
Computer Science Journal of Moldova, vol.23, no.2(68), 2015

Communicative automata based programming.

Society Framework∗

Andrei Micu, Adrian Iftene

Abstract

One of the aims of this paper is to present a new program-
ming paradigm based on the new paradigms intensively used in
IT industry. Implementation of these techniques can improve the
quality of code through modularization, not only in terms of en-
tities used by a program, but also in terms of states in which they
pass. Another aspect followed in this paper takes into account
that in the development of software applications, the transition
from the design to the source code is a very expensive step in
terms of effort and time spent. Diagrams can hide very impor-
tant details for simplicity of understanding, which can lead to
incorrect or incomplete implementations. To improve this pro-
cess communicative automaton based programming comes with
an intermediate step. We will see how it goes after creating mod-
eling diagrams to communicative automata and then to writing
code for each of them. We show how the transition from one step
to another is much easier and intuitive.

Keywords: Communicative Automata, XML Automata,
Automata transfer, Distributed systems, Traveling code.

1 Introduction

The last decades of evolution for computing machines brought a sig-
nificant increase in computing power and their diversity. The rise of
parallel computing, the important foundations of modern computers,

c©2008 by A. Micu, A. Iftene
∗This work was supported by MUCKE (Multimedia and User Credibility Knowl-

edge Extraction) project Reference No. 2 CHIST-ERA, three years from 01.10.2012.
* This paper represents an extended version of the paper presented at FOI2015.

189



A. Micu, A. Iftene

has revolutionized the world of software and hardware making it pos-
sible to create artificial intelligent systems. Whether it is a desktop,
mobile phone, mainframe, or any other computing system, it is able
to simultaneously perform a number of tasks that sometimes depend
on each other. Their synchronization is essential in most cases and it
depends on the states in which the processes or threads are at a time.
Synchronization is not easy to achieve if the source code is not struc-
tured in terms of states. Sometimes it happens that a seemingly stable
code in terms of errors to work as expected for successive runs with the
same input data, but at a certain running (with the same input data)
to give a wrong result.

Automata have been used since before the beginning of modern
computers to solve mathematical problems. Nowadays they have ap-
plications in many of the components of a software product such as lex-
ical analyzers, parsers which use regular expressions or network com-
munication protocols [1]. In 2003 Russian scientist Anatoly Shalyto
published an article about automata based programming [2]. This pa-
per presents a new way of programming mechanisms for simulation of
states, transitions and input/output operations. In designing of large
applications state charts and activity diagrams can be used, and they
are very similar to automata. The problem arises when you have to
translate these diagrams into source code. Shalyto senses this trans-
position and connects his theory with the association between diagram
elements and automata elements.

Communicative automata based programming has elements from
the object-oriented version of the Russian researcher and, additionally,
it solves the problems mentioned above. It proposes an improved model
of the application, dividing the tasks of the control automata in the
object-oriented model to several independent machines that communi-
cate with each other. Every communicative automata is self-contained
and do not share information, the only way to exchange data is the
transmission of messages. So the code of applications benefits from
high cohesion without sacrificing coupling and it can be reused easily.

The main strength in the technology based on communicative au-
tomata is that the application can be easily distributed across multiple

190



Communicative automata based programming. . .

computing machines. Each system has its suite of communicative au-
tomata, which communicates with the rest of the automata by the
same type of messages; in this case the communication channel is the
network. Moreover, these systems can switch automata between them,
which do not depend on a particular machine, providing task balanc-
ing. This is useful particularly in the client-server model, where the
client is a computing machine with low capacities, such as a mobile
phone. In this paper we will see how we created the premises for the
communicative automata based programming paradigm, which is based
on object-oriented programming concepts. This paradigm intensively
uses the concept of automaton; code structure is given by the states
and transitions. Novelty to classic automata based programming is to
treat automata as atomic elements at application-level and the intro-
duction of using transmission of messages between automata. Society
Framework implements the basic elements and concepts described by
communicative automata based programming. The framework allows
creation of native and XML automata, the XML ones having an impor-
tant advantage because they can be serialized locally and deserialized
on another machine at runtime.

