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Finite automata over algebraic structures:

models and some methods of analysis
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Abstract

In this paper some results of research in two new trends of fi-
nite automata theory are presented. For understanding the value
and the aim of these researches some short retrospective analy-
sis of development of finite automata theory is given. The first
trend deals with families of finite automata defined via recurrence
relations on algebraic structures over finite rings. The problem
of design of some algorithm that simulates with some accuracy
any element of given family of automata is investigated. Some
general scheme for design of families of hash functions defined
by outputless automata is elaborated. Computational security of
these families of hash functions is analyzed. Automata defined
on varieties with some algebra are presented and their homomor-
phisms are characterized. Special case of these automata, namely
automata on elliptic curves, are investigated in detail. The sec-
ond trend deals with quantum automata. Languages accepted by
some basic models of quantum automata under supposition that
unitary operators associated with input alphabet commute each
with the others are characterized.

Keywords: finite automata, finite rings, varieties, simula-
tion, hash functions, elliptic curves, quantum automata.

1 Introduction

It is well known that ’an automaton’ is one of the basic notions of
computer science. Its significance was established in the fundamental
paper of A.M. Turing [1] where it has been used as some formal model
for informal notion of ’an algorithm’ (i.e. either a digital transducer,
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or an acceptor of a language). Foundations of finite automata (FA)
theory were laid in the middle of XX century [2]. In its essence any
finite automaton presents some formal model for processes that can be
implemented on computers (under the subject to the limitation that
the memory is finite).

Development of FA theory has been motivated not only by its in-
ternal problems, but also it has been carried out in close interaction
with other areas of computer science. The last circumstance in many
respects led to numerous applications of FA models. On the other
hand, research of actual applied problems (including the ones in the
area of modern information technologies) and emergence of some new
paradigms for notion of ’computation’ led to significant reconsideration
problems in FA theory. As the result, the formation of some entirely
new sections of this theory has been started.

In this paper we consider two of these new sections. The first one
deals with FA defined via recurrence relations over some finite ring.
In many ways this section owes its appearance to research in the field
of information protection. Moreover, the necessity of investigation of
these models is substantially caused by the problems of modern cryp-
tography [3, 4]. The second section deals with quantum FA, i.e. with
some section of quantum algorithms theory which is being developed
intensively at present. In this context, an essential factor is that the
notion ’quantum FA’ is based on the new paradigm of computations
called ’quantum computations’ [5, 6].

2 Survey of finite automata theory

The following two stages can be naturally highlighted in the develop-
ment of FA automata theory.

The first stage covers 50s–80s of the XX century.

Finite automaton considered as a transducer has been defined as a
system M = (Q, X, Y, δ, λ) (where Q, X and Y are respectively finite set of
states, finite input alphabet and finite output alphabet, δ : Q × X → Q

is the transition function and λ : Q × X → Y is the output function).
Moore and Mealy models of FA and some their variants associated
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with FA functioning in time have been determined. The problems of
analysis and synthesis for FA [7, 8, 9], the problem of completeness for
FA [10,11] and problems of theory of experiments with FA [12] have
been investigated within these models. Analysis of transformations
of free semigroups carried out by FA [13] had a significant influence
on formation of algebraic theory of FA [14,15] and automata-algebraic
approach to software engineering [16].

It should be noted investigation of information-lossless FA [17, 18]
which (possibly with some additional information) carry-out injective
transformations of input semigroup into output semigroup. Some im-
portant subclass of information-lossless FA form reversible FA. These
FA are characterized in that the input alphabet coincides with the out-
put alphabet, and in each state it is carried out some bijective conver-
sion of input symbols into output symbols. Reversible FA forms some
powerful mathematical tool which enables us to investigate the deep in-
ner connection between the FA theory and the theory of groups. Thus,
these FA can be applied successfully in resolving of a wide range of the-
oretical and applied problems, both. It should be emphasized that just
information-lossless FA demonstrate possibility for using of FA as some
mathematical model for stream ciphers. Also, numerous applications
in resolving of theoretical and applied problems were found for group
FA. In these FA transition function carries out some permutation of
the set of states for every fixed input symbol value.

Finite automaton considered as an acceptor has been defined as a
system M = (Q, X, δ, qin, Qacc) (where Q and X are respectively finite set
of states and finite input alphabet, δ : Q × X → Q is the transition
function, qin ∈ Q is the initial state and Qacc ⊆ Q is the set of accepting
states). An input string is accepted by M if it transforms the initial
state into the set of accepting states. The set of all such input strings
is the language accepted by M. It has been proved that for any fixed
finite alphabet the set of languages LDFA accepted by FA acceptors
equals to the set of regular languages (Kleene’s theorem). It should
be noted that any FA acceptor is some 1-way 1-head Turing Machine
(TM) with input tape, i.e. information can only be read (1-way means
that at every step the head of TM moves one cell to the right).
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Non-deterministic FA acceptors have been investigated under sup-
position that any subset Qin ⊆ Q of initial states could be chosen and
any ternary relation δ ⊆ Q×({Λ}∪X)×Q (Λ is the empty symbol) could
define admissible transitions. Accepted language has been defined as
the set of strings that transform at least one initial state into the set
of accepting states. It has been proved that the set of all languages
accepted by these acceptors equals to the set LDFA. Although ev-
ery non-deterministic FA acceptor can be effectively transformed into
equivalent deterministic one, this transformation can lead to a signifi-
cant increase in cardinality for the set of states (there are known some
examples when non-deterministic FA acceptor has n states while equiv-
alent deterministic one has 2n states). Possibly, just this factor has
grounded application of non-deterministic FA acceptors algebra [9] for
formation of one of the main classes of discrete event systems intended
to automate industrial process control.

