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Admissibility, compatibility, and deducibility

in first-order sequent logics

Alexander Lyaletski

Abstract

The paper is about the notions of admissibility and compat-
ibility and their significance for deducibility in different sequent
logics including first-order classical and intuitionistic ones both
without and with equality and, possibly, with modal rules. Re-
sults on the coextensivity of the proposed sequent calculi with
usual Gentzen and Kanger sequent calculi as well as with their
equality and modal extensions are given.

Keywords: First-order classical logic, first-order intuition-
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1 Introduction

There is a great impact of methods originally developed for deduction
in different logics on some branches of computer science. From the
beginning it was realized that logical inference tools have strong influ-
ence on the development of such fields as automated theorem proving,
knowledge management, data mining, etc. As a result, investigations in
computer-made reasoning gave rise to the appearance of various meth-
ods for proof search in the classical first-order logic. Thus, Gentzen’s se-
quent calculi [1] modified for their software implementation have found
many applications. But in the case of the classical logic their practical
usage as a logical engine of the intelligent systems has not received wide
use: preference is usually given to the resolution-type methods. This is
explained by higher efficiency of these methods as compared to sequent
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calculi, which is mainly connected with different possible orders of the
quantifier rule applications in sequent calculi while the resolution-type
methods, due to skolemization, are free from this deficiency.

In its turn, the deduction process in sequent calculi reflects suf-
ficiently well natural theorem-proving methods which, as a rule, do
not include preliminary skolemization so that inferences are performed
within the scope of the signature of an initial theory. This feature
of sequent calculi becomes important when some interactive mode of
proof is developed since it is preferable to present the output infor-
mation concerning the proof search in the form comprehensive for a
man. Besides, preliminary skolemization is not a valid operation for
many non-classical logics including the intuitionistic one while many of
such logics are widely used in solving reasoning problems. That is the
problem of the efficient quantifier manipulation makes its appearance.

When quantifier rules are applied, some substitution of selected
terms for variables is made. For this step of deduction to be sound, cer-
tain restrictions are put on the substitution. A substitution, satisfying
these restrictions, is said to be admissible. Here we show how Gentzen’s
notion of an admissible substitution can be modified so that computer-
oriented sequent calculi can be finally obtained for both classical and
non-classical logics. For simplicity, we give a complete description of
our approach for the classical logic without equality and briefly discuss
a way (utilizing additionally a so-called compatibility) to use it for the
intuitionistic logic as well as for their equality and modal extensions.

We use modifications of the calculi LK and LJ without equality
from [1] denoting them by mLK and mLJ respectively. Moreover, we
convert mLK and mLJ in a certain way to logics with equality and/or
modal rules. At that, we don’t touch upon any procedure of selection
of propositional rules and terms substituted, focusing our attention on
quantifier handling only. Note that in contrary to [1], the antecedents
and succedents of all the sequents under consideration are assumed
to be multisets. As usual, the inference search in any calculus is of
the form of the so-called inference tree “growing” from bottom to top
in accordance with the order of counter-applying inference rules. An
inference tree all leaves of which are axioms is called a proof tree.
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2 Genzen’s notion of admissibility

Classical quantifier rules, substituting arbitrary structure terms when
applied from bottom to top, are usually of the following form slightly
distinguished from that given in [1]:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left)

Γ → A[t/x],∆

Γ → ∃xA,∆
(∃ : right)

where the term t is required to be free for the variable x in the formula
A and A[t/x] denotes the result of the simultaneous replacement in A
of x by t. This restriction of the substitution of t for x gives Gentzen’s
(classical) notion of an admissible substitution, which proves to be
sufficient for the needs of the proof theory. But it becomes useless from
the point of view of efficiency of computer-oriented theorem proving.
It is clear from the following example.

Consider a sequent A1, A2 → B, where A1 is ∀x1∃y1(R1(x1) ∨
R2(y1)), A2 is ∀x2∃y2(R1(y2) ⊃ R3(x2)), and B is ∃x3∀y3(R2(x3) ∨
R3(y3)). The provability of this sequent in LK will be established be-
low, while here we notice that the quantifier rules should be applied to
all the quantifiers occurring in A1, A2, and B. Therefore, the classical
notion of an admissible substitution yields 90 (= 6!/(2!·2!·2!)) different
orders of quantifier rule applications to A1, A2 → B. It is clear that
the resolution-type methods allow avoiding this redundant work.

