
Computer Science Journal of Moldova, vol.23, no.3(69), 2015

Set-theoretic Analysis of Nominative Data∗

Volodymyr G. Skobelev, Ievgen Ivanov, Mykola Nikitchenko

Abstract

In the paper we investigate the notion of nominative data
that can be considered as a general mathematical model of data
used in computing systems. The main attention is paid to flat
nominative data called nominative sets. The structure of the
partially-ordered set of nominative sets is investigated in terms
of set theory, lattice theory, and algebraic systems theory. To
achieve this aim the correct transferring of basic set-theoretic op-
erations to nominative sets is proposed. We investigate a lower
semilattice of nominative sets in terms of lower and upper cones,
closed and maximal closed intervals of nominative sets. The ob-
tained results can be used in formal software development.

Keywords: nominative set, nominative data, set theory, lat-
tice theory, algebraic system, lower semilattice, lower and upper
cones, closed intervals.

1 Introduction

The significance of the problem of elaborating the theory of program-
ming and linking it with software development practice was recognized
by many researchers [1–6], and in particular, it was mentioned as one
of the grand challenges in computing by T. Hoare in his influential talk
“The Verifying Compiler: a Grand Challenge for computing research
of the 21st century” [7]: “To build the link between the theory of pro-
gramming and the products of software engineering practice is still a
grand challenge for scientific research in computing; the development
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of a verifying compiler is an essential tool and target for this research;
it will make the results of the research available to software engineers
of the future, and so contribute to the quality and reliability of all the
programs that they produce.”

Currently there exist various approaches that try to deal with this
global problem [2–6,8–11], each of which has its own methodology. This
paper advocates the so-called composition-nominative approach to pro-
gram formalization [12–14]. The starting point of this approach is the
view of software as a data processor that must deal with many forms of
data used in computing systems (e.g. arrays, lists, dictionaries, tables,
trees, etc.). Thus for solving the mentioned grand problem, firstly one
needs to develop a unified, adequate, and tractable theoretical model
of data that can serve as a basis for building adequate semantic models
of programming language constructs and programs.

The unified data model proposed in the composition-nominative
approach is called nominative data [12, 15, 16] and is based on the
name-value relation. In the simplest case one can view a nominative
data as a collection of associations between names and values that
can be denoted as [name1 7→ value1, name2 7→ value2, ...], or, more
formally, as a partial function from the set of all possible names to the
set of all possible values.

The following simple example illustrates this notion. In most web
applications (e.g. online reservation systems, online stores, search en-
gines, etc.) the primary method of obtaining information from a user
is based on web forms. A typical web form consists of several named
mandatory and optional fields, e.g. Fig. 1.

A natural mathematical model of a user-supplied data in this case
is a partial function that maps field names to the corresponding filled
values, assuming that this function is undefined on all unfilled fields.
This partial function is a nominative data of a particular type called
a nominative set. For example, for a web form with mandatory fields
FirstName, LastName, Email, Country, Organization and an op-
tional field WebSite, a data instance provided by the user can be mod-
eled as a nominative set (partial function)

d : {FirstName,LastName,Email, Country,
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Organization,WebSite} → A,

where A denotes the set of all possible field values (strings).

Figure 1. A screenshot of the EasyChair conference management sys-
tem [17] (http://www.easychair.org). An example of a web form
with mandatory and optional fields.

If d(WebSite) is undefined, this means that the user left the cor-
responding field unfilled. The values of such a function can be conve-
niently specified using a notation of the form

[FieldName1 7→ FieldV alue1, F ieldName2 7→ FieldV alue2, ...],

e.g.,
[FirstName 7→ George, LastName 7→ Challenger,

Email 7→ challenger@lost-world.net , Country 7→ the UK,

Organization 7→ The University of Edinburgh].

Clearly, development of the composition-nominative approach re-
quires refinement of the idea of data as name-value relations. Very
basic questions concerning the nature of name-value relations already
give hints concerning the possible directions of this refinement:

• Are the names unstructured (simple) or structured (complex),
e.g. strings in a certain alphabet ?
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• Are the values unstructured (simple) or structured (complex),
e.g. can values be nominative data themselves ?

• Is only direct naming possible (i.e. values cannot be names) ? Or
indirect naming is also allowed (values can be names) ?

