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Abstract

This work presents the application of new parallelization
methods based on membrane-quantum hybrid computing to
graph isomorphism problem solving. Applied membrane-quantum
hybrid computational model was developed by authors. Massive
parallelism of unconventional computing is used to implement
classic brute force algorithm efficiently. This approach does not
suppose any restrictions of considered graphs types. The esti-
mated performance of the model is less then quadratic that makes
a very good result for the problem of NP complexity.

1 Introduction

The present paper concerns application of new computational models
based on hybrid of bio-inspired and quantum approaches. In com-
putability theory, a model defines feasible computational operations
with their execution time/space. There are many branches of bio-
computation: evolution, DNA, swarm, etc. We took as our base the
membrane computing formalism, also known as P systems [4].

A P system is a set of mutually inclusive membranes that contain
multisets of objects (numbers, strings, or some abstract items) and
evolve under some rules. All possible rules are applied in parallel to
all possible membranes and objects. This is the membrane parallelism
that makes this computation model very powerful.

In our model, membranes can additionally contain quantum ma-
chines that perform quantum computations (Fig. 1).
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Figure 1. Structure of the hybrid model

The idea of such hybrid computation arises from needs of differ-
ent domains delivering hard tasks, which are not always satisfactorily
solved by existing high performance computational models.

To illustrate the proposed model, we present in this paper a solu-
tion of the graph isomorphism problem (GI). Due to its practical ap-
plications ranging from chemistry to social sciences, this problem has
been solved by many algorithms, both classical and unconventional,
still remaining under investigation. Unlike problems which are usually
considered as suitable for unconventional computation, GI belongs to
NP, but is not known to belong to its well-studied subsets like P or
NP-complete. The best classical algorithm complexity is O(c

√
n logn),

where n is the number of vertices in the graph.

Because of this uncertainty of general task, it is divided into sev-
eral subtasks according to graph types (trees, planar graphs, poor-
connected, etc.). The majority of mentioned subproblems are proved
to be in the integer factorization class. So, existence of polynomial-
time quantum algorithm for integer factoring makes GI a good candi-
date for speedup by a quantum computing [1]. Further developments
of quantum computing solutions of GI mostly applied the quantum
walk [6]. However, all issues attributable for quantum computation
such as “probability” results or exponential growing of system size af-
fect the proposed solutions.

As we said above, we choose the membrane computing formalism.
The proposed hybrid model is the usual P system framework supplied
by capability to perform quantum computations in its membranes.
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Membranes, which are supposed to obtain quantum functionality, just
have the specific marks in the P system description. In the marked
membrane, the apparition of some specific objects (quantum data, or
quantum triggers) starts quantum computation. Specified data become
the initial state of the quantum registers. After finishing the quantum
computation produces other specific objects (quantum results) in the
external membrane.

To provide incorporated quantum functionality in the proposed hy-
brid model, standard scheme of quantum device [7] proves itself to be
sufficient.

Both for membrane and quantum part, we use particular P system
formalisms and quantum gates in dependence of the solved problem.

In this paper, the hybrid model solving GI is constructed over de-

cision P system with active membranes implementing brute force algo-
rithm. The quantum devices perform only comparison using CNOT,
NOT and Toffoli gates.

2 Hybrid Computational Model

2.1 Membrane Subsystem

Membrane systems, or P systems, consist of a set of mutu-
ally inclusive membranes. The membrane structure µ is a rooted
tree, traditionally represented by bracketed expression. For example,
[ [ [ ]4 ]2 [ ]3 ]1 denotes membranes 2 and 3 inside membrane 1, and
membrane 4 inside membrane 2. There are many different variants of
P systems. Some variants may use static membrane structure, others
change it during calculations.

Membranes contain multisets of objects. Objects are numbers,
strings, or some abstract items. Different operations over objects may
be available. The initial state of a P system is always provided. The
initial state is some membrane structure with some multisets inside.

The evolution of a P system is governed by a set of rules. Rules
are applicable under certain conditions to change the objects in mem-
branes. All possible rules are applied in parallel to all possible mem-
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branes and objects (membrane parallelism). The calculation stops
when no rules can be applied.

We will use a decision P system with active membranes. Deci-

sion means that the alphabet of objects contains symbols yes and no

that represent two possible results of calculation. P system with active

membranes is defined as a tuple:

Π = {O,E, µ,w1, · · · , wm, e1, · · · , em, R}.