Nontrivial generalization of non-deterministic FA acceptors was the
emergence of probabilistic FA [19, 20]. In this model for each state
and each input symbol the probability of transition into each state is
defined (thus, there is some deep inner link between probabilistic FA
and finite Markov chains [21]). Formally, probabilistic FA is a system
M = (Q, X, {Mx}x∈X, u0, Qacc), where Q = {q1, . . . , qn} is the set of states,
X is finite input alphabet, Mx (x ∈ X) is some stochastic n× n-matrix

of transitions, u0 = (α
(0)
1 , . . . , α

(0)
n )T (α

(0)
i ∈ R+ (i ∈ Nn),

n∑
i=1

α
(0)
i = 1)

is the initial distribution of states, and Qacc ⊆ Q is the set of accepting
states. The evolution of M on input string x1 . . . xl (l ∈ Z+) is defined

by identity (α
(l)
1 , . . . , α

(l)
n )T = Mxl

. . .Mx1
u0. This string is accepted

by M with probability PM(x1 . . . xl) =
∑

α
(l)
i , where the sum is over all

i such that qi ∈ Qacc. It is defined that probabilistic FA M accepts the
language L ⊆ X+ with: 1) probability p (0.5 ≤ p ≤ 1) if it accepts
every string w1 ∈ L with probability not less than p, while any string
w2 6∈ L is accepted with probability not exceeding 1−p; 2) error (p1; p2)
(0 ≤ p1 < p2 ≤ 1) if it accepts every string w1 ∈ L with probability
not less than p2, while any string w2 6∈ L is accepted with probability
not exceeding p1. It should be noted that any probabilistic FA is some
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1-way 1-head probabilistic TM with input tape.

Progress in error-correcting codes development [22, 23] and linear
systems analysis [24] has stimulated research of FA presented via re-
currence relations over finite fields [25].

The second stage in the development of FA automata theory started
in 90s of the XX century.

Development of models for cryptographic protection of information
had a great influence on FA theory. The following problems became
actual. Firstly, it is analysis of pre-images of output strings produced
by FA [26]. Secondly, it is analysis of linear and poly-linear recur-
rences over finite rings [27, 28]. These recurrences define some class
of autonomous automata intended for design of generators of pseudo-
random sequences used in modern ciphers. Thirdly, it is analysis of
experiments with linear and bilinear automata defined via recurrence
relations over finite fields [29]. Fourthly, it is investigation of complex-
ity of FA identification [30]. This problem is caused by application of
FA for analysis of computational security for stream ciphers [31, 32].
Fifthly, it is investigation of families of FA defined via algebraic recur-
rence relations over finite rings [33, 34]. If these FA are reversible, they
can be used as mathematical models for some stream ciphers.

The problems listed above show that formation of some new section
of algebraic theory of FA is carried out at present. Essentially new
factor for this section is the transition from transformations of free
semigroups to transformations of algebraic structures performed by FA
defined via recurrence relations over finite algebraic structures. These
researches are presented in Section 3 of the current paper.

Since 1997 a variety of quantum FA (QFA) models different in com-
putational capacity have been investigated. All of them are acceptors
and they are defined in terms of 1-way k-head (k ≥ 1) quantum TM
(QTM) with input tape. Accepting of languages was analyzed both
from the point ’with given probability’ and ’with given error’.

Basic QFA models with measurement of a state only at the last step
are listed below (X (|X| = m) is input alphabet and with every letter
x ∈ X some unitary operator Ux acting in n-dimensional complex space
Cn is associated).
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The model MO-1QFA [35] is 1-way 1-head QTM M = (Q, X, |ϕ〉, Qacc),
where Q = Bn (Bn = {|i〉|i ∈ Nn}) is the set of basic states, the unit
vector |ϕ〉 ∈ Cn is the pure initial state and Qacc ⊆ Bn is the set of
accepting states. Probability that M accepts a string w = x1 . . . xl ∈ X+

equals to P(|ϕ〉, w) =‖ PaccUw|ϕ〉‖
2, where Uw = Uxl

. . . Ux1
and Pacc

is the projection operator on the subspace spanned by Qacc.

The model L-QFA [36] differs from the model MO-1QFA only that it
deals with some initial mixed state {(|ϕi〉, αi)}i∈Nn such that |ϕi〉 ∈ Cn

(i ∈ Nn) are pair-wise different unit vectors, αi > 0 (i ∈ Nn), and∑
i∈Nn

αi = 1 (αi (i ∈ Nn) is referred to as probability that at initial

instant QTM M exists in the state |ϕi〉).

Probability that L-QFA M accepts a string w ∈ X+ equals to
P({(|ϕi〉, αi)}i∈Nn , w) =

∑
i∈Nn

αiP(|ϕi〉, w).

The model kQFA [37] is 1-way k-head QTM M = (Q, T, |ϕ〉, Qacc) (at
any instant all heads move simultaneously by one cell to the right),

where T = Xk ∪
k−1⋃
i=1

Xi{Λ}k−i. It is worth to note that similarly to

the case when the model L-QFA was defined as some generalization of
the model MO-1QFA, in [38] the model L-kQFA was defined as some
generalization of the model kQFA.