Different answers to these questions lead to different types of nom-
inative data (TND1–TND8) [15] illustrated in Fig. 2.

Figure 2. Types of nominative data

Although the idea behind nominative data is intuitively clear, the
absence of unique answers to even such basic questions makes the pro-
cess of their formalization and application to program semantics and
the problems of software specification and verification non-trivial. In
fact, one has to consider and investigate many formalizations of nomi-
native data and study their suitability for different classes of problems.
Another complication is that algebraic structures that arise from sets of
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nominative data of different types turn out to be different from struc-
tures traditionally considered in algebra and computer science (e.g.
rings, lattices, boolean algebras, etc.) and currently remain virtually
unstudied.

To deal effectively with complexity of data and program formaliza-
tion, composition-nominative approach proposes the following princi-
ples [12]:

• Development principle (from abstract to concrete): the process
of development of program notions must start from abstract un-
derstanding and proceed to more concrete considerations.

• Principle of integrity of intensional and extensional aspects: pro-
gram notions should be presented in the integrity of their inten-
sional and extensional aspects, but the intensional aspects play a
leading role.

• Principle of priority of semantics over syntax : semantic and syn-
tactical aspects of programs should be first studied separately,
and then in their integrity in which semantic aspects prevail over
syntactical aspects.

• Compositionality principle: programs are constructed from sim-
pler programs using operations called compositions which repre-
sent semantics of programming language constructs.

• Nominativity principle: naming relations are the basic ones in
constructing data and programs.

These principles are applied for constructing a hierarchy of program
models of various levels of abstraction and generality with the general
aim of providing a mathematical basis for development of formal meth-
ods of analysis and synthesis of reliable software systems.

Above mentioned principles are applied to program formalization
as follows:

• Data in computing systems are formalized as specific classes of
nominative data. A set of nominative data of a particular type
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together with the basic operations on these data forms an algebra
called a data algebra.

• Programs that operate on data are formalized as partial functions
that map nominative data to nominative data, also called (bi-)
nominative functions.

• Program combination operators (e.g. sequential execution,
branching, cycle, etc.) are formalized as operations (also
called compositions) that map (bi-)nominative functions to (bi-
)nominative function. A set of programs (modeled as nominative
functions) that can be obtained from basic operations on data
using compositions together with compositions forms an algebra
(program algebra) that represents compositional semantics of a
programming language. Proving program properties is done by
proving certain facts in a program algebra.

In this paper we will study the basic type of nominative data TND1,
or data with unstructured names and unstructured values, also called
nominative sets. In particular, we will investigate rich algebraic struc-
tures that arise from it.

This paper is organized as follows: in Section 2 we give rigorous
definitions of nominative sets and other associated notions; in Section
3 we define the basic operations on nominative sets by analogy with set-
theoretic operations and study algebraic systems that arise from these
definitions; in Section 4 we investigate a partial ordering on nominative
sets and the associated poset using lattice theory [18–20]; in Section 5
we give conclusions.

2 Basic notions

Let V and A be non-empty finite or countable sets of names and data
respectively. The set FV,A of all V -nominative sets over A is the set of
all (possibly, partial) mappings from V to A.

If |A| = 1, then FV,A can be considered as the set B(V ) of all subsets
of the set V , while if |V | = 1, then FV,A can be considered as the set
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consisting of the empty set and all 1-element subsets of the set A. Thus
in what follows it is supposed that |V | ≥ 2 and |A| ≥ 2.

We will deal with the set GV,A = {graph(f)|f ∈ FV,A}, where
graph(f) = {(v, a) ∈ Domf ×Valf |f(v) = a}.

The following partial ordering can be defined on the set FV,A:

f1 � f2 ⇔ graph(f1) ⊆ graph(f2) (f1, f2 ∈ FV,A). (1)

The least element of the poset FV,A is the V -nominative set 0V,A
with empty domain, while the set of all maximal elements of the poset

FV,A is the set F
(ttl)
V,A of all total V -nominative sets.

Since |A| ≥ 2, for any set of names V (|V | ≥ 2) the poset (FV,A,�)
does not have the largest element. Thus this poset is not isomorphic
to any Boolean algebra.