Here O is the alphabet of objects. E = {0, 1, ..., k} is a set of membrane
electrical charges, or polarizations. µ is a membrane structure of m
membranes labeled by integers; we will denote H = {1, . . . ,m} a set of
membrane labels. wi ∈ O∗ and ei ∈ E, i ∈ H, represent initial content
and initial polarization of the i-th membrane. Strings wi over alphabet
O (possibly empty) represent multisets of objects from O. R is a set
of rules of the form:
(a) [a → v]ih, a ∈ O, v ∈ O, h ∈ H, i ∈ E (evolution rules, used in

parallel in the region of the h-th membrane, provided that the
polarization of the membrane is i);

(b) a[]ih → [b]jh, a, b ∈ O, h ∈ H, i, j ∈ E (communication rules,
sending an object into a membrane and possibly changing the
polarization of the membrane);

(c) [a]ih → []jhb, a, b ∈ O, h ∈ H, i, j ∈ E (communication rules,
sending an object out of a membrane, possibly changing the po-
larization of the membrane);

(d) [a]ih → b, a, b ∈ O, h ∈ H, i ∈ E (membrane dissolution rules; in
reaction with an object, the membrane is dissolved);

(e) [a]ih → [b]jh[c]
k
h, a, b, c ∈ O, h ∈ H, i, j, k ∈ E (division rules for el-

ementary membranes not containing other membranes inside; in
reaction with an object, the membrane is divided into two mem-
branes with the same label, possibly of different polarizations,
and the object specified in the rule is replaced in the two new
membranes by possibly new objects).
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2.2 Quantum Subsystem

The investigated hybrid model supposes additionally that in any mem-
brane the apparition of some specific objects (quantum data, or quan-
tum triggers) starts a quantum calculation. The said data are avail-
able as initial state of the quantum registers. After its termination
the quantum calculation produces another specific objects (quantum
results) inside the membrane. From the P system point of view, the
quantum calculation is a step of the membrane calculation.

Quantum device. We suppose a standard quantum device avail-
able for quantum calculations. The quantum device contains qubits
organized in quantum registers. It works in three steps: non-quantum
(classical) initialization of qubits when they are set in base states; quan-
tum transformation when the qubits are non-observable; non-quantum
(classical) measurement that produces the observable result.

Several restrictions are imposed over the quantum device. Each
qubit contains 0, or 1, or (during quantum calculation) superposition
of both. Therefore, the initial data and the result may be regarded as
non-negative integers in binary notation. The quantum transformation
is linear and reversible. The general rule is that arguments and results
are kept in different quantum registers. Another general condition is
that the ancillary qubits were not entangled with the argument and
the result after the calculation.

The construction of a quantum computer shown in Fig. 2 guarantees
this.

3 Interface between Membrane and Quantum

Sub-systems

Communications between membrane and quantum sub-systems are
performed through input/output signals and triggering (Fig. 3).

We define the hybrid system formally as a tuple

β = (Π, T, T ′,HQ, QN , QM , Inp,Outp, t, qh1 , · · · , qhm
).
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Figure 2. Quantum calculation; initialization and measurement are not
shown

Here, Π is a P system, and HQ = {h1, · · · , hm} is a subset of membrane
labels in Π used for quantum calculations. T is a trigger and T ′ is the
signal on obtaining the quantum result. Sub-systems qh1 , · · · , qhm

are
the quantum sub-systems associated to the corresponding membranes
from HQ. The rest of the components of the tuple β specify the inter-
action between Π and qhj

, 1 ≤ j ≤ m (Fig. 3).

Membrane subsystem Quantum subsystem(s)

Interfaceobjects states

β = (Π qh1 , · · · , qhm
), · · · ,

Figure 3. Subsystems and interface in the hybrid model

For simplicity, we assume that the running time of quantum sub-
systems of the same type is always the same. To keep this time general,
we include a timing function t : HQ → N: the quantum computation
in a sub-system of type qhj

takes t(hj) membrane steps. It is an open
general question how to calculate the timing of quantum calculation
with respect to the timing of membrane calculation. We could use as
the first rough estimation that quantum calculation takes three steps
of membrane calculation (initialization, quantum transformation, mea-
surement).

The input size (in qubits) for quantum systems is given by QN :
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HQ → N. The output size (in bits) for quantum systems is given by
QM : HQ → N.

We would like to define the behavior of β in all possible situations,
so we introduce the trigger T ∈ O, where O is the alphabet of Π. The
work of a quantum sub-system of type qhj

starts whenever T appears
inside the corresponding membrane. Note that we said that qhj

is a
type of a quantum sub-system, because in general there may be multiple
membranes with label hj containing quantum sub-systems with the
same functionality. The quantum state is initialized by objects from
Inp(hj) = {Ok,hj ,b | 1 ≤ k ≤ QN (hj), b ∈ {0, 1}} ∪ {T}, so Inp :

HQ → 2O is a function describing the input sub-alphabet for each type
of quantum sub-system, the meaning of object Ok,hj,b being to initialize
bit k of input by value b. We require that the set of rules satisfies the
following condition: any object that may be sent into a membrane
labeled hj must be in Inp(hj).