2 Communicative automata based program-

ming

2.1 Automata based programming (classical version)

For the first time in software engineering, Shalyto describes an ap-
plication model composed only from automata. Its technology uses
intensive enumerations and switch-case instructions, so that is also
called ”Switch Technology” [2]. In this solution, although the code
is easy to understand, there are big problems when the number of
states increases. This is because the program code increases with each
added state and transition. The solution appears later in the paradigm
”object-oriented programming based on states” [2]. It combines the ad-
vantages of automata for easier understanding of the program behavior
and advantages of object-oriented programming for easier understand-

191



A. Micu, A. Iftene

Figure 1. Comparison between client-server model and Shalyto model

ing of the structure. The new technique shifts from ”switch-case” in-
structions to classes and objects to describe automata, thus avoiding
nested switches. Shalyto takes in discussion the existence of several
automata in one application. Their management is difficult when you
have to synchronize certain transitions or when performing operations
of reading/writing from the same memory location. Therefore the no-
tion of ”space of states” [2] arises, a set of conditions designed to con-
trol objects. Knowing which states control objects, we can program
automata to have synchronous access to memory. Moreover, if we con-
sider one object for each automaton, the space of states may act as a
supervisor for the other automata. Thus, the application model begins
to look like client-server model, as in Figure 1.

Another novelty in this technique is the capacity of system to re-
spond to events, a necessary feature for communication between state
space and the other automata. So, not only I/O operations can change
the state of automata, but also other automata by generating its own
events. Object-oriented programming based on states solves many of
the initial problems presented by Shalyto, but even this option cannot
be used in large projects. The main reason would be that as the code
grows in size, it becomes more difficult to extend. State space must be
rewritten for each new added automaton and becomes more and more
complex, and harder to understand.

192



Communicative automata based programming. . .

2.2 Communicative automata based programming

Programming based on interconnected automata expands object-
oriented programming, inheriting all its elements and rules. On top
of them there is the added notion of communicative automaton, with
new rules related to its functionality. The major differences between the
automata from object-oriented version and communicative automata
are their atomic characteristic and the communication based on mes-
sages. In what follows, an automaton is a finite automaton with epsilon-
transitions, without isolated states, with one or more final states and
a single initial state [3].

Communicative automata bring new elements compared to the clas-
sical automata, leading to changing application architecture. The main
elements are: (1) State – a series of instructions viewed as an atomic
part. It contains code that performs the actual work of the automaton;
(2) Transition – a series of instructions viewed as an atomic part. In
contrast with states, transitions contain only the code needed to deter-
mine the next state where it will pass; (3) Message – an entity that
contains data transmitted by an automaton to another automaton or
by a code that is not part of an automaton; (4) List of messages – a
comprehensive list of received messages by automaton.

A communicative automaton may contain, in addition to the base
elements, other resources such as variables, operating system resources
or references/pointers to other automata. In most cases, when a sys-
tem runs more communicative automata, it is desirable to execute their
code in parallel. The general solution in modern systems is to run the
code for each automaton on a separate thread. Some programming lan-
guages such as JavaScript before HTML5 [4, 5], do not support working
with multiple threads. If the parallel execution is not possible, the pro-
grammer will have to use an own method of allocation and arbitration
of automata to the processor. This approach has an important advan-
tage in that the programmer can choose the convenient moments when
to deallocate an automaton to ensure a consistent state at each step
of the execution. This approach has a disadvantage, though. At any
point in execution it cannot run more than one automaton, so others

193



A. Micu, A. Iftene

have to wait.

Each automaton must provide ways to add messages to its mes-
sage list. The problem occurs when an automaton should reference
another automaton, to which it must send a message. A naive way
to solve this problem is to keep a reference/pointer to every possible
destination, which is set by the function that creates it. Such practices,
however, are extremely hard to maintain since it requires changing the
code of the function that instantiates automata each time when we add
a new type of automaton. A better approach is to mediate communi-
cation with an object that keeps track of automata. This object, called
”router”, has an implementation similar with the Observer pattern.
Automata must register using a unique identifier to this mediator and
must be able to handle messages from any source, automaton or not.
The router methods can send messages based on recipient identifier,
thus obtaining a total decoupling of automata in the system. When
the router handles messages sent through the network, security prob-
lems may appear which must be taken into account. A security system
must provide a separation between user automata to avoid situations
in which an automaton sends a compromising message to another au-
tomaton.