3 Kanger’s notion of admissibility

To optimize the procedure of applying the quantifier rules, in [3]
S.Kanger suggested his Gentzen-type calculus, denoted here by K. In
calculus K a “pattern” of an inference tree is first constructed with
the help of special variables, the so called parameters and dummies.
At some instants of time, an attempt is made to convert a “pattern”
into a proof tree to complete the deduction process. In case of failure,
the process is continued. The main difference between K and LK con-
sists in a special modification of the above-given quantifier rules and
in a certain splitting (in K) of the process of the “pattern” construc-
tion into stages. The rules (∀ : left) and (∃ : right) of K are as follows:
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Γ, A[d/x] → ∆

Γ,∀xA → ∆
d/t1, ..., tn

Γ → A[d/x]∆

Γ → ∃xA,∆
d/t1, ..., tn

where t1, . . . , tn are terms occurring in the conclusion of the rules, d is
a dummy, and d/t1, . . . , tn denotes that when an attempt is made to
convert “pattern” into a proof tree, the dummy d must be replaced by
one of the terms t1, . . . , tn. The replacement of dummies by terms is
made in the end of every stage, and at every stage the rules are applied
in a certain order.

This scheme of the deduction construction in calculus K leads to the
notion of a Kanger-admissible substitution, which is more efficient than
of the Gentzen one. For example, in the above-given example it yields
only 6 (=3!) variants of different possible orders of the quantifier rule
applications (but none of these variants is preferable). Despite this,
the Kanger-admissible substitutions still do not allow achieving the
efficiency comparable with that when the skolemization is made. It is
due to the fact that, as in case of the Gentzen notion of admissibility,
it is required to select a certain order of the quantifier rule applications
when an initial sequent is deduced, and, if it proves to be unsuccessful,
the other order of applications is tried, and so on.

4 New notion of admissibility

For constructing the modification mLK of calculus LK from [1], let us
introduce a new notion of an admissible substitution in order to get
rid of the dependence of the deduction efficiency in sequent calculi on
different possible orders of quantifier rule applications. The main idea
is to determine, proceeding from the quantifier structures of formulas of
an initial sequent and a substitution under consideration, would there
exists a desired sequence of quantifier rules applications. (This notion
was used in [4] in slightly modified form for another purpose.)

We assume that besides usual variables there are two countable sets
of special variables, namely of parameters and dummies.

A substitution s is defined as a finite (maybe, empty) set of ordered
pairs [5], every of which consists of a variable, say, x, and a term, say,
t, and is written as t/x, where x is called a variable and t a term of
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s. For a sequent tree D, by D · s denote the result of the simultaneous
replacement of all the variables of s by the corresponding terms of s.

Let P be a set of sequences of parameters and dummies and s a
substitution. Put T (P, s) = {〈z, t, p〉: z is a variable of s, t a term of s,
p ∈ P , and z lies in p to the left of some parameter of t}. The substitu-
tion s is said to be admissible for P if and only if (1) the variables of
s are dummies and (2) there are no triples 〈z1, t1, p1〉, . . . , 〈zn, tn, pn〉 ∈
T (P, s) such that t2/z1 ∈ s, . . . , tn/zn−1 ∈ s, t1/zn ∈ s (n > 0).

5 Admissibility and classical deducibility

As in the case of calculus LK, its modification mLK deals with se-
quents consisting of formulas, except that in mLK, to every formula, a
(possibly, empty) sequence of parameters and dummies is additionally
assigned. Thus, the sequents of mLK consist of pairs 〈p,A〉, where A is
a formula and p a sequence (word) of parameters and dummies. Also,
it will be assumed that the empty sequence is always added to each
formula of an initial sequent (that is, a sequent to be proved).