Currently, analysis of QFA models is focused on detailed study of
the set of accepted languages, as well as on resolving of the problem of
identification of equivalent states. Some research of languages accepted
by above listed models of QFA is presented in Section 4 of the current
paper.

3 Automata over algebraic structures

Let K = (K,+, ·) be fixed finite ring and M = {Ma}a∈A (A ⊆ K l) be
any family of FA

Ma :

{
qt+1 = f1(qt,xt+1,a)

yt+1 = f2(qt,xt+1,a)
(t ∈ Z+),
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where f1 : Kn1+n2+l → Kn1 and f2 : Kn1+n2+l → Kn3 are fixed map-
pings, and a are parameters. It is known that via any experiment with
an automaton Ma the values of parameters a ∈ A not always can be
identified uniquely. So naturally arises the problem of design of some
algorithm that simulates any Ma ∈ M with some accuracy (from the
standpoint of cryptography this means ’an attack on the algorithm’).
This problem has been resolved in [39, 40]. The essence of proposed
solution is as follows.

We fix a set of parameters B ⊆ K l1 and three families of mappings

{ϕ
(1)
b : Kn1+n2 → Kn3}b∈B, {ϕ

(2)
b : Kn1×

r−1⋃
j=1

(Kn3)j×Kn2 → Kn3}b∈B

and {ϕ
(3)
b : Kn1+rn3+n2 → Kn3}b∈B. Let GB = {Gb}b∈B be the set

of mappings, such that Gb(q0,x1 . . . xm) = y1 . . .ym (b ∈ B,m ∈ N),
where

yi =





ϕ
(1)
b

(q0,x1), if i = 1

ϕ
(2)
b (q0,y1 . . .yi−1,xi), if i = 2, . . . , r

ϕ
(3)
b (q0,yi−r . . .yi−1,xi), if r < i ≤ m

.

Let Hb,q0
(x1 . . .xm) = Gb(q0,x1 . . . xm) (b ∈ B,q0 ∈ Kn1 ,m ∈ N).

It is evident that each family Hb = {Hb,q0
}q0∈K

n1 (b ∈ B) defines
some finite automaton over the ring K. Fixing surjection h : A → B
we associate some family Hh(a) with every automaton Ma ∈ M .

The ordered pair (GB, h) is defined as simulation model for the fam-
ily M. It is supposed that equalities Hh(a),q0

| r⋃

i=1

(Kn2)i
= Fa,q0

| r⋃

i=1

(Kn2 )i

(a ∈ A,q0 ∈ Kn1) hold, where Fa,q0
: (Kn2)+ → (Kn3)+ is the map-

ping realized by initial automaton (Ma,q0). Semantics of these equal-
ities is that simulation model (GB, h), connected to the input and the
output channels of an automaton Ma (a ∈ A) passes the first r output
symbols, and then blocks the output channel of an automaton Ma and
simulates its behavior on the remaining tail of input string.

On the base of standard techniques of algorithms theory accuracy
of simulation model (GB, h) has been defined for all combinations of
notions ’in the worst case’ and ’in average’. Asymptotically exact sim-
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ulation models have been extracted and some sufficient conditions for
existence of these models have been established in [39, 40].

It is evident that any hash function is some mapping of input semi-
group into the set of states realized by some finite initial automaton.
From the standpoint of cryptography analysis of hash functions fami-
lies defined by outputless FA over finite ring is actual. This problem
has been investigated in [41]. The main results are as follows.

Let Fk,m (k ≤ m) be the set of all mappings f : Kk+m → Kk, such
that the following two equalities |{x ∈ Km|f(q,x) = q′′}| = |K|m−k

and {x ∈ Km|f(q,x) = q′′} ∩ {x ∈ Km|f(q′,x) = q′′} = ∅ hold for
all q,q′,q′′ ∈ Kk (q 6= q′). It is evident that any mapping f ∈ Fk,m

defines strongly connected outputless automaton Mf, such that Kk is
the set of states and Km is input alphabet.

Let Hf,q0
be the mapping of input semigroup (Km)+ into the set

of states Kk realized by initial automaton (Mf,q0). Thus, automaton
Mf defines the family of hash functions {Hf,q0

}q0∈K
k .

The following theorems are true:

Theorem 1. [41]. For any mapping f ∈ Fk,m if q0 6= q′
0 (q0,q

′
0 ∈

Kk), then Hf,q0
(u) 6= Hf,q′

0
(u) for any input string u ∈ (Km)+.

Corollary 1. [41]. For any f ∈ Fk,m if q0 6= q′
0 (q0,q

′
0 ∈ Kk), then

H−1
f,q0

(q) ∩H−1
f,q′

0

(q) = ∅ for any q ∈ Kk.

Theorem 2. [41]. For any mapping f ∈ Fk,m and q0 ∈ Kk equality
|H−1

f,q0
(qt) ∩ (Km)t| = |K|tm−k (qt ∈ Kk) holds for all t ∈ N.

Let p
(1)
f,q0,t

(q) be probability that input string u randomly selected

in the set (Km)t is some solution of the equation H(u) = q, and p
(2)
f,q0,t

be probability that for two different input strings u and u′ randomly
selected in the set (Km)t equality H(u) = H(u′) holds.

