(5), ADD(4)q16), q23 : (SUB(0), q32, q1), q27 : (SUB(2), q32, q1).

Remark 1 Sometimes, also for technical reasons, we want to produce
the output in a register which only has increment instructions associ-
ated to it, and have all other registers empty in the end. Unfortunately,
these technical details are not fulfilled by the (strongly or weakly) uni-
versal register machines constructed by Korec in [10]: the result is ob-
tained in register 0, a register allowing for SUB-instructions, and, due
to the specific features of the register machines simulated by the univer-
sal Korec machines, (only) the registers 1 and 6 are not empty. There-
fore, the last instruction q32 can be replaced by the following ones, with
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register 8 being the new output register; we can omit the right column
and already take q35 as the halting state if “cleaning” is not needed:

q32 : (SUB(4), q1, q34), q35 : (SUB(1), q35, q36),
q34 : (SUB(0), ADD(8)q34, q35), q36 : (SUB(6), q36, qh).

3.3 With Two Decrementable Registers

In this subsection we discuss how to reduce the number of registers to
two, possibly not counting an extra increment-only register. It is well
known, e.g., see [11], that the computations of any m-register machine
can be simulated by a 2-register machine, via exponential encoding.
Indeed, if we take the first m prime numbers pi, 1 ≤ i ≤ m, the
values xi of the registers i, 1 ≤ i ≤ m, can be encoded in any of the
first two registers as the single number p1

x1 . . . pm
xm . Then, ADD(r)

is simulated by multiplying the value of the first register by pr, and
SUB(r) is simulated by trying to divide the value of the first register by
pr; if the division is successful, the decrement transition is made, and
otherwise, the value is restored, and the zero-test transition is made.

In the following, we analyze the simulation blocks mentioned above
and represent the obtained 2-register machine in the generalized regis-
ter machine form, following the constructions given in [11]:
– Instruction j : (ADD(r), k) is simulated by the two generalized SUB-
instructions j : (SUB(1), (ADD(2))pr j, j′) and j′ : (SUB(2), ADD(1)j′, k).
– Instruction j : (SUB(r), k, l) is simulated by the pr + 2 generalized
SUB-instructions

j : (SUB(1), j1, j
′),

jn : (SUB(1), jn+1, (ADD(1))
n j′′), for 1 ≤ n ≤ pr − 2,

jn : (SUB(1), ADD(2)j, (ADD(1))n j′′), for n = pr − 1,
j′ : (SUB(2), ADD(1)j′, k),
j′′ : (SUB(2), (ADD(1))n j′′, l), for n = pr.

In the course of the analysis of the number of uses of decrements,
the assignment of prime numbers to registers was chosen for U22: The
conditional decrement of register 5 happens 4 times, the conditional
decrements of registers 4 and 6 happen twice each, and the conditional
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decrement of any other register happens once. Register 5 is represented
by powers of 2, registers 6 and 4 by powers of 3 and 5 as well as registers
0, 1, 2, 7, and 3 by powers of 7, 11, 13, 17, and 19, respectively. We
remark that we use a smaller prime for R6 than for R4 because the
former is incremented twice and the latter is incremented only once in
the underlying Korec machine, which, compared to the opposite choice
leads to saving two ADD-instructions, which might be an interesting
feature in another context, although in the present paper we are not
concerned about that. We used the largest of the first 8 primes for
R3 because R3, besides being one of the least-used registers here, is
no longer used in the weakly universal Korec machine U20 considered
next. Moreover, a smaller prime is used for R0 than for R1 and R2,
because R0 is also involved in the decoding phase discussed below.

In [4] the rule complexity of this reduction was improved as follows.
It was noted that the recopying for increment and zero-test usually can
be avoided by assigning different “master registers” to different states.
The word “usually” means whenever the master register is changed
after increment and zero-test, but is not changed after a decrement.

Hence, now the following allocation of master registers is chosen:
Register 1: q1, q6, q9, q12, q33, q18, q22, q27.
Register 2: q3, q4, q7, q10, q13, q14, q16, q20, q23, q25, q32, qh.