3 Society framework

3.1 Architecture

Society Framework is a project developed to demonstrate the advan-
tages of communicative automata based programming. Its source code
and examples are publicly available on https://code.google.com/p/soci
ety-framework/. Its target is to facilitate the development of commu-
nicative automata based applications and to minimize the errors that
can happen in such an application. There are two framework implemen-
tations, one written in Java language and one written in C# language,
the reason being the demonstration of its interoperability.

The three major modules of this framework are the following: (1)
Base module for communicative automata – contains interfaces,

194



Communicative automata based programming. . .

Figure 2. An efficient use of a communicative automaton

abstract classes and completely implemented classes to create a native
automaton; (2) XML communicative automata module – con-
tains interfaces, abstract classes and completely implemented classes
to create an XML automaton; (3) Communication module – con-
tains classes with role in automata communication, both locally and
through the network, on different applications.

In Society the communicative automata are divided in two large
categories: native automata, with Java or C# code based on the frame-
work implementation and XML automata, for which the code is written
using an extension of XML. The main reason is the fact that, unlike
the native automata, the XML ones can be serialized, sent through the
network to another application and re-instantiated on that machine,
the process being intuitively described in Figure 2. The XML code
inside the serialization is transformed in one more object trees rep-
resenting the instruction that must be executed in the states and the
transitions. For this reason we cannot say that the framework compiles
the code and neither that it interprets it. It constructs its own code
using objects corresponding to the instructions described by the XML.

XML automata can use only a restricted set of instructions, on
which the framework can construct XML specifications. The reason
is the fact that XML automata are not intended for complex or in-
tense processing due to the great overhead compared to the native
ones. Their utility is the fact that they can communicate with the na-

195



A. Micu, A. Iftene

Figure 3. Example of optimization using a native automaton and an
XML automaton

tive ones through messages, the latter fulfilling the tasks described in
the messages much more efficiently. The alternative usage of the two
types enables optimizing the application processing, an example being
described in Figure 3.

The efficiency relies on the fact that the only data sent between the
server and the client is the automaton serializations. Thus, the transfer
of data between server and client is minimized and it is replaced by
service calls, the result being a constant number of connections to the
server for executing a task. Fortunately an XML automaton plays the
role of manager for the native automata in the system and they don’t
require much code, so traveling to another machine through network
doesn’t imply a lot of data transfer. Another major advantage in this
approach is the reduced overhead of the native automata because, as
we previously mentioned, the native automata are written directly in
the language/platform of the framework implementation. The fact that
a native automaton can use any instruction of this type raises security
problems regarding the actions permitted to XML automata. XML
automata can only execute instructions that don’t compromise security,
the only way of communicating with the machine it runs on being the

196



Communicative automata based programming. . .

Figure 4. Interaction with the message list (queue)

message sending to other automata.

3.2 Base module for communicative automata

The base module contains the base class for all the automata created
in a system (BaseAutomaton) and classes for automaton components.
In both framework implementations these are: (1) State – the base
class for the states in an automaton; (2) Transition – the base class
for the transitions in an automaton; (3) TransitionGroup – class that
contains transitions and acts like a normal transition; (4) Message-

List – the class that implements the queue of messages received by an
automaton.

The State, Transition and TransitionGroup classes are classes inside
the BaseAutomaton class. The reason is the fact that these classes must
have access to the fields and the methods in BaseAutomaton.

The MessageList class implements a special type of queue with syn-
chronized add and remove methods (see Figure 4). The add operation
is synchronized to ensure consistency to the list while more than one
execution threads add messages simultaneously. The remove opera-
tion is synchronized to block the thread that calls it when there are
no messages in the queue until another thread places a message in it.

197



A. Micu, A. Iftene

The message queue is encapsulated in the automaton, the only permit-
ted operation being the message addition by using the Add method at
automaton. Inside the State, Transition and TransitionGroup classes
there is direct access to the MessageList object, meaning that they can
both add and remove messages.

Each state contains a transition or a transition group which indi-
cates the next state and is kept in an indexed list (HashMap in Java
and Dictionary in C#) with string identifiers. To create a new state
the State class must be extended and the stateCode (or StateCode in
C#) method must be overridden. Then the Transition class must be
extended (or TransitionGroup if the state has more than one transi-
tions) and the transitionCode (or TransitionCode in C#) method must
be overridden, such that the new implementation returns a valid tran-
sition name. The next executed state is decided by the name returned
by the transition. Societys communicative automata can run both on
the current thread, by calling the run (or Run in C#) method, and
on a newly created thread by calling start (or Start in C#). To stop
the thread that runs the automaton without risking data corruption
the stopSafely (or StopSafely in C#) method can be used. The run
method contains a while loop that ends at the stopSafely call. This
loop executes states one at a time and the order of execution is driven
by each states transition or transition group.