We write f1 ≺ f2 (f1, f2 ∈ FV,A) if and only if f1 � f2 and f1 6= f2.
By “�” (or, respectively, by “≻”) we denote the relation that is an
inverse of the relation ” � ” (or, respectively, of the relation “≺”).

3 Algebra of nominative sets

In this section we will transfer the basic set-theoretic operations to
the set FV,A with the purpose of providing correct operations on V -
nominative sets over A with perspectives of application in automation
of software development and analysis.

The unary set-theoretic operation of complement of a set cannot be
transferred to FV,A since this set does not contain the largest element.

Let us transfer binary set-theoretic operations to the set FV,A.
There are no difficulties with transferring the set-theoretic opera-

tions of intersection of two sets “∩” and the difference of two sets “\”
to the set FV,A. Indeed, for any f1, f2, f ∈ FV,A we can define:

f1 ∩ f2 = f ⇔ graph(f1) ∩ graph(f2) = graph(f), (2)

f1\f2 = f ⇔ graph(f1)\graph(f2) = graph(f).

Obviously, for any f1, f2 ∈ FV,A the following formulas hold:

Dom(f1 ∩ f2) ⊆ Domf1 ∩Domf2,
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f1|X ∩ f2|Y = (f1 ∩ f2)|X∩Y (X,Y ⊆ V ),

Domf1\Domf2 ⊆ Dom(f1\f2) ⊆ Domf1.

The following two propositions are true:

Proposition 1. Algebraic system (FV,A,∩) is a commutative semi-
group without neutral element, but with zero element which is the V -
nominative set 0V,A with empty domain.

Proposition 2. Algebraic system (FV,A, \) is a non-commutative non-
associative magma in which the V -nominative set 0V,A with the empty
domain is both the right identity element and the left zero element.

A different situation occurs with transferring of the operations of
the union of two sets “∪” and of the symmetric difference of two sets
”⊕ ” to the set FV,A. Indeed, for any f1, f2 ∈ FV,A we get:

graph(f1) ∪ graph(f2) ∈ GV,A ⇔ f1|Domf1∩Domf2 = f2|Domf1∩Domf2 ,

graph(f1)⊕ graph(f2) ∈ GV,A ⇔ f1|Domf1∩Domf2 = f2|Domf1∩Domf2 .

Thus the formulas

f1 ∪ f2 = f ⇔ graph(f1) ∪ graph(f2) = graph(f) (f1, f2, f ∈ FV,A),

f1 ⊕ f2 = f ⇔ graph(f1)⊕ graph(f2) = graph(f) (f1, f2, f ∈ FV,A)

can define only partial operations on the set FV,A.
In order to avoid such a situation we transfer the operations “∪”

and “⊕” to the set FV,A as follows: for any f1, f2, f ∈ FV,A we define:

f1 ⊲ f2 = f ⇔ graph(f1) ∪ graph(f2|Domf2\Domf1) = graph(f)

and
f1 ⊞ f2 = f ⇔

⇔ graph(f1|Domf1\Domf2) ∪ graph(f2|Domf2\Domf1) = graph(f).

It is worth noting that these two operations are intended to join
together any two V -nominative sets over A. The operation ” ⊲ ” is
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called overlapping (of the second nominative set by the first one), the
operation ” ⊞ ” can be called the exclusive compound. The following
proposition is true:

Proposition 3. For any f1, f2, f3 ∈ FV,A the following formulas hold:
(i) Dom(f1 ⊲ f2) = Domf1 ∪Domf2;
(ii) f1 � f1 ⊲ f2;
(iii) f1 � f2 ⇒ f1 ⊲ f2 = f2 ⊲ f1 = f2;
(iv) (f1 ⊲ f2) ∩ f3 � (f1 ∩ f6) ⊲ (f2 ∩ f3);
(v) f3 ∩ (f1 ⊲ f2) � (f1 ∩ f3) ⊲ (f2 ∩ f3);
(vi) (f1 ∩ f2) ⊲ f3 � (f1 ⊲ f3) ∩ (f2 ⊲ f3);
(vii) f1 ⊲ (f2 ∩ f3) = (f1 ⊲ f2) ∩ (f1 ⊲ f3).

It is not difficult to give examples showing that there may be strict
inequalities in the formulas (ii), (iv)-(vi).