Another observation that we use to save even more instructions
is the following: if an increment instruction has a unique entry point
which is a zero-test, then such an increment can be embedded into
the zero-test without using additional instructions. Clearly, the same
transformation can be applied to multiple consecutive increments. The
states q29, q30, and q31 do not appear in the register allocations above
because we have embedded them into the zero-tests of q27 and q20.

We proceed with evaluating the instruction complexity of the ob-
tained generalized register machine by states. With the register al-
location given above, recopying has been skipped for all transitions
except q13 → q1 and q23 → q32. The table below shows the numbers
of generalized register machine instructions associated with each gen-
eralized register machine instruction, and the numbers of generalized
register machine instructions associated with the states q13 and q23 are
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underlined. The necessity of at least two recopyings can be argued
by inspecting the cycles q1 − q6 − q4 − q7 − q9 − q10 − q13 − q1 and
q23 − q25 − q32 − q23; these cycles do not have common nodes, and each
cycle needs at least one recopying to have the value in the original reg-
ister. This minimality has been further confirmed by computer search
in the space of possible allocations of registers to states, furthermore
showing the uniqueness of the optimal allocation modulo the symmetric
assignment.

state q1 q3 q4 q6 q7 q9 q10 q12 q13 q33
instructions 12 1 3 1 4 1 18 1 5 1

state q14 q16 q18 q20 q22 q23 q25 q27 q32 qh
instructions 6 3 3 3 1 15 8 20 6 0

This gives a total of 112 instructions for a weakly universal general-
ized 2-register machine. To obtain weak-strong universality, the result
has to be decoded into a third increment-only register, which means
repeated division of the encoding by 7 with incrementing the new reg-
ister in each cycle, iterated until a remainder is obtained. In fact, this
means adding the following generalized register machine instructions:

qh : (SUB(2), h1, h7),
hi : (SUB(2), hi+1, h8), 1 ≤ i ≤ 5,
h6 : (SUB(2), ADD(1)ADD(3)qh, h8),
h7 : (SUB(1), ADD(2)h7, qh)

with h8 being the new halting state. The computation ends up with
empty register 2, but still some “garbage” in register 1, which can be
erased by taking an additional rule h8 : (SUB(1), h8, h9) and h9 as the
new halting state instead. Hence, in total this additional part costs
8 instructions for the decoding, plus an extra instruction to erase the
rest of the encoding, i.e., the instruction labeled by h8, resulting in the
overall value for the generalized register machine instructions of 121
(with “cleaning”) and 120 (without “cleaning”), respectively.

Yet for weak universality, several states and rules can be saved by
simulating the weakly universal machine U20 of Korec, see [10], instead
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of the strongly universal register machine U22. The weakly universal
register machine U20 does not use register 3, so we no longer need to
carry out division by 19. The difference is only in the simulation block,
so only instructions associated with states q23 and q27 are affected, as
well as q30 and q31 work on different registers, which does not affect
the number of generalized instructions, and instructions q25 and q29
are no longer present. Like in case of the strongly universal register
machine, we embed the instructions q30 and q31 into the preceding
zero-test of q20.

We leave the same assignment of prime numbers to the registers
and the same allocation of the main register, except that we reallocate
q23 to register 1 and that we no longer have q25. This leads to skip-
ping recopying for all transitions except for q13 → q1 and q16 → q23;
again, the associated numbers of instructions are underlined in the
table below. The necessity of at least two recopyings can be argued
by inspecting the cycles q1 − q6 − q4 − q7 − q9 − q10 − q13 − q1 and
q16 − q18 − q27 − q32 − q23 − q16; these cycles have no common nodes,
and each cycle needs at least one recopying to have the value in the
original register. This minimality has been further confirmed by com-
puter search in the space of possible allocations of registers to states,
furthermore again showing the uniqueness of the optimal allocation
modulo the symmetric assignment for the weakly universal generalized
register machine with embedded increments.

We have the following adjustment on the number of generalized
instructions; the numbers to the left of each arrow are replaced by the
numbers to the right of that arrow.

state q16 q23 q25 q27
instructions 3 → 4 15 → 8 8 → 0 20 → 14

After having saved 20 instructions in this way, only 112 − 20 = 92
generalized instructions remain.