Another important class in the base module is the SocietyManager
which manages the automata inventory from the current application
and the XML automata transfers. This can be extended to imple-
ment the saving and loading methods for the automata. For automata
transfer SocietyManager runs a special native automaton called Au-
tomataTransferAutomaton responsible with managing the connections
and sending/receiving automata.

3.3 XML communicative automata module

XML communicative automata are an extension of the native ones,
their base class being BaseAutomaton. The XML automaton name
is given by the serialization and deserialization of this type, which is

198



Communicative automata based programming. . .

achieved by using the Society XML, an extension of XML.

The serialization of XML automata contains 6 major elements: (1)
Automaton name – also named identifier, it is the character sequence
attribute of the < automaton > element with role in a possible sub-
scribe of the automaton at the message router; (2) Current state

name – current state identifier, also stored as a character sequence;
(3) Current message – the serialization of the last message pulled
from the message queue; (4) Message list – the serialization of the
automaton’s message queue; (5) Variables – the list of variables and
their values; (6) States – the list of states in the automaton and their
code.

The current state name must match the name of a state in the state
list. If this rule is violated, then the automaton cannot start. Also,
if the name which was provided for the automaton serialization differs
from the name it had in the system before, when the automaton is re-
instantiated, all entities which send messages to that automaton must
be aware of the change and send message for the new name.

Variables are key-value pairs. In the Society framework automata
work with 5 data types: Boolean, Integer, Double, String and Map.
The Boolean type is represented using characters delimited by dots:
.T. for true and .F. for false. Integer and Double types have the same
representation as in Java or C#. String type is delimited by apostro-
phes and it can contain anything exception apostrophe characters. Map
type can represent vectors with any number of dimensions; the only
limit is the machine memory. To ensure this property, the framework
uses a series of indexed lists (the type of list depends by framework
implementation). The indexed values can be of any type, including
Map type. Thanks to this flexibility we can create vectors that contain
other vectors, any number of times and in any combination, the result
being as much dimensions as the memory can hold.

The state serialization contains the state identifier (name at-
tribute), the executed code (< code > element) and the transition (<
transition > element) or the transition group (< transition group >

element). A transition group contains any number of transitions and
a < code > element which contains the instructions that manage the

199



A. Micu, A. Iftene

returned values for each transition. From the moment when the au-
tomaton is started, the initial state code is executed indicated by the
value in the current state attribute. Then the transition code from
that state is executed (or the transition group code if it’s a group of
transitions) and the next state name is obtained. The process contin-
ues until the automaton is stopped, either from a state code, or from
an execution thread outside it.

It should be noted the fact that inside a transition group each tran-
sition must have a name (specified in the name attribute), so that their
code can be called from the < code > element of the group. If a state
has just a transition, and not a transition group, then that transition
doesn’t have to specify a name. The instructions represent the impera-
tive part of Society XML and there are two types of them: (1) Simple

instructions – instructions that don’t contain other instructions inside
them (empty elements); (2) Compound instructions – instructions
that contain other instructions inside them (non-empty elements).

Simple instructions are the base for the code executed in the states
and transitions. These are represented by XML elements without
content, the only parameters being their attributes. The following
simple instructions can be used in Society XML: get next message,
send message, execute, continue, break and return. Compound in-
structions are usually loops (while, do − while, for), but they can
be other types, like the if − else instruction or the switch − case.
Their behavior is identical with the one in the framework’s implemen-
tation language, with small differences to enable much more flexibility
by using the expressions. The following compound instructions can be
used in Society XML: while, do while, for, if , else, switch, case and
default.

Unlike the other elements, where the declaring order does not drive
the code behavior, instructions must be written in the exact order in
which they must be executed. Regarding the calculability of Society
XML, it contains enough instructions to be Turing-complete: at least
one assignation operation, one conditional operation and one jump in-
struction. This means that XML communicative automata can solve
any problem which can be transformed in an algorithm. The input and

200



Communicative automata based programming. . .

the output are ensured by the router and the message queue inside the
automaton. Native automata must provide communication methods
with the user for the XML ones because the language of the latter does
not allow native calls for reading, writing or displaying data. The ad-
vantage is the fact that XML automata don’t have any security issues so
long as the native ones verify and control the requests. The expressions
have an important role in Society XML because they provide values for
the attributes in the instructions presented earlier. An expression will
always return a value, even if this value is null, and some expressions
may even change the state of variables during the execution, like the
assign operation or the function call. The expressions may also be used
to access the values of the received messages.