The following theorems are true:

Theorem 3. [41]. For any mapping f ∈ Fk,m and q0,q ∈ Kk equality

p
(1)
f,q0,t

(q) = |K|−k holds for all t ∈ N.

Theorem 4. [41]. For any mapping f ∈ Fk,m and q0 ∈ Kk equality

p
(2)
f,q0,t

= |K|−k(1− |K|k−1
|K|mt−1) holds for all t ∈ N.

Thus, the number |K|−k characterizes computing security for a fam-
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ily of hash functions {Hf,q0
}q0∈K

k . This implies some feasibility for
using these families in resolving problems of information protection.

Applications of elliptic curves over finite fields for resolving prob-
lems of information transformation justify feasibility of research FA
defined on varieties (i.e. on the sets of solutions of systems of algebraic
equations) over finite ring. It allows to set internal connections between
modern algebraic geometry, systems theory, FA theory and cryptology.

From standpoint of algebraic FA theory and its applications it
is reasonable to deal with the set V1(K) of all varieties V ⊆ Kn

with some algebra (V,F1 ∪ F2), where F1 = {α0, α1, . . . , αk1} and
F2 = {β1, . . . , βk2} are the sets of unary and binary operations, corre-
spondingly. For any variety V ∈ V1(K) the algebra (V,F1 ∪ F2) gives
possibility to define the set A(1)(V) of Mealy FA

{
qt+1 = βj1(αi1(qt), αxt+1

(v1))

yt+1 = βj2(αi2(qt), αxt+1
(v2))

(t ∈ Z+)

and the set A(2)(V) of Moore FA
{
qt+1 = βj1(αi1(qt), αxt+1

(v1))

yt+1 = βj2(αi2(qt+1),v2)
(t ∈ Z+),

where v1,v2 ∈ V are fixed points, i1, i2 ∈ Zk1+1 and j1, j2 ∈ Nk2 are
fixed integers, q0 ∈ V, and xt+1 ∈ Zk1+1 (t ∈ Z+). Thus, for any
M ∈ A(1)(V) ∪A(2)(V) values of xt, qt and yt are, correspondingly, an
input symbol, a state and an output symbol at instant t.

Let V,U ∈ V1(K). We say that: 1) the variety U is a homo-

morphic image of the variety V, if the algebra (U,F
(2)
1 ∪ F

(2)
2 ) is a

homomorphic image of the algebra (V,F
(1)
1 ∪F

(1)
2 ); 2) varieties U and

V are isomorphic if algebras (U,F
(2)
1 ∪ F

(2)
2 ) and (V,F

(1)
1 ∪ F

(1)
2 ) are

isomorphic.
The next theorem is true:

Theorem 5. [42]. Let U,V ∈ V1(K). If U is a homomorphic image
of V, then there exist mappings Ψj : A(j)(V) → A(j)(U) (j = 1, 2),
such that homomorphic image of any automaton Mj ∈ A(j)(V) is the
automaton Ψj(Mj).
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Corollary 2. [42]. Let U,V ∈ V1(K). If U and V are isomorphic
varieties, then there exist mappings Ψj : A

(j)(V) → A(j)(U) (j = 1, 2),
such that automata Mj ∈ A(j)(V) and Ψj(Mj) are isomorphic.

Any elliptic curve γ over a finite field K = (K,+, ·) defines the
abelian group (Gγ ,+γ), where Gγ is the set of all points of γ including
specified point O (this point serves as the neutral element of the group).
Setting F1 = {α0, α1, . . . , αk1} (1 ≤ k1 < |Gγ |), where α0(P ) = O
(P ∈ Gγ) and αi(P ) = P+γ . . .+γP︸ ︷︷ ︸

i times

(P ∈ Gγ) for all i = 1, . . . , k1,

and F2 = {+γ}, we get some algebra (Gγ ,F1 ∪F2). Thus, any elliptic
curve γ defines some variety of above considered type.

For any P1, P2 ∈ Gγ\{O} and n,m ∈ Nk1 recurrence relations

{
qt+1 = nqt+γxtP1

yt+1 = mqt+γxtP2

(t ∈ Z+)

and {
qt+1 = nqt+γxtP1

yt+1 = mqt+1

(t ∈ Z+),

where xt+1 ∈ Nk1 , define the familyM1,γ,k1 of Mealy FA and the family
M2,γ,k1 of Moore FA, correspondingly.

The following theorems are true:
Theorem 6. [43]. For any automaton M1 ∈ M1,γ,k1 identification
of its initial state (with the accuracy to the set of equivalent states)
is reduced to searching any solution of equation mu = a0, where an
element a0 ∈ Gγ is determined as the result of some simple experiment
of the length 1 with the automaton M1.
Theorem 7. [43]. For any automaton M2 ∈ M2,γ,k1 identification
of its initial state (with the accuracy to the set of equivalent states)
is reduced to searching any solution of equation mnv = b0, where an
element b0 ∈ Gγ is determined as the result of some simple experiment
of the length 1 with the automaton M2.
Theorem 8. [43]. Exact imitation model for the family M1,γ,k1 of
Mealy FA can be designed as the result of some multiple experiment of
the multiplicity 3 and of the height not exceeding |Gγ | + 1. The total
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length of all input strings applied to the investigated automaton in this
experiment does not exceed |Gγ |+ 1 + 0.5|Gγ | · (|Gγ |+ 3).