3.4 Generalized Counter Automata

Generalized counter automata (GCAs for short) were introduced in [1]
and also used in [4] and [3] with slightly different restrictions because
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of how they then were simulated by the corresponding P systems. The
reason to consider a generalization of counter automata is that some-
times the simulation costs (measured in the number of rules in the
description of a P system) of a composite instruction is the same as
that (or almost the same, but anyway less than the sum of those) for
simulating an elementary instruction.

For a register machine M = (m,B, l0, lh, P ) consider the more gen-
eral type of instructions i : (q,M−, N,M+, q

′) where q, q′ ∈ Q are states,
N ⊆ R is a set of registers, andM−,M+ are multisets of registers. Such
a register machine applies instruction i as follows: first, multiset M− is
subtracted from the register values (i.e., for each register j ∈ R, M−(j)
is subtracted from the contents of register j; if at least one resulting
value would be negative, the machine is blocked without producing
any result); second, the subset N of registers is checked to be zero (if
at least one of them is found to be non-zero, the machine is blocked
without producing any result); third, the multiset M+ is added to the
register values (i.e., for each register j ∈ R, M+(j) is added to the
contents of register j), and finally the state changes to q′.

The work of such a register machine, now also called a general-
ized counter automaton and written M = (m,B, q1, qh, P ), consists of
derivation steps applying instructions, chosen in a non-deterministic
way, associated with the current state. The computation starts in
the initial state q1, and we say that it halts if the final state qh has
been reached (which replaces the condition of reaching the final HALT-
instruction labeled by lh).

We start by presenting the small universal antiport P systems with
inhibitors from [8]; let us call it GCA 1.

1 : (q1, 〈1〉, {}, 〈7〉, q1), 9 : (q10, 〈6, 5〉, {7, 4}, 〈〉, q18),
2 : (q1, 〈〉, {1}, 〈6〉, q4), 10 : (q18), 〈5

3〉, {}, 〈4〉, q18),
3 : (q4, 〈5〉, {}, 〈6〉, q4), 11 : (q18, 〈〉, {5, 3}, 〈0〉, q1),
4 : (q4, 〈6〉, {5}, 〈5〉, q10), 12 : (q18, 〈5

2, 0〉, {5, 2}, 〈〉, q1),
5 : (q10, 〈7, 6〉, {}, 〈1, 5〉, q10 ), 13 : (q18, 〈5

2, 2〉, {5}, 〈〉, q1),
6 : (q10, 〈7〉, {6}, 〈1〉, q4), 14 : (q18, 〈5

2〉, {5, 2, 0}, 〈〉, q1)
7 : (q10, 〈〉, {6, 7}, 〈〉, q1), 15 : (q18, 〈3, 4〉, {5}, 〈〉, q1),
8 : (q10, 〈6, 4〉, {7}, 〈〉, q1), 16 : (q18, 〈5, 4〉, {5}, 〈2, 3〉, q1).
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We now present a few variations of GCA 1, which have more instruc-
tions, but satisfy certain requirements that make them more suitable
for a simulation by specific P systems.

For the variant to be simulated by anti-matter P systems, we require
that for any instruction, M− does not overlap with M+; note that
this condition is already fulfilled by GCA 1. Moreover, we note that,
as it will be shown later, if M− does not overlap with N , then the
simulation (in terms of the number of instructions) is more efficient,
but otherwise the simulation is still more efficient than in the case of
splitting such an instruction into two instructions and simulating these
two. Another requirement, due to the technicalities of the simulation,
is that the halting must be in a state with no associated instructions
(unlike in GCA 1, which halts in q18 if no instruction is applicable,
its straightforward simulation would non-deterministically choose an
instruction to simulate and fail, entering an infinite loop). The solution
is to replace the last two rules with the following ones; let us call this
resulting automaton GCA 2:

15 : (q18, 〈3〉, {5}, 〈〉, q32), 16 : (q18, 〈5〉, {5}, 〈2, 3〉, q32),
17 : (q32, 〈4〉, {}, 〈〉, q1), 18 : (q32, 〈〉, {4}, 〈〉, qh).