XML communicative automata deserialization

The BaseAutomaton class incorporates methods to serialize and de-
serialize automata. For parsing the XML data the Society framework
uses SAXParser in Java and XMLReader in C#. For constructing
the objects that compose the XML automaton functionality the frame-
work uses a special automaton called DeserializationAutomaton. For
each beginning and ending tag the parser sends a message to the de-
serialization automaton containing the corresponding data (tag name,
attributes, and tag type). According to the state and message data the
automaton will create the objects and perform transitions.

The major components in the XML automaton serialization are the
following: the variables, the messages, the states, the transitions and
the transition groups. When the deserialization automaton encoun-
ters an expression inside an attribute it must analyse it and construct
an instruction tree equivalent. The constructExpression method inside
DeserializationAutomaton has a string representation of the expres-
sion as input and an instruction tree as output. It uses an algorithm
inspired from the infix to prefix expression transformation algorithm
[6]. Instead of constructing the list of prefix ordered symbols the al-
gorithm was modified to construct the instruction tree. To extract
the symbols (tokens) from the expression the deserialization automa-
ton uses the LexerAutomaton. The lexer provides these symbols as
instructions. The paranthesis (OpenedBracketInstruction and Closed-

201



A. Micu, A. Iftene

BracketInstruction) are also considered instructions, though they only
have functionality inside the deserialization process. Because both the
expressions and the instructions implement the same interface, Instruc-
tion, they are treated in the same way: instructions are executed by
calling their code method and, for their part; the instructions call the
same method for the expressions they contain. The call of a state or
transition is done by only calling their code method, as the other calls
are done through call chaining.

The lexer automaton is similar to the automata constructed for
regular expressions. Its implementation has a string as input and for
each of its runs it provides an Instruction object in the final state. This
object corresponds to the next symbol found in the expression string,
therefore situations when the lexer automaton must run multiple times
on the same expression are often. If the automaton reaches the final
state and provides a null value it means no more symbols can be found
in the current expression and the constructExpression method returns
the created tree. Lexer Automaton holds data about the current parse
at each run. These pieces of information are named accumulators and
stored in a list. In the final states of the automaton these are used to
construct the returned instruction. The first accumulator is always the
string of the expression to parse. There are cases when the lexer will
also call the constructExpression method to create a subtree of a sub-
string in the expression. An example would be the function parsing: for
each substring delimited by parenthesis and commas constructExpres-
sion is called to obtain the subtrees corresponding to the parameters.

XML communicative automata serialization

XML automata serialization is a much simpler process thanks to the
tree structure of the instructions inside them. The serialization process
implies the construction of the XML based on the objects inside the
automaton. To achieve this it is necessary to inspect the variables, the
message list, the special members (automaton name, current message,
etc.) and a single BFS traversal of object trees in the states, transitions
and transition groups.

The expression serialization is an exception from the BFS: an ex-
pression tree is traversed in-order. The reason for this is the fact that

202



Communicative automata based programming. . .

the expressions linear structure requires the left subtree of a node to
be written before the operator and the right subtree to be written af-
ter the operator. To send serialization through the network, Society
framework uses TCP connections which it tries to keep alive during the
execution. The non-ASCII characters are encoded using UTF-8. This
means that the values and names in an XML automaton can use any
character from Unicode.

3.4 The communication module

The communication module includes the classes responsible with send-
ing and routing the messages: (1)Message – the class which represents
a message; (2) MessageRouter – the class responsible with message
transfers.

The Message class contains two fields (or properties in C#): from
and data. The from field holds the identifier with which the sender
automaton has subscribed to the router or any other name if the mes-
sage was not sent by an automaton. The data field is a reference to
the sent object and it can be of any type. The MessageRouter class
manages the message transfers for both automata in the same applica-
tion and automata on different machines. It implements the Observer,
Singleton and Lazy Initialization patterns and its unique instance can
be accessed anywhere in the code. Automata can subscribe to receive
messages using the subscribe(String name, BaseAutomaton automa-
ton) method and they can unsubscribe through the unsubscribe(String
name) method. The name parameter will have the value of a unique
identifier for that automaton, usually its name. The sendLocal(String
to, Message message) method sends the message provided as parame-
ter to an automaton in the current application. It returns whether the
automaton was found in the application and, in case it was found, the
message is added to its message queue.