The output of quantum sub-systems is returned to the membrane
system in the form of objects from Outp(hj) = {Rk,hj ,b | 1 ≤ k ≤
QM (hj), b ∈ {0, 1}} ∪ {T ′}, the meaning of object Rk,hj,b being that
the output bit k has value b. In case of one-bit output, we often denote
it yes and no.

The result of a quantum sub-system may be produced in the mem-
brane together with object T ′.

There are two possibilities to synchronize quantum and membrane
levels. We can use a timing function and to wait for the quantum result
by organizing the corresponding delay in membrane calculations, or we
can wait for appearance of the resulting objects, or the trigger T ′.
For generality, our model provides both possibilities. The topic needs
further investigations.

4 Graphs Isomorphism Problem

GI requires to decide whether two given graphs G1 = (V,E1) and
G2 = (V,E2) are actually the same graph with relabeling of the vertices.
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4.1 Graph Isomorphism: Hybrid Computation

The first graph is represented by objects a
(c)
i,j,0,0,0, where c = 1 if the

graph has edge (i, j), and c = 0 if it does not, 0 ≤ i ≤ n− 1, 0 ≤ j ≤
n − 1. The second graph is similarly represented by objects b

(c)
i,j,0. Let

N = ⌈log2 n⌉ (hence, n ≤ 2N < 2n). We construct the following hybrid
system.

β = (Π,Hq = {2}, n, Inp,Outp = {yes, no}, q2), where
Inp = {Ik,b | 0 ≤ k ≤ 2n2 − 1, 0 ≤ b ≤ 1},
q2 is a quantum system comparing the first n2 bits with the

n2 second bits in 2N + 1 steps, described later, and

Π = (O,Σ, µ = [ [ ]02 ]01, w1, w2, R, 1)

is a decisional P system with active membranes, where

Σ = {a(c)i,j,0,0,0, b
(c)
i,j,0 | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, c ∈ {0, 1}},

O = {di | 1 ≤ i ≤ nN} ∪ {pi | 1 ≤ u ≤ (n+ 2)N + 5}
∪ {xi,t,k,s | 0 ≤ i < n, 0 ≤ t < n, 0 ≤ k ≤ N,

0 ≤ s ≤ max(2k−1, 0)} ∪ {yes, no,X}
∪ {a(c)i,j,t,k,s | −2N ≤ i < n, −2N ≤ j < n, 0 ≤ t ≤ n,

0 ≤ k ≤ N, 0 ≤ s ≤ max(2k−1 − 1, 0), c ∈ {0, 1}} ∪ Inp
∪ {b(c)i,j,t | 0 ≤ i < n, 0 ≤ j < n, 0 ≤ t ≤ nN + 1, c ∈ {0, 1}},

w1 = p1, w2 = d1x0,0,0,0 · · · xn−1,0,0,0,

and the set R is the union of the following rule groups (together with
their explanations): generation, checking, processing the input, and
result. Note that the all four groups start working in parallel.

Generation

1 : [ di ]
e
2 → [ di+1 ]02 [ di+1 ]12, e ∈ {0, 1}, 1 ≤ i ≤ nN,

2 : [ dnN+1 ]e2 → [ ]02dnN+1, e ∈ {0, 1},
1: creating 2nN membranes and generating for each of them the

corresponding nN bits defining the permutations candidates. Other

244



Solving Problem of Graph Isomorphism by Hybrid Model . . .

objects may check these bits as membrane polarizations during nN

steps (not considering the initial step, where the polarization was 0).

2: After the generation phase, set the polarization to 0.

Checking

3 : [ xi,t,k,s → xi,t,k+1,2s+e ]e2, 0 ≤ i < n, e ∈ {0, 1},
0 ≤ t < n, 0 ≤ k ≤ N − 1, 0 ≤ s ≤ max(2k−1 − 1, 0),

4 : [ x2s+e,t,N,s → λ ]e2,
0 ≤ s ≤ 2N−1 − 1, 0 ≤ t < n, e ∈ {0, 1},

5 : [ xi,t,N,s → xi,t+1,1,0 ]e2, 0 ≤ i < n,

0 ≤ t < n− 1, 0 ≤ s ≤ 2N−1 − 1, e ∈ {0, 1}, i 6= 2s+ e,

6 : [ xi,n−1,N,s → X ]e2, 0 ≤ i < n,

0 ≤ s ≤ 2N−1 − 1, e ∈ {0, 1}, i 6= 2s+ e,

7 : [ X ]02 → [ ]12X,
3: Compute the value σ(t) of permutation σ for node label t.
4: Erase the label σ(t).
5: Continue matching the label.