For the simulation with many catalysts, we need different require-
ments. However, also in this case we need that the GCA halts in a state
with no associated instructions, so we take GCA 2 as the basis. While
it no longer matters whether M− and N are disjoint, we require that
M+ does not overlap with either M− or N . To fulfill this condition,
we take GCA 2 and replace instruction 4 by new instructions 4 and 4′

below. Let us call the result GCA 3. Moreover, for technical reasons,
we have to produce the output in a register that only has increment
instructions associated to it, and have all other registers empty in the
end, hence, instruction 18 is replaced by instructions 18–21 below. Let
us call the result GCA 4.

4 : (q4, 〈6〉, {5}, 〈〉, q4′ ) 4′ : (q4′ , 〈〉, {}, 〈5〉, q10),
18 : (q32, 〈0〉, {4}, 〈8〉, q32), 20 : (q32, 〈6〉, {4}, 〈〉, q32),
19 : (q32, 〈1〉, {4}, 〈〉, q32), 21 : (q32, 〈〉, {0, 1, 4, 6}, 〈〉, qh).
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Finally, for a simulation with multiple catalysts (in fact, 8), the
setting is more restricted. A coupling function fc is considered, which
is a bijective mapping from the set of registers to the same set, without
a fixed point. Not only is M− forbidden to contain more than one copy
of the same register, but we need all the sets supp(M−), fc(supp(M−)
and N to be disjoint. After having carefully inspected the Korec ma-
chines and the resulting GCAs from [4], we decided to use the following
coupling function fc:

r : 0 1 2 3 4 5 6 7
fc(r) 6 5 7 4 3 1 0 2

While we keep instructions 1–9 identical to the ones listed above,
the rest of instructions is presented below. We call the result GCA 5 (in
[3] such a variant of counter automata is called “weakly generalized”).

10 : (q18, 〈5〉, {}, 〈〉, q20), 14 : (q16, 〈〉, {0, 2, 5}, 〈〉, q32),
10′ : (q20, 〈5〉, {}, 〈4〉, q16), 15 : (q18, 〈3〉, {5}, 〈〉, q32),
10′′ : (q16, 〈5〉, {}, 〈〉, q18), 16 : (q20, 〈〉, {5}, 〈2, 3〉, q32),
11 : (q18, 〈〉, {3, 5}, 〈0〉, q1), 17 : (q32, 〈4〉, {}, 〈〉, q1),
12 : (q16, 〈0〉, {2, 5}, 〈〉, q1), 18 : (q32, 〈〉, {4}, 〈〉, qh).
13 : (q16, 〈2〉, {5}, 〈〉, q32),

As in the case of multiple catalysts, the input must be moved to an
increment-only register, but for technical reasons the other registers do
not have to be cleaned by instructions of the GCA. Hence, we replace
instruction 18 by the instructions below, with λ being the new final
state, and we call the result GCA 6.

18 : (q32, 〈0〉, {4}, 〈8〉, q32), 18′ : (q32, 〈〉, {0, 4}, 〈〉, λ).

4 Antimatter

We now consider P systems with matter/anti-matter annihilation rules,
see [1].
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Theorem 1 (see [1]) There exist small universal P systems with non-
cooperative rules and matter/anti-matter annihilation rules – with 9
annihilation rules and, in total, 53 rules in the accepting case, 59 rules
in the generating case, and 57 rules in the computing case.

Table 1. A small universal P system with anti-matter.

Π =
(

O, [ ]1 , q1, R1, 1, 1
)

where

O = {l2, l4, l6, l7, l8, l9, l11, l12, l
′
12, l13, l

′
13, l14, l

′
14, l15, l16, l

′
16, l18}

∪ {q1, q4, q10, q18, q32, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

and R1 contains the following rules:

q1 → q1a1
−a7,

q1 → l2a1
−, l2 → q4#a6,

q4 → q4a5
−a6,

q4 → l4a5
−, l4 → q10#a6

−a5,

q10 → q10a7
−a6

−a1a5,

q10 → l6a6
−, l6 → q4#a7

−a1,

q10 → l7a6
−a7

−, l7 → q1##,

q10 → l8a7
−, l8 → q1#a6

−a4
−,

q10 → l9a7
−a4

−, l9 → q18##a6
−a5

−,

q18 → q18a5
−a5

−a5
−a4,

q18 → l11a5
−a3

−, l11 → q1##a0,

q18 → l12a5
−a5

−a−0 , l12 → l′7a5
−a2

−,

q18 → l13a5
−a5

−a2
−, l13 → l′13a5

−, l′13 → q1#,

q18 → l14a5
−a5

−, l14 → l′14a5
−a2

−a0
−, l′14 → q1###,

q18 → l15a5
−, l15 → q32#a3

−,

q18 → l16a5
−, l16 → l′16a5

−, l′16 → q32#a2a3,

q32 → q1a4
−,

q32 → l18a4
−, l18 → qh#,

#− → #4, # → #4, (##− → λ),
ar

− → #−, (arar
− → λ), 0 ≤ r ≤ 7.
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For a generalized counter automaton M = (m,B, q1, qh, P ), let

k = 1 + max
i:(q,M−,N,M+,q′)∈P

(|M−|, |N |).

Common for different instructions ofM , we consider the following rules:

#− → #k, # → #k, ##− → λ, ar → #−, ara
−
r → λ, r ∈ R.

We recall the main construction block: the simulation of instruction
i : (q,M−, N,M+, q

′) ∈ P . First we consider the case when M− and
N have no common elements, and moreover, we also assume that M−

does not overlap with M+.

q → li
∏

r∈N
ar

−, li → q′(
∏

r∈N
#)(

∏

r∈M−

ar
−)

∏

r∈M+

ar.

If the zero-test set N is empty, then the first step is a simple re-
naming and can be combined with the second step, yielding one rule

q → q′(
∏

r∈M−

ar
−)

∏

r∈M+

ar.

Clearly, if M− and N overlap, such an instruction can be broken
down into two subsequent instructions of the generalized counter au-
tomaton. However, a more efficient solution with only three rules exists:

q → li
∏

r∈M−

ar
−, li → l′i

∏

r∈N
ar

−, l′i → q(
∏

r∈N
#)

∏

r∈M+

ar.

The accepting case is shown by the construction in Table 1, simulat-
ing GCA 2.

5 One Catalyst and One Multi-Stable Catalyst

A conditional decrement is performed by letting the multi-stable cata-
lyst try to remove one register object, the states of the catalyst being
associated to the registers. In the next step, the “program object”
verifies whether the state of the multi-stable object was changed, and
the proper transition is modeled. Based on this idea, a few universal P
systems have been constructed in [4], depending on whether the strong
Korec machine, the weak one, or the one reduced to two working reg-
isters is simulated, whether the output is decoded, and whether the
feature of toxic objects is used, see the upper part of Table 4.
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6 Multiple Catalysts

In this section, we do not limit the number of catalysts, but aim at a
small number of rules, based on the results recently established in [3].

Theorem 2 (see [3]) There exists a small universal catalytic P system
with 8 catalysts and 98 rules. Using toxic objects, the number of rules
can be reduced to 89.

Besides the rules associated to the instructions, we use rules

{# → #} ∪ {cror → crdr, crdr → cr, crer → cr#,

cfc(r)er → cfc(r), dr → # | 0 ≤ r ≤ 7}.

For a general instruction j of wGCA, j : (qi,M−, N,M+, qk) it suffices
to have the following three rules:

qi → pjEM−
Dm,M−,N , pj → pjD

′
m,M−

, pj → qkDmOM+
where

Dm,M−,N =
∏

i∈[1..m]\(supp(M−)∪N)

di,

D′
m,M−

=
∏

i∈[1..m]\{r,c(r)|r∈M−}

di,

EM−
=

∏

r∈M−

er, and

OM+
=

∏

r∈M+

or.

The construction given in Table 2 was used for the proof, simu-
lating GCA 6 (for conciseness, the multiset of objects dr, 0 ≤ r ≤ 7,
r 6∈ M , is denoted by d(M), and we omit the braces denoting M).

In addition to w1, to the initial configuration we add the number of
symbols o1 corresponding with the code of the machine to be simulated
and the number of symbols o0 corresponding with the input number to
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Table 2. A universal catalytic P system with 8 catalysts.