The following theorem is true:

Theorem 1. The algebraic system (FV,A, ⊲) is a non-commutative
monoid with neutral element which is the V -nominative set 0V,A with
the empty domain.

Proposition 1 and Theorem 1 imply that the algebraic system
(FV,A, ⊲,∩) differs from well-known algebraic systems with two binary
operations (i.e. a field, a ring, a semi-ring, etc.). Thus the properties of
the set of all valid formulas in the algebraic system (FV,A, ⊲,∩) can sub-
stantially differ from the properties of the sets of all valid formulas in
standard algebraic systems with two binary operations. The following
proposition is true:

Proposition 4. The algebraic system (FV,A,⊞) is a commutative semi-
group with the neutral element which is the V -nominative set 0V,A with
empty domain.

Since (f1 ⊞ f2) ∩ f3 = (f1 ∩ f3)⊞ (f2 ∩ f3) for any f1, f2, f3 ∈ FV,A,
Propositions 1 and 4 imply that the following theorem is true:

Theorem 2. The algebraic system (FV,A,∩,⊞) is a semiring.
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Thus we have defined an algebraic system (FV,A,OV,A,RV,A), where
FV,A is the base, OV,A = {∩, \, ⊲,⊞} is the set of operations and
RV,A = {=,�} is the set of relations.

It is worth noting that since the operations ∩ and ⊞ are associative
and can be naturally extended to any finite (consisting of at least two
elements) or infinite sequence of elements of the set FV,A, so that the
notations of the form ∩i∈Ifi and ⊞i∈Ifi do not cause any misunder-
standing.

4 Analysis of the poset (FV,A,�) in terms of lat-

tice theory

The formulas (1) and (2) imply that the poset (FV,A,�) is a lower semi-
lattice such that inf{f1, f2} = f1 ∩ f2 (f1, f2 ∈ FV,A). Thus, all basic
set-theoretic structures defined on lower semilattices can be transferred
to the poset (FV,A,�). Let us analyze these structures.

For any non-empty set S ⊆ FV,A its lower and upper cones are
defined, respectively, using the identities

S▽ = {f ∈ FV,A|(∀f1 ∈ S)(f � f1)},

S△ = {f ∈ FV,A|(∀f1 ∈ S)(f � f1)}.

Lower cones of non-empty subsets of the poset (FV,A,�) can be
characterized via the following three propositions:

Proposition 5. For any non-empty subset S ⊆ FV,A:
1) the least element of the lower cone S▽ is the V -nominative set

0V,A with empty domain;
2) the largest element of the lower cone S▽ is ∩f∈Sf .

Proposition 6. For any non-empty subsets S1, S2 ⊆ FV,A the following
formulas hold:

(i) S1 ⊆ S2 ⇒ S
▽
1 ⊇ S

▽
2 ;

(ii) S1 ⊂ S2&∩f2∈S2\S1
f2 ≺ ∩f1∈S1f1 ⇒ S

▽
1 ⊃ S

▽
2 ;

(iii) S1 ∪ S2 ⊆ FV,A ⇒ (S1 ∪ S2)
▽ = S

▽
1 ∩ S

▽
2 .
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Proposition 7. For any f1, f2 ∈ FV,A the following formulas hold:
(i) {f1}

▽ 6= {f2}
▽ ⇔ f1 6= f2;

(ii) {f1}
▽ ⊆ {f2}

▽ ⇔ f1 � f2;
(iii) {f1 ∩ f2}

▽ = {f1}
▽ ∩ {f2}

▽;
(iv) f2 6� f1 ⇒ {f1 ⊲ f2}

▽ ⊇ {f1}
▽ ∩ {f2\f1}

▽;
(v) f1|Domf1∩Domf2 = f2|Domf1∩Domf2 ⇒

⇒ {f1 ⊲ f2}
▽ = {f1}

▽ ∩ {f2}
▽.

Upper cones of non-empty subsets of the poset (FV,A,�) can be
characterized in the following way:

for any 1-element subset S = {f} (f ∈ FV,A) the following inequal-
ity holds: S△ 6= ∅ (since f ∈ {f}△ for any f ∈ FV,A).