To send messages to an automaton outside the application the
router uses an automaton which is responsible with the message trans-
fer through the network called NetworkMessagingAutomaton. This
looks similar to the DeserializationAutomaton inside the SocietyMan-

203



A. Micu, A. Iftene

ager class, the only difference being the type of sent information. The
network messaging automaton contains a message queue from which
messages are sent starting from the moment when the connection is
established with the application in the network. To place a message
in this queue the sendRemote(String to, Message message) method is
used. The send(String to, Message message) method first tries to send
the message locally, then, if the recipient automaton is not found in
the current application, it places the message in the NetworkMessagin-
gAutomaton’s queue.

4 Comparisons

4.1 Loose code vs. native communicative automata

Loose code means any object-oriented code written without the con-
straints of the communicative automaton based programming paradigm.
By applying these constraints to loose code the native communicative
automatons can be obtained, the performance difference being mini-
mal.

To create a native automaton the following steps must be followed:
(1) Extending the BaseAutomaton or Automaton classes – if
the automaton state doesn’t have to be persisted, then the Automa-
ton class is used, otherwise the BaseAutomaton class is extended and
the serialization/deserialization methods are implemented; (2)Adding

the member variables – necessary for the automaton functionality;
(3) Creating the nested classes – corresponding to the states, tran-
sitions and transition groups; (4) Instantiating and adding the pre-

viously created classes at the current automaton – these steps
can be made in the automaton constructor.

The code executed in the stateCode and transitionCode methods
by the automaton is the imperative (procedural) code corresponding to
the language of the framework implementation. The automaton code,
as a whole, has a structure enforced by the programming paradigm: it
is grouped in states, transitions and transition groups.

The run method (or Run in C#), which was previously mentioned

204



Communicative automata based programming. . .

in this article, is responsible with the correct execution of the automa-
ton regarding the order in which the states, the transitions and the
transition groups are executed. The management instructions in this
method have O(1) complexity, except the operation that searches a
state in the state set. After a transition returns an identifier, in the
run method, a search for the state corresponding to that identifier is
attempted. This implies a get operation in a HashMap (Java) or Dic-
tionary (C#) with a complexity in the worst case scenario of O(n) [7,
8], where n is the length of the identifier hash. Though the complexity
in the general case is greater than when using normal vectors, the pro-
grammer can minimize the execution time by offering identifiers with
a minimum number of characters. The execution time also depends
on the hash algorithm on which the search is based (specific for the
platform).

While the automata are designed, the programmers and architects
must decide how to split the automaton tasks and what are their states
and transitions. Fewer automata and states/transitions means less allo-
cated memory and less time consumed by the context switches between
automaton threads. This approach implies more code written per state
or transition, therefore the imperative part of the automata is favored.
On the other hand, more automata and states/transitions mean a bet-
ter modularization of the code and the possibility to allocate the tasks
to a greater number of processors or machines, favoring the declarative
part of the automaton.

4.2 Native communicative automata vs. XML commu-
nicative automata

The XML communicative automata, as mentioned in the previous chap-
ters, are an extension of the native communicative automata. Their
states, transitions and transition groups are constructed in a certain
manner to ensure they can be serialized and deserialized using the Soci-
ety XML language. The code inside the XML automaton is composed
of an object tree and the objects are implementing the Instruction in-
terface. Executing its code means calling the code method of the root

205



A. Micu, A. Iftene

object which will trigger directly or indirectly the call of code in the
other objects from the tree.

The overhead compared to the native ones is visibly greater because
each instruction implies a method call at the level of implementation.
Starting from the moment the automaton tries to assign a value to a
Map object at an inexistent level, the algorithm creates the necessary
levels based on the indexes from the left operand. If on one of the levels
that must be created there is an object of a type different from Map,
then it is replaced by a new Map object.

In the native automata the variable access has O(1) complexity
thanks to the fact that they are direct members of the automaton class.
XML automata keep all the variables in an indexed list, the same way
the states are stored, therefore the access algorithm complexity is O(n),
where n is the length of the variable name hash [7, 8].