The calculus mLK has the following rules:

Axioms:

Γ, 〈p,A〉 → 〈p,A〉,∆

Propositional rules:

Γ, 〈p,A〉, 〈p,B〉 → ∆

Γ, 〈p,A ∧B〉 → ∆

Γ → 〈p,A〉,∆ Γ → 〈p,B〉,∆

Γ → 〈p,A ∧B〉,∆

Γ, 〈p,A〉 → ∆ Γ, 〈p,B〉 → ∆

Γ, 〈p,A ∨B〉 → ∆

Γ → 〈p,A〉,∆

Γ → 〈p,A ∨B〉,∆

Γ → 〈p,B〉,∆

Γ → 〈p,A ∨B〉,∆

Γ, 〈p,A〉 → 〈p,B〉,∆ Γ, 〈p,B〉 → ∆

Γ, 〈p,A ⊃ B〉 → ∆

Γ, 〈p,A〉 → 〈p,B〉,∆

Γ → 〈p,A ⊃ B〉,∆

Γ → 〈p,A〉,∆

Γ, 〈p,¬A〉 → ∆

Γ, 〈p,A〉 → ∆

Γ → 〈p,¬A〉,∆
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Contraction rules:

Γ, 〈p,A〉, 〈p,A〉 → ∆

Γ, 〈p,A〉 → ∆
(Con →)

Γ → 〈p,A〉, 〈p,A〉∆

Γ → 〈p,A〉,∆
(→ Con)

Quantifier rules:

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p, ∀xA〉 → ∆
(∀ : left′)

Γ → 〈pz,A[z/x]〉,∆

Γ → 〈p, ∀xA〉,∆
(∀ : right′)

Γ, 〈pz,A[z/x]〉 → ∆

Γ, 〈p, ∃xA〉 → ∆
(∃ : left′)

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p, ∃xA〉,∆
(∃ : right′)

Here d is a new dummy, z a new parameter, p a sequence of param-
eters and dummies, Γ and ∆ are arbitrary multisets of ordered pairs
consisting of sequences (of dummies and parameters) and formulas, A
and B are arbitrary formulas.

In what follows, the establishing of the deducibilty of a sequent
A1,. . . , Am → B1, . . . , Bn in LK is replaced by the establishing of
the deducibilty of the so-called initial sequent 〈, A1〉,. . . ,〈, Am〉 →
〈, B1〉, . . . , 〈, Bn〉 in mLK (or its modifications).

Applying first a rule from bottom to top to a sequent under con-
sideration and afterwards to its “heirs”, and so on, we finally obtain a
so-called inference tree for this sequent.

Let D be an inference tree in mLK and s a substitution. If all the
leaves of D · s are axioms, then D is called a latent proof tree in mLK
w.r.t. s.

The main result concerning the calculus mLK is as follows.

Theorem 1. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LK
if and only if there exist an inference tree D in mLK for the initial
sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of
terms without dummies for all the dummies of D such that: (1) D is a
latent proof tree in mLK w.r.t. s and (2) s is an admissible substitution
for the set of all the sequences of parameters and dummies from D.
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Proof. (=>) Let D be a proof tree for an initial sequent 〈, A1〉, . . . ,
〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in the calculus mLK and s be a substitution
converting all the leaves of D into axioms and being admissible for the
set P of all sequences of parameters and dummies fromD. Without loss
of generality, it can be assumed that terms of s do not contain dummies
for otherwise these dummies could be replaced by a special constant,
say, c0. Since s is admissible for P , it is possible to construct the
following sequence p consisting of parameters and dummies occurring
in the sequences of P :

(i) every p′ ∈ P is a subsequence of p and

(ii) s is admissible for {p} (i.e. there is no an element 〈z, t, p〉 ∈
T (p, s) such that t/z ∈ s.

Such a sequence p can be generated, for example, by using the con-
volution algorithm from [4], applied to a list of all the sequences from
P (in the convolution algorithm, parameters are treated as existence
quantifiers and dummies as universal quantifiers). The property (i) of
the sequence p and the definitions of the propositional and quantifier
rules lead to the following observation:

When D is constructed, propositional, contraction, and quantifier
rules are applied (from bottom to top) in the order that corresponds to
looking through p from the left to right: i.e. when the first quantifier
rule is applied, the first variable (a parameter or dummy) of p is gen-
erated, when the second quantifier rule is applied, the second variable
(a parameter or dummy) of p is generated, and so on.