Theorem 9. [43]. Exact imitation model for the family M2,γ,k1 of
Moore FA can be designed as the result of some multiple experiment
of the multiplicity 2 and of the height not exceeding |Gγ |. The total
length of all input strings applied to the investigated automaton in this
experiment does not exceed |Gγ |+ 0.5|Gγ | · (|Gγ |+ 1).

These results imply some feasibility for using the above considered
families of FA in resolving problems of information protection.

4 Quantum Automata

QFA under supposition that unitary operators associated with input
alphabet commute each with the others have been investigated in [44].
Languages accepted either with given probability, or with given error
have been characterized as follows.

Let X = {x1, . . . , xm} be the input alphabet of QFA. It is supposed
that elements of the set U = {Ui|i ∈ Nm} (Ui is unitary operator
associated with xi ∈ X) commute each with the others. With any input
string w ∈ Xl (l ∈ N) the string prU (w) = U r1

1 . . . U rm
m can be associated,

where ri (i ∈ Nm) is the number of occurrences of xi in w.

Let ≡X,U be equivalence on the set X+ defined as follows: for any
input strings w1, w2 ∈ X+

w1≡X,Uw2 ⇔ prU(w1) = prU (w2).

The following theorem is true:

Theorem 10. [44]. Let U be any set of unitary operators that com-
mute each with the others. Then any language accepted (either with
given probability, or with given error) by the model MO-1QFA, as well
as by the model L-QFA with measurement at final instant only is union
of some elements of the factor-set X+/≡X,U .

It is evident that with any element B ∈ X+/≡X,U unique unitary
operator UB can be associated, such that UB = prU(w) for all w ∈ B.
Let ≡

′

X,U be any equivalence on the set X+, such that every element
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of the factor-set X+/≡
′

X,U is union of some elements B ∈ X+/≡X,U to

which the same unitary operator UB is associated.
The following corollary is true.

Corollary 3. [44]. Let U be any set of unitary operators that commute
each with the others. Then any language accepted (either with given
probability, or with given mistake) by the model MO-1QFA, as well as
by the model L-QFA with measurement at final instant only is union
of some elements of the factor-set X+/≡

′

X,U .

Important special case of equivalence ≡
′

X,U on the set X+ takes place

in the following situation.
Let U = {Ui|i ∈ Nm} (Ui 6= I for all i ∈ Nm) be some set of

unitary operators that commute each with the others, such that for
every i ∈ Nm there exists some positive integer ai that satisfies the
identity Uai

i = I. In what follows it is assumed that ai (i ∈ Nm)
is the minimal positive integer that satisfies this identity. We define

equivalence ≡
(1)

X,U on the set X+ in the following way: for any input

strings w1, w2 ∈ X+ (prU(wi) = U ri1
1 . . . U rim

m (i = 1, 2))

w1≡
(1)

X,U
w2 ⇔

⇔ U
r11(mod a1)
1 . . . U r1m(mod am)

m = U
r21(mod a1)
1 . . . U r2m(mod am)

m .

It is evident that the equivalence ≡
(1)

X,U
is some special case of equiva-

lence ≡
′

X,U . Moreover, the following identity holds: |X+/≡
(1)

X,U
| =

m∏
i=1

ai.

Thus, the following corollary is true.
Corollary 4. [44]. Let U = {Ui|i ∈ Nm} (Ui 6= I for all i ∈ Nm) be
some set of unitary operators that commute each with the others, such
that for every i ∈ Nm there exists some positive integer ai that satisfies
the identity Uai

i = I. Then any language accepted (either with given
probability, or with given mistake) by the model MO-1QFA, as well as
by the model L-QFA with measurement at final instant only is union

of some elements of the factor-set X+/≡
(1)

X,U .

Similar results can be established for models kQFA and L-kQFA
under supposition that unitary operators associated with elements of
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the set Xk commute each with the others. However, some technical
difficulties arise with definition of equivalence on the set T+ due to the

presence of elements of the set
k−1⋃
i=1

Xi{Λ}k−i.

In [38] presented above approach has been worked out in detail for
one of the most simple non-trivial models of QFA, namely 1-qubit QA
under supposition that associated unitary operators are rotations of
the Bloch sphere [5, 6] around the y-axe and measurement of a state is
produced at final instant only. Criteria when investigated models MO-
1QFA, L-QFA, kQFA and L-kQFA accept some language with given
probability, as well as with given error has been established.

These results imply feasibility of investigation of the structure of the
set of all finitely generated commutative semigroups of special unitary
operators in C2 (the notion ’special’ means that the determinant of a
matrix that defines unitary operator equals to unit). This problem has
been investigated in [45]. Main results are as follows.

Let V be the set of all special unitary operators V : C2 → C2 and S

be the set of all finitely generated commutative semigroups G = (G, ·)
(G ⊆ V). The semigroup generated by elements V1, . . . , Vk ∈ V is
denoted (〈V1, . . . , Vk〉, ·). Without loss of generality it can be suggested
that for any semigroup (〈V1, . . . , Vk〉, ·) ∈ S (k ≥ 2) the following
condition holds: (∀r1, r2 ∈ Nk)(r1 6= r2 ⇒ (∀n ∈ N)(V n

r1
6= Vr2)).