It is worth to note that {0V,A}
△ = FV,A. The following proposition

is true:

Proposition 8. For any (f1, f2 ∈ FV,A) the following formulas hold:
(i) {f1}

△ 6= {f2}
△ ⇔ f1 6= f2;

(ii) {f1}
△ ⊆ {f2}

△ ⇔ f1 � f2.

The next example illustrates that there exist subsets S ⊆ FV,A

(|S| ≥ 2), such that S△ = ∅.

Example 1. Let v ∈ V and a1, a2 ∈ A (a1 6= a2) be fixed elements.
We set S = {f1, f2}, where f1, f2 ∈ FV,A are V -nominative sets over A
such that Domf1 = Domf2 = {v}, f1(v) = a1 and f2(v) = a2.

The formula (1) implies that there does not exist any V -nominative
set f ∈ FV,A, such that f1 � f and f2 � f . Thus, S△ = ∅.

Now we extract subsets S ⊆ FV,A such that S△ 6= ∅.
We will say that elements f1, f2 ∈ FV,A are compatible, if the identity

f1|Domf1∩Domf2 = f2|Domf1∩Domf2 holds. It is evident that if elements
f1, f2 ∈ FV,A are compatible, then the following identity holds

graph(f1 ⊲ f2) = graph(f1) ∪ graph(f2).

Thus we get that for any compatible elements f1, f2 ∈ FV,A the fol-
lowing identities hold: f1 ⊲ f2 = f2 ⊲ f1 = f1 ∪ f2 and {f1 ∪ f2}

▽ =
{f1}

▽ ∩ {f2}
▽.
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A non-empty subset S ⊆ FV,A will be called compatible, if its ele-
ments are pairwise compatible. We denote Scmp

V,A the set of all compat-
ible subsets of the set FV,A. The following theorem is true:

Theorem 3. For any set FV,A the following formula holds:

(∀S ⊆ FV,A)(S 6= ∅ ⇒ (S△ 6= ∅ ⇔ S ∈ S
cmp
V,A )).

Upper cones of elements of the set S
cmp
V,A can be characterized in

the following way:

Proposition 9. For any S ∈ S
cmp
V,A the following formulas hold:

(i) g.l.b.(S△) = f ⇔ graph(f) = ∪f ′∈S graph(f ′);

(ii) (∀S1, S2 ⊆ S)(∅ 6= S1 ⊆ S2 ⇒ S
△
1 ⊇ S

△
2 );

(iii) (∀S1, S2 ⊆ S)(∅ 6= S1 ⊂ S2&

&∪f1∈S1 graph(f1) ⊂ ∪f2∈S2\S1
graph(f2) ⇒ S

△
1 ⊃ S

△
2 );

(iv) (∀S1, S2 ⊆ S)(S1 6= ∅&S2 6= ∅ ⇒ S1 ∪ S2 = S
△
1 ∩ S

△
2 ).

In the poset (FV,A,�) any two elements f1, f2 ∈ FV,A such that
f1 � f2 define a closed interval

[f1, f2] = {f ∈ FV,A|f1 � f � f2}.

It is evident that

[f1, f2] ∈ S
cmp
V,A (f1, f2 ∈ FV,A, f1 � f2).

The following theorem is true:

Theorem 4. The algebraic system ([f1, f2], {∪,∩}) (f1, f2 ∈ FV,A; f1 �
f2) is a complete distributive lattice.

On any closed interval

[f1, f2] (f1, f2 ∈ FV,A, f1 � f2)

the following unary operation C[f1,f2] can be defined:

C[f1,f2](f) = f ′ ⇔ graph(f ′) = graph(f2)\graph(f) ∪ graph(f1).

The following theorem is true:
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Theorem 5. The algebraic system

([f1, f2], {∪,∩,C[f1,f2]}) (f1, f2 ∈ FV,A; f1 � f2)

is a Boolean algebra.

Proof. By Theorem 4 the lattice ([f1, f2],∪,∩) is distributive.
From the definition of C[f1,f2](f) it follows that for each f ∈ [f1, f2]

graph(f) ∪ graphC[f1,f2](f) =

= graph(f) ∪ (graph(f2)\graph(f) ∪ graph(f1)) =

= (graph(f) ∪ graph(f2)\graph(f)) ∪ graph(f1) =

= graph(f2) ∪ graph(f1) = graph(f2),

i.e. f ∪ C[f1,f2](f) = f2, and also,

graph(f) ∩ graphC[f1,f2](f) =

= graph(f) ∩ (graph(f2)\graph(f)) ∪ graph(f1)) =

= (graph(f) ∩ (graph(f2)\graph(f))) ∪ (graphf ∩ graph(f1)) =

= ∅ ∪ graph(f1) = graph(f1),

i.e. f ∩ C[f1,f2](f) = f1.