Π = (O,Σ, C = {cr | 0 ≤ r ≤ 7}, µ = [ ]1 , w1, R1, f = 1),

O = {or, dr, er | 0 ≤ r ≤ 7} ∪ {#, p10′ , p10′′ , p18′ , o8}

∪ {p′j | j ∈ {1, 3, 4, 5, 6, 8, 9, 10, 10′ , 10′′, 12, 13, 15, 17, 18′}}

∪ {pj | 1 ≤ j ≤ 18} ∪ {q1, q4, q10, q16, q18, q20, q32},

R1 = R ∪ {# → #} ∪ {cror → crdr, crdr → cr, crer → cr#,

cfc(r)er → cfc(r), dr → # | 0 ≤ r ≤ 7},

w1 = q1d(),

and the rules from the set R are listed below:

q1 → p1e1d(1), p1 → p′1d(1, 5), p′1 → q1d()o7,
q1 → p2d(1), p2 → q4d()o6,
q4 → p3e5d(5), p3 → p′3d(1, 5), p′3 → q4d()o6,
q4 → p4e6d(5, 6), p4 → p′4d(0, 6), p′4 → q10d()o5,
q10 → p5e6e7d(6, 7), p5 → p′5d(0, 2, 6, 7), p′5 → q10d()o1o5,
q10 → p6e7d(6, 7), p6 → p′6d(2, 7), p′6 → q4d()o1,
q10 → p7d6,7, p7 → q1d(),
q10 → p8e4e6d(4, 6, 7), p8 → p′8d(0, 3, 4, 6), p′8 → q1d(),
q10 → p9e5e6d(4, 5, 6, 7), p9 → p′9d(0, 1, 5, 6), p′9 → q18d(),
q18 → p10e5d(5), p10 → p′10d(1, 5), p′10 → q20d(),
q20 → p10′e5d(5), p10′ → p′10′d(1, 5), p′10′ → q16d(),
q16 → p10′′e5d(5), p10′′ → p′10′′d(1, 5), p′10′′ → q18d(),
q18 → p11d(3, 5), p11 → q1d()o0,
q16 → p12e0d(0, 2, 5), p12 → p′12d(0, 6), p′12 → q1d(),
q16 → p13e2d(2, 5), p13 → p′13d(2, 7), p′13 → q32d(),
q16 → p14d(0, 2, 5), p14 → q32d(),
q18 → p15e3d(3, 5), p15 → p′15d(3, 4), p′15 → q32d(),
q20 → p16d(5), p16 → q32d()o2o3,
q32 → p17e4d(4), p17 → p′17d(3, 4), p′17 → q1d(),
q32 → p18e0d(0, 4), p18 → p′18d(0, 6), p′18 → q32d()o8,
q32 → p18′d(0, 4), p18′ → d().
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this machine; the result of the simulation is represented by the number
of symbols o8 in the final configuration.

Going to the extreme with the number of catalysts, we can even
obtain a real-time simulation of register machines, see [4], and obtain
a universal P system with even less rules.

Theorem 3 (see [4]) There exists a small universal purely catalytic P
system with 21 catalysts and 74 rules. Using toxic objects, the number
of rules can be reduced to 64.

Let S be a finite multiset and S′ ⊆ S, and let eS(S
′) be a string

representing the multiset S \ S′. We note that we will use eS(λ) (as λ
denotes the empty multiset) for representing the multiset S itself. We
define the multiset S and the corresponding mapping eS by

eS(λ) = d0,− · · · d4,− d5,− d5,− d5,− d6,− d7,− d0,0 · · · d7,0,

and for a finite multiset L, by g(L) we denote a string representing a
multiset consisting of objects or for each occurrence of r in L. Besides
the rules associated to instructions, the following rules are used:

R = {cr,−or → cr,−, cr,−d → cr,−# | r ∈ {0, · · · , 7}}

∪ {cr,0or → cr,0#, cr,0dr,0 → cr,0, cr,−dr,− → cr,−,

c#dr,− → c## | r ∈ {0, · · · , 7}}

∪ {cdd
′ → cd, cdd → cd, c#d

′ → c##, c## → c##}.

If we take S to be the finite multiset over {dr,− , dr,0 | 1 ≤ r ≤ m}
such that, for 1 ≤ r ≤ m, S(dr,0) = 1 if r ∈

⋃

j:(q,M−,N,M+,q′)∈P N

and S(dr,0) = 0 otherwise, as well as S(dr,−) = max{M−(r) |
j : (q,M−, N,M+, q

′) ∈ P}, then the simulation of an instruction
j : (q,M−, N,M+, q

′) is initiated by the catalytic rule

cpq → cpq
′d′eS(〈dr,−

M−(r) | r ∈ supp(M−)〉 ∪ 〈dr,0 | r ∈ N〉)g(M+).