Now it is possible to convert the tree D into a proof tree D′ for the
initial sequent A1, . . . , Am → B1, . . . , Bn in calculus LK. To do this,
it is enough to “repeat” the process of the construction of D in the
above-given order p and execute the following transformations:

1) Suppose that in a processed node of D one of the following rules
was applied:

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p,∀xA〉 → ∆
(∀ : left′) or

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p,∃xA〉,∆
(∃ : right′) ,

where t/d ∈ s for some term t. The term t is free for d in A, because the
order of applications of quantifier rules is reflected by p, and the prop-
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erty (ii) is satisfied. Hence, the conditions of admissibility in Gentzen’s
(classical) sense are satisfied when the above-given rules (∀ : left′) and
(∃ : right′) are replaced in D by the corresponding rules (∀ : left) and
(∃ : right) of the calculus LK:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left) or

Γ → A[t/x]∆

Γ → ∃xA,∆
(∃ : right)

and all occurrences of d in D are replaced by t.

2) In all the other cases, the rules of the calculus mLK are replaced
in D by their analogues from LK by a simple deleting of sequences of
parameters and dummies from these rules.

It is evident that D′ is an inference tree in the calculus LK. Further-
more, by the construction of D′ it follows that all its leaves are axioms
of the calculus LK. Thus, D′ is a proof tree for the initial sequent A1,
. . . , Am → B1, . . . , Bn in LK.

(<=) Let D′ be a proof tree for an initial sequent A1, . . . , Am

→ B1, . . . , Bn in the calculus LK. Convert D′ into a proof tree D for
the initial sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in mLK. For
this purpose, “repeat” (from bottom to top) the process of construction
of D′, replacing in D′ every rule application by its analogue in mLK
and subsequently generating a substitution s. (Initially s is the empty
substitution.)

1) If an applied rule is one of the following:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left) or

Γ → A[t/x]∆

Γ → ∃xA,∆
(∃ : right) ,

then it is replaced by

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p,∀xA〉 → ∆
(∀ : left′) or

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p,∃xA〉,∆
(∃ : right′)

accordingly with adding t/d to the existing substitution s, where d is
a new dummy, and substituting d for those occurrences of the term t
into “heirs” of the formula A[t/x] being the result of a replaced rule
application inserting t.
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2) In all the other cases, the replacement of the rules of LK by the
rules of mLK is evident. (The rules (∀ : left) and (∃ : right) may be
considered as those inserting new parameters).

Since D′ is a proof tree in the calculus utilizing the classical notion
of an admissible substitution, then it is clear that the finally generated
substitution s is admissible (in the new sense) for a set of all sequences
of parameters and dummies from D. Therefore, D is a proof tree for
the initial sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in mLK.

To demonstrate the deduction technique, consider the sequent
A1, A2 → B from the above-given example and establish its deducibil-
ity in the calculus LK. To do this, construct a proof tree for the initial
sequent 〈, A1〉,〈, A2〉 → 〈, B〉 in mLK and use Theorem 1.

Applying first the rule (→ Con) to the initial sequent and then
only quantifier rules to the result in any order, the following se-
quent is deduced: 〈d1z1, R1(x1) ∨ R2(y1)〉, 〈d2z2, R1(y2) ⊃ R3(x2)〉
→ 〈d3z3, R2(d3) ∨ R3(x3)〉, 〈d4z4, R2(d4) ∨ R3(x4)〉, where d1, . . . , d4
are dummies, z1, . . . , z4 parameters.

Now let us apply propositional rules to the latter sequent as long
as they are applicable. As a result, we construct an inference tree, say,
D. If we take the substitution s = {z2/d1, z3/d2, c0/d3, z1/d4} (c0 is
a special constant), then the following conclusions concerning s and
D are valid: (1) every leaf from D is transformed into an axiom by
applying of s to it and (2) s is admissible for the set of all sequences of
dummies and parameters from D.

So, in accordance with Theorem 1 the sequent A1, A2 → B is de-
ducible in the calculus LK.

Draw your attention to the fact that the selection of an order of the
quantifier rules applications in mLK is immaterial; it can be any.

6 Admissibility, compatibility, and intuitionis-

tic deducibility

The intuitionistic calculus LJ is distinguished from LK by that the
succedent of any sequent in LJ should contain no more than one for-
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mula [1]. In this connection, it may seem that this restriction putting
on mLK leads to a correct intuitionistic modification of the classical
calculus mLK, say, mLJ. Unfortunately, it is not so, and the following
example demonstrates this fact.

Consider the sequent ¬∀xP (x) → ∃y¬P (y). Obviously, it is de-
ducible in LK while it is not deducible in LJ.