For any γ ∈ [0, 4π) we denote R
(1)
γ , R

(2)
γ and R

(3)
γ rotations of the

Bloch sphere through the angle 0.5γ around, correspondingly, the x-
axe, the y-axe and the z-axe. It is worth to note that any special unitary

operator V ∈ V can be presented as superposition V = R
(3)
γ1 R

(2)
γ2 R

(3)
γ3

for some γ1, γ2, γ3 ∈ [0, 4π).

The set S1 = {(〈V 〉, ·)|V ∈ V} consists of all commutative cyclic

semigroups G ∈ S. Setting S
(l)
1 = {(〈V 〉, ·)|V ∈ V(l)} (l = 1, 2, 3),

where V(l) = {R
(l)
γ |γ ∈ [0, 4π)} (l = 1, 2, 3), we extract in the set S1

the sets of all commutative cyclic semigroups of rotation of the Bloch
sphere through fixed angle around fixed coordinate axe. It is evident

that (〈R
(l)
γ 〉, ·) (γ ∈ [0, 4π); l = 1, 2, 3) is finite semigroup if and only if

γ(mod π) ∈ Q+.
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For any integer k ≥ 2 we set

S
(k)
2l = {(〈R(l)

γ1
, . . . , R(l)

γk
〉, ·)|R(l)

γ1
, . . . , R(l)

γk
∈ V(l)&

&(∀r1, r2 ∈ Nk)(∀n ∈ N)(r1 6= r2 ⇒ (R(l)
γr1

)n 6= R(l)
γr2

)} (l = 1, 2, 3).

The set S2 =
3⋃

l=1

∞⋃
k=2

S
(k)
2l consists of all finitely generated commutative

non-cyclic semigroups of rotation of the Bloch sphere around fixed coor-

dinate axe. It is evident that (〈R
(l)
γ1 , . . . , R

(l)
γk 〉, ·) ∈ S

(k)
2l (k ∈ N (k ≥ 2)

and l = 1, 2, 3) is finite semigroup if and only if γr(mod π) ∈ Q+ for all
integers r ∈ Nk.

Now we investigate conditions under which two different special
unitary operators of general form commute. Let

Vj =

(
eiαj cos 0.5γj −e−iβj sin 0.5γj
eiβj sin 0.5γj e−iαj cos 0.5γj

)
∈ V (j = 1, 2),

where αj , βj ∈ [0, 2π) (j = 1, 2) and γj ∈ [0, 4π) (j = 1, 2). Then

V1V2 = V2V1 ⇔

⇔

{
(ei2(−β1+β2) − 1) sin 0.5γ1 sin 0.5γ2 = 0

eiβ1 sinα1 sin 0.5γ2 cos 0.5γ1 = eiβ2 sinα2 sin 0.5γ1 cos 0.5γ2
(1)

It is sufficient to set these or the others restrictions on the structure
of special unitary operator V1 and determine corresponding restrictions
on the structure of special unitary operator V2. Thus, we can analyze
the following cases.

Case 1. Let sin 0.5γ1 = 0 (γ1 ∈ [0, 4π)), i.e. γ1 ∈ {0, 2π} and

cos 0.5γ1 = ±1. We get V1 ∈ V1(α1) = {R̃
(3)
α1

,−R̃
(3)
α1

} (α1 ∈ [0, 2π)),
where

R̃(3)
α1

=

(
eiα1 0
0 e−iα1

)
(α1 ∈ [0, 2π)),

i.e. R̃
(3)
α1

is rotation of the Bloch sphere through the angle −α1 around
the z-axe.
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The second identity in (1) takes the form

sinα1 sin 0.5γ2 = 0 (α1 ∈ [0, 2π), γ2 ∈ [0, 4π)). (2)

The following cases can take place.
Case 1.1. Let sin 0.5γ2 = 0 (γ2 ∈ [0, 4π)), i.e. γ2 ∈ {0, 2π} and

cos 0.5γ2 = ±1. We get V2 ∈ V1(α2).

Let S3 =
∞⋃
k=2

S
(k)
3 , where

S
(k)
3 = {(〈V1, . . . , Vk〉, ·)|V1, . . . , Vk ∈

⋃

ω∈[0,2π)

V1(ω)&

&(∀r1, r2 ∈ Nk)(∀n ∈ N)(r1 6= r2 ⇒ V n
r1

6= Vr2)}.

For any fixed numbers αr1 , αr2 ∈ [0, 2π) we get:

1) if Vr1 = R̃
(3)
αr1

and Vr2 = R̃
(3)
αr2

or Vr1 = −R̃
(3)
αr1

and Vr2 = −R̃
(3)
αr2

,
then identity V n

r1
= Vr2 holds for some integer n ∈ N if and only if

relation nαr1 − αr2 ≡ 0 (mod 2π) holds;

2) if Vr1 = R̃
(3)
αr1

and Vr2 = −R̃
(3)
αr2

, then identity V n
r1

= Vr2 holds for
some integer n ∈ N if and only if π−1(nαr1 − αr2) is some odd integer;

3) if Vr1 = −R̃
(3)
αr1

and Vr2 = R̃
(3)
αr2

, then identity V n
r1

= Vr2 holds for
some n ∈ N if and only if either n and π−1(nαr1−αr2) are odd integers,
or n is some even integer and relation nαr1 − αr2 ≡ 0 (mod 2π) holds.