The construction for the proof simulating GCA 4 is given in Table 3.
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Table 3. A universal purely catalytic P system with 21 catalysts.

Π = (O,C, {o1, o2}, {o8}, w,R) where

O = C ∪ {or | 0 ≤ r ≤ 8} ∪Q ∪ {dr,− , dr,0 | 0 ≤ i ≤ 7} ∪ {d, d′,#},

C = {cr,− , cr,0 | 0 ≤ r ≤ 7} ∪ {cd, cp, c#},

w = c0,− · · · c4,− c5,− c5,− c5,− c6,− c7,− c0,0 · · · c7,0 cdcpc#

dd′p1eS(d1,−), and the set R consists of the following rules:

R = {cr,−or → cr,−, cr,−d → cr,−# | r ∈ {0, · · · , 7}}

∪ {cr,0or → cr,0#, cr,0dr,0 → cr,0, cr,−dr,− → cr,−,

c#dr,− → c## | r ∈ {0, · · · , 7}}

∪ {cdd
′ → cd, cdd → cd, c#d

′ → c##, c## → c##}

∪ {cpq1 → cpq1d
′eS(d1,−)o7, cpq1 → cpq4d

′eS(d1,0)o6,

cpq4 → cpq4d
′eS(d5,−)o6, cpq4 → cpq4′d

′eS(d6,− d5,0),

cpq4′ → cpq10d
′eS(λ)o5,

cpq10 → cpq10d
′eS(d6,− d7,−)o1o5,

cpq10 → cpq4d
′eS(d7,− d6,0)o1,

cpq10 → cpq1d
′eS(d6,0 d7,0), cpq10 → cpq1d

′eS(d4,− d6,− d7,0),

cpq10 → cpq18d
′eS(d5,− d6,− d4,0 d7,0),

cpq18 → cpq18d
′eS(d5,− d5,− d5,−)o4,

cpq18 → cpq1d
′eS(d3,0 d5,0)o0,

cpq18 → cpq1d
′eS(d0,− d5,− d5,− d2,0 d5,0)o4,

cpq18 → cpq32d
′eS(d2,− d5,− d5,− d5,0)o4,

cpq18 → cpq32d
′eS(d5,− d5,− d0,0 d2,0 d5,0)o4,

cpq18 → cpq32d
′eS(d3,− d5,0),

cpq18 → cpq32d
′eS(d5,− d5,0)o2o3, cpq32 → cpq1d

′eS(d4,−),

cpq32 → cpq32d
′eS(d0,− d4,0)o8,

cpq32 → cpq32d
′eS(d1,− d4,0), cpq32 → cpq32d

′eS(d6,− d4,0),

cpq32 → cpeS(d0,0 d1,0 d4,0 d6,0)}.
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7 Universal P Systems with Two Catalysts

We now take the new simulation from [3]. For a register machine with
only two working registers, we need 5 rules per instruction plus 11
rules; cleaning happens by the P system itself at the end of a successful
simulation (for example, see [16], for detailed arguments), but recopy-
ing of the result to an extra non-decrementable register at the end of
the simulation is needed for the case of weak universality. Hence, we
obtain a weakly-strongly / weakly universal catalytic P system with
two catalysts, having 611/476 rules (improving the result of 1091/848
rules from [4]). Using the feature of toxic objects, the simulation costs
are reduced to 5 rules per instruction plus 8, yielding 608/473 rules
(improving the result of 726/564 rules from [4]).

8 Universal Purely Catalytic P Systems

It was stated in [3] that the constructions obtained there for catm also
hold for pcatm+2: one catalyst can take care of the states and pro-
gram symbols, while one more catalyst can perform the trapping rules.
Hence, any generalized register machine with m decrementable regis-
ters and s generalized SUB-instructions can be simulated by a purely
catalytic P system with m+2 catalysts and 5s+5m+1 rules. There-
fore, the results with 611, 476, 608 and 473 rules for universal catalytic
P systems with 2 catalysts also hold for universal purely catalytic P
systems with 4 catalysts.