We can construct the following proof tree D in mLK for it:

〈d, P (d)〉 → 〈z, P (z)〉
〈d, P (d)〉 → 〈,∀xP (x)〉
〈,¬∀xP (x)〉, 〈d, P (d)〉 →
〈,¬∀xP (x)〉 → 〈d,¬P (d)〉

〈,¬∀xP (x)〉 → 〈,∃y¬P (y)〉 ,

where d is a dummy and z a parameter.
Consider the substitution s = {z/d}. It converts the upper sequent

of D into an axiom and is admissible for D. By Theorem 1, the sequent
¬∀xP (x) → ∃y¬P (y) is deducible in LK.

The succedent of any sequent in D contains only one formula, i.e.
D satisfies the intuitionistic requirement to inference rules. Therefore,
the usage of only the new admissibility is not enough for providing the
“sound” deducibility in mLJ for the intuitionistic case.

This situation can be corrected with the help of the notion of the
so-called compatibility of a constructed proof tree with a selected sub-
stitution [6]. Because of the paper size limit, this notion will not be
formally defined below. We note simply that after introducing both
the notions of admissibility and compatibility in mLJ, they correlate
with each other in such a way that provides the soundness of inference
search. For example, the above-given tree D for the sequent ¬∀xP (x)
→ ∃y¬P (y) is not compatible with the unique “reasonable” substitution
s = {z/d}, which implies that ¬∀xP (x) → ∃y¬P (y) is not deducible
in the calculus LJ.

The following result takes place for intuitionistic logic.

Theorem 2. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LJ
if and only if there exist an inference tree D in mLJ for the initial
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sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of
terms without dummies for all the dummies of D such that: (1) D is
a latent proof tree in mLJ w.r.t. s, (2) s is an admissible substitution
for the set of all sequences of parameters and dummies from D, and
(3) D is compatible with s.

Pay your attention to the fact that Theorems 1 and 2 are distin-
guished by only the presence of the item (3) in Theorem 2.

7 Admissibility, compatibility, and deducibili-

ty in equality and modal extensions

Let LK≈ and LJ≈ be, respectively, the calculi LK and LJ, in which the
Kanger equality rules from [3] are incorporated, where ≈ denotes the
equality symbol.

Let us introduce for mLK and mLJ the following modifications of
the Kanger equality rules (denoting the corresponding equality exten-
sions by mLK≈ and mLJ≈):

Γ|t
′

t′′
, 〈p, t′ ≈ t′′〉 → ∆|t

′

t′′

Γ, 〈p, t′ ≈ t′′〉 → ∆

Γ|t
′

t′′
, 〈p, t′′ ≈ t′〉 → ∆|t

′

t′′

Γ, 〈p, t′′ ≈ t′〉 → ∆
,

where the terms t′ and t′′ do not contain dummies and Γ|t
′

t′′
and ∆|t

′

t′′

denote the results of the simultaneous replacement of t′ by t′′ in Γ and
∆ respectively.

As in [3], the introduced equality rules are applied in inference
search in mLK≈ and mLJ≈ last of all, i.e. when it seems impossible to
construct such a tree D without applying equality rules and select such
a substitution s that the conditions (1), (2), and (3) from Theorems 1
and 2 are satisfied.

Let D be an inference tree constructed in mLK≈ (mLJ≈) without
applying equality rules and s be a substitution. Suppose that after
subsequent applying only the equality rules to all the leaves of D · s
not being axioms, then to their “heirs”, and so on, an inference tree
is produced, each leaf of which is only an axiom. Then D is called a
latent proof tree in mLK≈ (mLJ≈) w.r.t. s.
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Theorem 3. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LK≈

(LJ≈) if and only if there exist an inference tree D in mLK≈ (mLJ≈)
for the initial sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a
substitution s of terms without dummies for all the dummies of D such
that: (1) D is a latent proof tree in mLK≈ (mLJ≈) w.r.t. s, (2) s is
an admissible substitution for the set of all the sequences of parameters
and dummies from D, and, in the case of mLJ≈, (3) the tree D is
compatible with s.

Our way of the construction of modal calculi has a certain corre-
lation with the papers [7] and [8], where necessary modal rules in a
sequent form are simply added to Gentsen’s calculi LK and LJ.