It is evident that the set S3 consists of some finitely generated

non-cyclic commutative semigroups and inclusion S3 ⊂ S
(2)
23 holds.

Case 1.2. Let sin 0.5γ2 6= 0 (γ2 ∈ [0, 4π)), i.e. γ2 ∈ [0, 4π)\{0, 2π}.
Identity (2) takes the form sinα1 = 0 (α1 ∈ [0, 2π)), i.e. α1 ∈ {0, π}.
We get V1 ∈ {I,−I}.

Let V2 = {I,−I} and V3 be the set of all special unitary operators
V2 ∈ V, such that γ2 ∈ [0, 4π)\{0, 2π} and V n

2 /∈ V2 for all n ∈ N. We
get some set S4 = {(〈V1, V2〉, ·)|V1 ∈ V2, V2 ∈ V3} of finitely generated
non-cyclic commutative semigroups.

Case 2. Let
{
sin 0.5γ1 6= 0 (γ1 ∈ [0, 4π))

sin 0.5γ2 6= 0 (γ2 ∈ [0, 4π))
,
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i.e. γj ∈ [0, 4π)\{0, 2π} (j = 1, 2). The first identity in (1) takes the
form ei2(−β1+β2) − 1 = 0 (β1, β2 ∈ [0, 2π)). Without loss of generality
we can assume that β1 ≤ β2. We get that either β1 = β2 and

Vj =

(
eiαj cos 0.5γj −e−iβ1 sin 0.5γj
eiβ1 sin 0.5γj e−iαj cos 0.5γj

)
(j = 1, 2),

or β2 = β1 + π and

V1 =

(
eiα1 cos 0.5γ1 −e−iβ1 sin 0.5γ1
eiβ1 sin 0.5γ1 e−iα1 cos 0.5γ1

)
,

V2 =

(
eiα2 cos 0.5γ2 e−iβ1 sin 0.5γ2
−eiβ1 sin 0.5γ2 e−iα2 cos 0.5γ2

)
.

The second identity in (1) takes the form

sinα1 sin 0.5γ2 cos 0.5γ1 = sinα2 sin 0.5γ1 cos 0.5γ2, (3)

where γ1, γ2 ∈ [0, 4π)\{0, 2π}. The following cases can take place.
Case 2.1. Let cos 0.5γ1 = 0 (γ1 ∈ [0, 4π)\{0, 2π}), i.e. γ1 ∈ {π, 3π}.

We get V1 ∈ V4(β1) = {Jβ1
,−Jβ1

} (β1 ∈ [0, 2π)), where

Jβ1
=

(
0 −e−iβ1

eiβ1 0

)
(β1 ∈ [0, 2π)).

Identity (3) takes the form

sinα2 cos 0.5γ2 = 0 (γ2 ∈ [0, 4π)\{0, 2π}, α2 ∈ [0, 4π)).

The following cases can take place.
Case 2.1.1. Let cos 0.5γ2 = 0, i.e. γ2 ∈ {π, 3π}. Since V2 ∈ V4(β1)

and V2 6= V1, then V2 = −V1. For any β1 ∈ [0, 2π) identity J2
β1

= −I
holds. We get some set S5 = {(〈V,−V 〉, ·)|V ∈

⋃
β1∈[0,2π)

V4(β1)} of

finite non-cyclic commutative semigroups.
Case 2.1.2. Let cos 0.5γ2 6= 0, i.e. γ2 ∈ [0, 4π)\{0π, 2π, 3π}. Then

sinα2 = 0, i.e. α2 ∈ {0, π}. Since eiα2 = ±1, then

V2 ∈ V5(β1) =
⋃

γ2∈[0,4π)\{0π,2π,3π}

V5(γ2, β1) (β1 ∈ [0, 2π)),
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where V5(γ2, β1) = {Uj(γ2, β1)|j = 1, . . . , 4}, and

U1(γ2, β1) =

(
cos 0.5γ2 −e−iβ1 sin 0.5γ2

eiβ1 sin 0.5γ2 cos 0.5γ2

)
,

U2(γ2, β1) =

(
cos 0.5γ2 e−iβ1 sin 0.5γ2

−eiβ1 sin 0.5γ2 cos 0.5γ2

)
,

U3(γ2, β1) = −U2(γ2, β1) and U4(γ2, β1) = −U1(γ2, β1).
It is evident that:
1) if β1 = 0, then U1(γ2, β1) is rotation of the Bloch sphere through

the angle 0.5γ2 around the y-axe;
2) if β1 = 1.5π, then U2(γ2, β1) is rotation of the Bloch sphere

through the angle 0.5γ2 around the x-axe.
We get some set

S6 =
⋃

β1∈[0,2π)

⋃

γ2∈[0,4π)\{0π,2π,3π}

S6(γ2, β1)

of finitely generated non-cyclic commutative semigroups, where

S6(γ2, β1) = {(〈V1, V2〉, ·)|V1 ∈ V4(β1)&

&V2 ∈ V5(γ2, β1)&(∀n ∈ N)(V n
2 6= V1)}.

Case 2.2. Let
{
cos 0.5γ1 6= 0 (γ1 ∈ [0, 4π))

cos 0.5γ2 6= 0 (γ2 ∈ [0, 4π))
,

i.e. (see case 2) γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π}. The following cases can
take place.