When comparing XML automata and native automata it can be
inferred that the native ones must be used for intense processing and
system calls and XML ones must be used for the business logic, control
and code that must be transferred between applications. This way we
can take advantage of both without sacrificing execution time or code
modularity. The connection between the two types of automata is the
messaging which ensures a uniform communication. Because Society
framework was written using just the base platform for each language
it was implemented in, there are no additional dependencies for it to
run. An advantage of this decision is the ease of extending the frame-
work for the Android platform. In Android the Java code runs on a
special virtual machine called Dalvik [9]. To run the intermediary Java
code (Java byte-code) it is transformed into intermediary Dalvik code
(Dalvik byte-code) for optimizations [10]. This way the Android exten-
sion for the Society framework was created which contains specialized
classes for that environment in the society.framework.android package.
The ActivityAutomaton class is an extension of the Automaton class
which contains a reference to the current Activity in the application
instance. The reference to the Activity is necessary for some actions
on the application resources: user interface changes, system resources
usage, service starting, etc. The AndroidSocietyManager class extends

206



Communicative automata based programming. . .

the SocietyManager class and implements the serialization and dese-
rialization methods for saving and loading the automata state from a
persistent environment.

5 Conclusions

Communicative automata based programming makes the process of
moving from the design to the implementation easier and the state or
the activity diagrams to be found directly in the source code, without
the need of a detailed documentation. The paradigm combines both
imperative programming elements and declarative elements for obtain-
ing a higher quality code with less effort. The new features it brings on
top of the classic automata based programming, automaton atomicity
and messaging communication, enforce practical rules with an aim for
minimizing the errors: code modularization, data encapsulation at au-
tomaton level and request verification. These advantages have a great
impact in production, especially in large projects where the work is
assigned to a great number of programmers and architects.

Society framework has reached its purpose: the demonstration of
the advantages brought by the communicative automata based pro-
gramming. The differentiation between native automata and XML au-
tomata resulted in the development of two categories of automata, each
with its advantages and disadvantages. The native ones are intended
to provide methods to access the machine resources in a controlled and
efficient manner and the XML ones have the role to use these func-
tionalities, to execute the business logic and to travel in the network
at the most suitable place for a certain task. The alternative and ef-
ficient use of those has results superior to the current approaches for
some problems: minimizing the number of connections and the amount
of data sent through the network, efficient execution of a distributed
application or providing universal processing services on a powerful
machine.

The Society framework, though it is not the most efficient imple-
mentation of the mechanisms in the communicative automata based
programming, it draws closer to the industry needs. Large distributed

207



A. Micu, A. Iftene

applications or the ones that intensively use network transfers can be
boosted by Society framework. Nonetheless, based on the applica-
tion necessities, different mechanisms can be implemented for the au-
tomata. The target would be code optimization, security (message
encryption, authentication, error tolerance, etc.) or the sending of
messages through other environments (embedded systems, Bluetooth).

References

[1] E. Gribko. Applications of Deterministic Finite Automata. (2013).

[2] A. Shalyto. it Technology of Automata-Based Programming.
(2004).

[3] J. Hopcroft, R. Motwani, J. Ullman. Introduction to Automata

Theory, Languages, and Computation, Second Edition. Addison-
Wesley, (2000).

[4] J. Edwards. Multi-threading in JavaScript. (2012).

[5] R. Gravelle. Introducing HTML 5 Web Workers: Bringing Multi-

threading to JavaScript. (2012).

[6] S. Singhal. Infix to Prefix Conversion. Sharing ideas, Sharing ex-

periences. (2012).

[7] Arno. HashMap vs. TreeMap. (2010).

[8] K. Normark. Generic Dictionaries in C#. (2010).

[9] J. Hildenbrand. Android A to Z: What is Dalvik. (2012).

[10] Security Engineering Research Group, Institute of Management
SciencesPeshawar, Pakistan, Analysis of Dalvik Virtual Machine

and Class Path Library. November (2009).

Andrei Micu, Adrian Iftene, Received September 20, 2015

Andrei Micu, Adrian Iftene
Institution: ”Alexandru Ioan Cuza” University
Address: General Berthelot, No. 16
Phone: 004 - 0232 - 2011549
E–mail: andrei.micu@info.uaic.ro, adiftene@info.uaic.ro

208