Doing the same for LK and LJ and LK≈ and LJ≈, we obtain
their modal extensions LK+Modm, LJ+Modm, LK≈+Modm, and
LJ≈+Modm, where Modm is a set of modal rules.

As to modal rules that can be added to LK, LJ, LK≈, and LJ≈,
any such modal rule is considered to be of the following general form:

Γ,Φ1, . . . ,Φk → Ψ1, . . . ,Ψr,∆

Γ,©1(Φ1), . . . ,©k(Φk) → ©′

1
(Ψ1), . . . ,©′

r(Ψr),∆
,

where ©1, . . . ,©r,©
′

1
, . . . ,©′

r are modal operators and Φ1, . . . , Φk,
Ψ1, . . . , Ψr multisets of formulas (containing, possibly, modal opera-
tors). In particular, such approach makes possible to determine the
calculus GK or GS4 from [8] based on using certain sequent rules for
the standard modal operators � and ♦.

Any modal rule of this form naturally determines the corresponding
modal rule of the following form (that can be introduced in any of the
calculi mLK, mLJ, mLK≈, and mLJ≈):

Γ′, 〈p1,Φ1〉, ..., 〈pk ,Φk〉 → 〈q1,Ψ1〉, ..., 〈qr ,Ψr〉,∆
′

Γ′, 〈p1,©1(Φ1)〉, ..., 〈pk ,©k(Φk)〉 → 〈q1,©′

1
(Ψ1)〉, ..., 〈qr ,©′

r(Ψr)〉,∆′

where p1, . . . , pk, q1, . . . , qr are sequences of dummies and parameters.
Draw your attention to that any such rule satisfies the subformula

property, which leads to the following result for modal extensions in
virtue of Theorems 1, 2, and 3.
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Theorem 4. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language containing, possibly, modal operators. The sequent A1,. . . , Am

→ B1, . . . , Bn is deducible in LK+Modm (LJ+Modm, LK≈+Modm,
LJ≈+Modm) if and only if there exist an inference tree D in LK+Modm
(LJ+Modm, LK≈+Modm, LJ≈+Modm) for the initial sequent 〈, A1〉,
. . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of terms without
dummies for all the dummies of D such that: (1) D is a latent proof
tree in LK+Modm (LJ+Modm, LK≈+Modm, LJ≈+Modm) w.r.t. s,
(2) s is an admissible substitution for the set of all the sequences of
parameters and dummies from D, and, in the cases of LJ+Modm and
LJ≈+Modm, (3) the tree D is compatible with s.

The Kanger calculus K without equality is coextensive with the
Gentzen calculus LK [3]. It is easy to see that all the above-described
constructions made for LK can be transferred to the case of K pro-
ducing an analogue of mLK for K and its intuitionistic modification
as well as their equality and modal extensions retaining the results on
coextensivity for all such modifications and extensions of K.

Taking into consideration this and all the above-given theorems,
we can obtain the soundness and completeness theorem for any of the
introduced calculi if and only if this theorem is true for its Gentzen or
Kanger analogue. For example, we conclude that the validity of a for-
mula F in the classical (intuitionistic) logic with equality is equivalent
to the deductibility of the initial sequent → 〈, F 〉 in mLK≈ (in mLJ≈).

8 Conclusion

The research presented in this paper demonstrates that the introduced
notions of admissibility and compatibility lead to a good enough deci-
sion of the problem of quantifier handling in first-order logics. They
can be easily built-in into the Gentzen calculi LK and LJ, which gives a
good basis for constructing computer-oriented sequent calculi for clas-
sical and intuitionisticl logics as well as for their equality and modal
extensions. Despite the questions of the machine implementation of
such sequent calculi were not considered in the paper, note that the
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construction of efficient calculi requires optimizing the order of the
propositional rule applications and selecting a method for generating
a substitution which can produce a latent proof tree. Bypassing de-
tails, make a point that the Robinson unification algorithm combined
with the new notion of admissibility (and compatibility) is suitable for
generating such substitutions.

The suggested approach to the construction of methods for infer-
ence search in first-order logics corresponds well to a modern vision of
the so-called Evidence Algorithm, EA, advances by V. M. Glushkov as
early as 1970. For the classical logic, it has found its reflection in the
deductive engine of the system for automated deduction SAD designed
in the accordance with the EA requirements to automated theorem
proving (see the Web-site “nevigal.org” as well as papers [9–14]).
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