6: Rename unmatched node labels into X (to make the next step
deterministic).

7: Invalid permutation detected. Cancel isomorphism check by
setting polarization to 1.

Processing the input

8 : [ a
(c)
i,j,t,k,s → a

(c)
i,j,t,k+1,2s+e ]

e
2,

−2N ≤ i < n, −2N ≤ j < n, 0 ≤ t < n, 0 ≤ k ≤ N − 1,
c ∈ {0, 1}, 0 ≤ s ≤ max(2k−1 − 1, 0),

9 : [ a
(c)
i,j,t,N,s → a

(c)
i′,j′,t+1,1,0 ]e2, −2N ≤ i < n, −2N ≤ j < n,

0 ≤ t < n, c ∈ {0, 1}, 0 ≤ s ≤ 2N−1 − 1,
i′ = −2s− e− 1, i = t, i′ = i otherwise,
j′ = −2s− e− 1, j = t, j′ = j otherwise,

10 : [ a
(c)
−i−1,−j−1,n,1,0 → Ini+j,c ]

0
2,

0 ≤ i < n, 0 ≤ j < n, c ∈ {0, 1},
11 : [ b

(c)
i,j,t → b

(c)
i,j,t+1 ]e2, 0 ≤ i < n, 0 ≤ j < n,

0 ≤ t ≤ nN, e ∈ {0, 1}, c ∈ {0, 1},
12 : [ b

(c)
i,j,nN+1 → In2+ni+j,c ]

0
2,

0 ≤ i < n, 0 ≤ j < n, c ∈ {0, 1},
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8: Compute σ(t) for matrix elements.

9: Perform row/column substitution if row/column is t. If so, store
the result as a negative index, minus one. In either case, proceed with
the next node.

11: The input symbols for the second graph wait while the permu-
tations for the first graph are being generated.

10,12: Initialize the quantum subsystem.

Result

13 : [ yes ]02 → [ ]12yes,

14 : [ yes ]01 → [ ]1yes,

15 : [ pi → pi+1 ]01, 1 ≤ i ≤ (n+ 2)N + 4,

16 : [ p(n+2)N+5 ]01 → [ ]11no, 1 ≤ i ≤ (n+ 2)N + 4.

13: If the quantum subsystem detected a match, send this signal
out to the skin.

14: Send the final answer yes out, also halting the computation.

15: Wait for the possible answer yes to appear.

16: If it did not appear in time, send the final answer no.

4.2 Quantum Comparison

Quantum comparison is shown in Fig. 4. It uses CNOT, NOT and
Toffoli gates. The result is produced on the qubit initialized by |0〉
(the lowest in the diagram).

4.3 Notes on Complexity

The classical general algorithm solves GI for graphs of n vertices in
time O(c

√
n logn), were c is a constant [3].

Quantum computation has been widely employed at GI solving
during last decade. Initially, users of classic algorithms just applied
the Grover method for search between relabeled candidates. But for
graphs with n nodes a naive application of Grover search means O(

√
n!)

queries, so some other quantum methods have been proposed to im-
prove the efficiency. The most popular of these methods seems to be
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|a1〉
|a2〉
...

|b1〉
|b2〉
...

|0〉

Figure 4. Quantum comparator

the quantum walk [6]. The computation complexity of GI solution ap-
plying quantum walk is declared for graph with n vertices as O(n7) for
discrete quantum walk [2] and as O(n6) for continuous one [5].

In the presented GI solution the P system part of computation
takes 2⌈(log2 n)⌉ + 1 steps. Supposing the pure P system computa-
tion the algorithm could execute the comparison of each pairs (candi-
date/pattern) by 2 steps. Totally the pure P system based comparison
would take 2n2 steps.

We will count the quantum subsystem comparison as 3 steps. So,
the whole work time is (n+ 2)⌈(log2 n)⌉+ 4.

5 Conclusions

This paper concerns the application of membrane-quantum hybrid com-
putational model to speed up the classical brute force algorithm solving
the problem of graph isomorphism.

Membrane-quantum hybrid computational model is the P system
framework with additional quantum functionalities. With this ap-
proach, we obtained computation time advancement against both pure
membrane and pure quantum solutions, namely: O(n log2 n) (hybrid)
against O(n2) (pure membrane) and O(n6) (pure quantum).
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