It was shown in [3] that purely catalytic P systems with 9 catalysts
are strongly universal with 6 × 16 + 6 × 8 + 1 = 145 rules. Using the
formula 6s + 6m+ 1 from [17], simulating the weakly universal gener-
alized register machine we obtain a weakly universal purely catalytic
P system with 8 catalysts and 6× 15 + 6× 7 + 1 = 133 rules (improv-
ing the result of 171 rules from [4]). In a similar approach, consider
the weakly-strongly/weakly universal generalized register machine with
m = 2 decrementable registers and s = 93/s = 120 generalized regis-
ter machine instructions. Again using the formula 6s + 6m + 1 from
the recent paper [17], we obtain a weakly-strongly/weakly universal

323



A. Alhazov, R. Freund, P. Sośık

purely catalytic P system with 3 catalysts and 6 × 120 + 6 × 2 + 1 =
733/6× 93+6× 2+1 = 571 rules, thus improving the previously best
known results of 1091/848 rules, respectively.

9 Conclusions

It has been known that only one bi-stable catalyst suffices for computa-
tional completeness of P systems (having non-cooperative rules besides
the bi-catalytic ones) and that purely catalytic P systems with three
catalysts are computationally complete. With two catalysts computa-
tional completeness can be obtained if one of them is bi-stable, see [4].

Generalizing counter automata by allowing them to perform mul-
tiple operations on multiple registers, a few small generalized counter
automata are obtained (from 16 rules to 22 rules), depending on the
specific requirements of P systems that would simulate them. General-
ized counter automata are a very convenient tool for constructing small
universal P systems. For instance, small strongly universal P systems
with anti-matter with 9 annihilation rules and, in total, 53 rules in
the accepting case, 59 rules in the generating case, and 57 rules in the
computing case can be constructed.

By optimizing the reduction of the universal register machines
U22 and U20 to register machines with two working registers, in [4]
a strongly universal register machine with 120 instructions and two
decrementable registers and a weakly universal register machine with
92 instructions and two registers have been obtained.

The now best known results for catalytic systems are summarized
in Table 4. It describes universal (purely or not) catalytic P systems
with and without toxic objects where the type of universality ranges
from strong over weak-strong to weak. The results in the upper part of
the table correspond to one normal catalyst and one m-stable catalyst,
2 ≤ m ≤ 8, while the results in the lower part of the table correspond
to k catalysts, 2 ≤ k ≤ 21. Depending on all these features, the overall
number of rules varies from 43, top right, to 733, bottom left.

The new results elaborated in this paper are indicated in boldface.
If some entry of a table contains “+”, then the reference following it in-
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Table 4. Number of rules in universal catalytic P systems. We write
“s” for strongly universal P systems, “ws” for weakly-strongly universal
P systems and “w” for weakly universal P systems, “tox” for P systems
with toxic objects, “catk” for k catalysts, mcat for anm-stable catalyst,
and “p” indicates P systems without non-cooperative rules.

Feature s ws w s,tox ws,tox w,tox

p8cat,
pcat 61[4] 47[4]
p7cat,
pcat 56[4] 43[4]
p2cat,
pcat 483[4] 371[4] 362[4] 278[4]

pcat21 74[4]
pcat20 64[4]
pcat10 98[3] 89[3]
cat8 98[3] 89[3]
pcat9 145[3]
pcat8 133[17]+[4] 120[4]
pcat7 111[4]
pcat4 611+[4] 476+[4] 608+[4] 473+[4]

cat2 611+[4] 476+[4] 608+[4] 473+[4]

pcat3 733[17]+[4] 571[17]+[4]

pcat2 726[4] 564[4]

dicates where the underlying simulating model has been studied, while
the reference preceding “+” (if indicated, otherwise we imply the cur-
rent paper) indicates where the currently best known simulated com-
plexity has been obtained. Three small universal P systems, namely,
the one with anti-matter and 53 rules, the catalytic one with 8 cata-
lysts and 98 rules, and the purely catalytic one with 21 catalysts and
74 rules, were chosen to be presented explicitly in Tables 1, 2, and 3.
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