Since f ∪ C[f1,f2](f) = f2 and f ∩ C[f1,f2](f) = f1, the element
C[f1,f2](f) ∈ [f1, f2] is a relative complement of the element f ∈ [f1, f2]
in the interval [f1, f2].

By the definition, a distributive lattice with a relative complement
is a Boolean algebra.

We will say that a mapping ϕ : FV,A → FV,A is isotonic on some
set S ⊆ FV,A (S 6= ∅), if the inequality ϕ(f1) � ϕ(f2) holds for all
f1, f2 ∈ S, such that f1 � f2. It is evident that if ϕ : FV,A → FV,A is
any mapping isotonic onto some closed interval

[f1, f2], (f1, f2 ∈ FV,A; f1 � f2)
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and the inclusion Valϕ|[f1,f2] ⊆ [f1, f2] holds, then the mapping ϕ|[f1,f2]
has at least one fixed point.

Let f
(i)
1 , f

(i)
2 ∈ FV,A (i = 1, 2) be elements such that f

(i)
1 � f

(i)
2 .

The closed intervals [f
(1)
1 , f

(1)
2 ] and [f

(2)
1 , f

(2)
2 ] are isomorphic, if there

exists a mapping ϕ : FV,A → FV,A such that ϕ|
[f

(1)
1 ,f

(1)
2 ]

is bijection of

[f
(1)
1 , f

(1)
2 ] onto [f

(2)
1 , f

(2)
2 ] for which the identities

ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′ ∪ f ′′) = ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′) ∪ ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′′)

and

ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′ ∩ f ′′) = ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′) ∩ ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′′)

hold for any f ′, f ′′ ∈ [f
(1)
1 , f

(1)
2 ].

It is evident that if closed intervals [f
(1)
1 , f

(1)
2 ] and [f

(2)
1 , f

(2)
2 ]

are isomorphic, then the algebraic systems ([f
(1)
1 , f

(1)
2 ], {∪,∩}) and

([f
(2)
1 , f

(2)
2 ], {∪,∩}), as well as Boolean algebras

([f
(1)
1 , f

(1)
2 ], {∪,∩,C

[f
(1)
1 ,f

(1)
2 ]

}),

([f
(2)
1 , f

(2)
2 ], {∪,∩,C

[f
(2)
1 ,f

(2)
2 ]

})

are isomorphic.
The following theorem is true:

Theorem 6. A closed interval [f1, f2] (f1, f2 ∈ FV,A; f1 � f2) is iso-
morphic to the closed interval [0V,A, f2\f1].

Proof. Let ϕ : FV,A → FV,A be any mapping such that ϕ(f) = f\f1
holds for all f ∈ [f1, f2].

Then ϕ(f1) = f1\f1 = 0V,A, ϕ(f2) = f2\f1, 0V,A � ϕ(f) � f2\f1
for all f ∈ [f1, f2], i.e. ϕ maps the interval [f1, f2] onto the interval
[0V,A, f2\f1].

If f ′ 6= f ′′ (f ′, f ′′ ∈ [f1, f2]), then

ϕ(f ′) = f2\f
′ 6= f2\f

′′ = ϕ(f ′′).
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Thus, ϕ|[f1,f2] is a bijection from [f1, f2] onto the interval [0V,A, f2\f1].
Since f1 � f ′ f1 � f ′′ for any elements f ′, f ′′ ∈ [f1, f2], we have

ϕ(f ′ ∪ f ′′) = (f ′ ∪ f ′′)\f1 = f ′\f1 ∪ f ′′\f1 = ϕ(f ′) ∪ ϕ(f ′′)

and

ϕ(f ′ ∩ f ′′) = (f ′ ∩ f ′′)\f1 = f ′\f1 ∩ f ′′\f1 = ϕ(f ′) ∩ ϕ(f ′′).