Case 2.2.1. Let sinα1 = 0 (α1 ∈ [0, 2π)), i.e. α1 ∈ {0, π}. Identity
(3) takes the form sinα2 = 0 (α2 ∈ [0, 2π)), i.e. α2 ∈ {0, π}. We get
that:

1) if β2 = β1, then

Vj =

(
± cos 0.5γj −e−iβ1 sin 0.5γj
eiβ1 sin 0.5γj ± cos 0.5γj

)
(j = 1, 2);
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2) if β2 = β1 + π, then

V1 =

(
± cos 0.5γ1 −e−iβ1 sin 0.5γ1
eiβ1 sin 0.5γ1 ± cos 0.5γ1

)
,

V2 =

(
± cos 0.5γ2 e−iβ1 sin 0.5γ2

−eiβ1 sin 0.5γ2 ± cos 0.5γ2

)
.

It is evident that V1 ∈ V6(γ1, β1) = {U1(γ1, β1), U3(γ1, β1)} and
V2 ∈ V5(γ2, β1). We get some set S7 =

⋃
β1∈[0,2π)

S7(β1) of finitely

generated non-cyclic commutative semigroups, where

S7(β1) =
⋃

γ1,γ2∈[0,4π)\{0,π,2π,3π}

{(〈V1, V2〉, ·)|V1 ∈ V6(γ1, β1)&

&V2 ∈ V5(γ2, β1)&(∀n ∈ N)(V n
1 6= V2&V n

2 6= V1)}.

Case 2.2.2. Let
{
sinα1 6= 0 (α1 ∈ [0, 2π))

sinα2 6= 0 (α2 ∈ [0, 2π))
,

i.e. αj ∈ [0, 2π)\{0, π} (j = 1, 2). Identity (3) takes the form

sinα1

sinα2
= ± tan 0.5γ1 cot 0.5γ2,

where γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π} and α1, α2 ∈ [0, 2π)\{0, π}.
Let S′(β1) be the set of all subsets {V1, V2} of special unitary op-

erators, such that:
1) unitary operators Vj (j = 1, 2) are defined by formula

Vj =

(
eiαj cos 0.5γj −e−iβ1 sin 0.5γj
eiβ1 sin 0.5γj e−iαj cos 0.5γj

)
(j = 1, 2),

where γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π} and α1, α2 ∈ [0, 2π)\{0, π};
2) identity sinα1

sinα2
= tan 0.5γ1 cot 0.5γ2 holds;

3) disequalities V n
1 6= V2 (n ∈ N) and V n

2 6= V1 (n ∈ N) hold.
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Similarly, let S
′′(β1) be the set of all subsets {V1, V2} of special

unitary operators, such that:
1) unitary operators Vj (j = 1, 2) are defined by formulae

V1 =

(
eiα1 cos 0.5γ1 −e−iβ1 sin 0.5γ1
eiβ1 sin 0.5γ1 e−iα1 cos 0.5γ1

)
,

V2 =

(
eiα2 cos 0.5γ2 e−iβ1 sin 0.5γ2
−eiβ1 sin 0.5γ2 e−iα2 cos 0.5γ2

)
.

where γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π} and α1, α2 ∈ [0, 2π)\{0, π};
2) identity sinα1

sinα2
= − tan 0.5γ1 cot 0.5γ2 holds;

3) disequalities V n
1 6= V2 (n ∈ N) and V n

2 6= V1 (n ∈ N) hold.
We get some set

S8 =
⋃

β1∈[0,2π)

{(〈V1, V2〉, ·)|{V1, V2} ∈ S
′(β1)}∪

∪
⋃

β1∈[0,2π)

{(〈V1, V2〉, ·)|{V1, V2} ∈ S
′′(β1)}

of finitely generated non-cyclic commutative semigroups.
Summarizing all the above, we conclude that the following theorem

is true:

Theorem 11. The following inclusion holds: S ⊇
8⋃

j=1
Sj .

Unfortunately, it is still unknown, if the identity S =
8⋃

j=1
Sj holds.

5 Conclusions

In the given paper some research in two new trends of FA theory has
been presented.

The first trend deals with investigation of FA families defined on al-
gebraic structures over finite rings. The presented results justify some
feasibility for using these families in resolving problems of information
protection. Based on this viewpoint, the following further research can

183



V.V. Skobelev, V.G. Skobelev

be pointed. Firstly, searching non-trivial FA families for which any
asymptotically accurate simulation model is much more complicated
than a system of equations defining the family itself. Secondly, char-
acterization of families of reversible FA for which transition to any
simulation model results in essential loss of accuracy. Thirdly, de-
tailed investigation into computational security of specific families of
hash-functions determined by outputless automata over finite rings.
Fourthly, detailed investigation into computational security of FA fam-
ilies defined on elliptic curves over finite fields.

The second trend deals with investigation of languages accepted by
QFA models under supposition that unitary operators associated with
input alphabet commute each with the others. In this direction, some
progress in investigation of 1-qubit QFA have been achieved. How-
ever, no similar results are known for l-qubit QFA (l ≥ 2). Possibly,
the reason is that no visual geometric model which is similar to Bloch
sphere is known for l ≥ 2. Characterization of l-qubit QFA (l ≥ 2) un-
der supposition that unitary operators associated with input alphabet
commute each with the others forms some trend for future research.
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