Thus ϕ|[f1,f2] is an isomorphism from [f1, f2] onto [0V,A, f2\f1].

We will say that a closed interval [0V,A, f ] is maximal in the poset

(FV,A,�), if f ∈ F
(ttl)
V,A . The following theorem is true:

Theorem 7. Any two maximal closed intervals in the poset (FV,A,�)
are isomorphic.

Proof. Let us fix any elements f (1), f (2) ∈ F
(ttl)
V,A (f (1) 6= f (2)) and con-

sider maximal intervals [0V,A, f
(1)] and [0V,A, f

(2)]. Let g = f (2)\f (1).
Let us define a mapping ϕ : FV,A → FV,A as follows:

ϕ(f) = g|Domf ⊲ f (f ∈ FV,A).

From this it follows that

ϕ(0V,A) = g|Dom0V,A
⊲ 0V,A = g|∅ ⊲ 0V,A = 0V,A ⊲ 0V,A = 0V,A,

ϕ(f (1)) = g|Domf(1) ⊲ f
(1) = g|V ⊲ f (1) = g ⊲ f (1) = f (2),

and also, 0V,A � ϕ(f) � f (2) for all f ∈ [0V,A, f
(1)], i.e. ϕ maps the

interval [0V,A, f
(1)] onto the interval [0V,A, f

(2)].
Since for any elements f ′, f ′′ ∈ [0V,A, f

(1)] (f ′ 6= f ′′) the inequality
Domf ′ 6= Domf ′′ holds, at least one of the inequalities

Domg ∩Domf ′ 6= Domg ∩Domf ′′

or
Domf ′\Domg 6= Domf ′′\Domg
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holds. From this it follows that if f ′ 6= f ′′ (f ′, f ′′ ∈ [0V,A, f
(1)]), then

ϕ(f ′) 6= ϕ(f ′′).
Thus ϕ|[0V,A ,f(1)] is a bijection from the interval [0V,A, f

(1)] onto the

interval [0V,A, f
(2)].

For each f ′, f ′′ ∈ [0V,A, f
(1)] we have

ϕ(f ′∪f ′′) = g|Dom(f ′∪f ′′)⊲(f
′∪f ′′) = g|Dom(f ′∪f ′′)⊲f

′∪g|Dom(f ′∪f ′′)⊲f
′′ =

= g|Domf ′ ⊲ f ′ ∪ g|Domf ′′ ⊲ f ′′ = ϕ(f ′) ∪ ϕ(f ′′).

From the definition of ϕ and Proposition 3(vii) it follows that for
each f ′, f ′′ ∈ [0V,A, f

(1)],

ϕ(f ′∩f ′′) = g|Dom(f ′∩f ′′)⊲(f
′∩f ′′) = g|Dom(f ′∩f ′′)⊲f

′∩g|Dom(f ′∩f ′′)⊲f
′′ =

= g|Domf ′ ⊲ f ′ ∪ g|Domf ′′ ⊲ f ′′ = ϕ(f ′) ∪ ϕ(f ′′).

Thus ϕ|[f1,f2] is an isomorphism from the interval [0V,A, f
(1)] onto

the interval [0V,A, f
(2)].

Thus the poset (FV,A,�) is a union of the set of overlapping isomor-
phic maximal closed intervals. At the same time, mappings defining
the isomorphism of two intervals differ significantly from each other.
Moreover, the structure of the family of these mappings is sufficiently
complicated. These circumstances, largely cause high internal com-
plexity of various structures defined on the poset (FV,A,�).

5 Conclusions

In the paper a mathematical (algebraic, in essence) formalism intended
for investigating the structure of nominative data sets has been pro-
posed. It forms a part of theoretical foundations for unified develop-
ment of formal methods for automated software design and verification.
In this context investigation of algebras of programs over nominative
data is essential.

In the given paper we restricted ourselves to basic (flat) nomina-
tive data called nominative sets. Nominative sets adequately represent
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such commonly used data structures as arrays, records, and dictionar-
ies. Hierarchical types of data can naturally represent a much larger
set of data structures used in programming, including multidimensional
arrays, lists, trees, algebraic data types, etc. The details of such rep-
resentation are given in [16]. These types of nominative data induce
sufficiently rich program algebras. We plan to investigate such algebras
in future papers.
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