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Fundamental theorems of

extensional untyped λ-calculus revisited
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Abstract

This paper presents new proofs of three following fundamental
theorems of the untyped extensional λ-calculus: the η-Postpo-
nement theorem, the βη-Normal form theorem, and the Norma-
lization theorem for βη-reduction. These proofs do not involve
any special extensions of the standard language of λ-terms but
nevertheless are shorter and much more comprehensive than their
known analogues.
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1 Introduction

The untyped version of the λ-calculus is considered.

Its variables are denoted by symbols x, y and z, λ-terms by t, p, q,
u and w, redeces by △ (of cause, indices are sometimes used). All the
other denotations used in the paper are completely standard or other-
wise will be introduced separately.

Throughout the paper the variable convention is assumed to be
satisfied; hence the conditions x /∈ t and x /∈ FV (t) say the same.

Recall some basic facts concerning η- and βη-reduction. By def-
inition, the notion η of η-reduction is {< λx.wx,w > | x /∈ w }, the
notion βη of βη-reduction is β ∪ η. The notions of η- and βη-reduction
induce, in the usual way, the dictionaries of their derivative notions
(such as η- and βη-redeces, the relations of one-step and multi-step η-
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and βη-reduction, η- and βη-reduction sequences, etc.). Remark that
the notion of η-reduction is strongly normalizing since the contraction
of an η-redex in any λ-term decreases its length.

The extensional untyped λ-calculus studies properties of the notion
of βη-reduction as well as of its derivative relations, especially ։βη

(multi-step βη-reduction) and =βη (βη-convertibility). Along with
the Church-Rosser theorem for βη-reduction (and not taking the re-
sults on λ-representability into account), the most important results
in the extensional λ-calculus are: 1) the η-Postponement theorem,
2) the βη-Normal form theorem, 3) the Normalization theorem for
βη-reduction.

In the paper, new proofs of the theorems 1) – 3) are constructed.
These proofs do not involve any special extensions of the standard
language of λ-terms but nevertheless are shorter and much more com-
prehensive than their original or known analogues. (For example, the
original proof of the theorem 3) by J.W.Klop takes over 20 pages and
is technically very complicated.) The new proofs are arranged in the
following logical order: 1) ⇒ 2) ⇒ 3).

2 Postponable binary relations

Our proof of the η-Postponement theorem exploits some general pro-
perties which are more convenient to be observed and studied in the
general set-theoretic situation.

Definition 1. Given a set A and binary relations Q and R on A, then
R is said to be postponable after Q if the following diagram holds:

·
Q

��✁
✁
✁
✁

R

��
❂❂

❂❂
❂❂

❂

·

R
��
❂

❂
❂

❂ ·

Q
��✁✁
✁✁
✁✁
✁

·

(Here and in the sequel, the language of diagrams of binary relations
is used. In the general case, such a diagram is a configuration on the
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plane consisting of points some of which may be labelled by elements
of a fixed set A, and arrows between points, each obligatorily labelled
by a binary relation on A. Each arrow can be of two sorts: usual or
dotted. If a diagram contains a usual arrow from a to b and labelled by
R, then the latter expresses that aR b; if a point has no label, then it
is considered to be bounded by a universal quantifier (restricted by A).
At that, precisely those arrows are dotted that lead to or start with
the elements, the existence of which is being claimed (together with
the conditions imposed by the labels). Thus, each diagram (containing
at least one dotted arrow) determines a certain implicative statement.
For example, the diagram from the last definition means the following:

∀a, b, c ∈A
[

aR b & bQ c ⇒ ∃ d ∈A (aQd & dR c)
]

,
i.e. that R ◦ Q ⊆ Q ◦ R, where ◦ denotes the usual composition of
binary relations.)

Note that if binary relations Q = f and R = g are functions, then
g is postponable after f if and only if g ◦ f = f ◦ g, that is f and
g commute with each other. Therefore, in this case f is postponable
after g as well. However in the general case the latter is not valid, i.e.
the notion of postponability is not symmetric.

By R+ and R∗ denote, resp., the transitive and reflexive-transitive
closures of a binary relation R.

It can easily be proved that if R is postponable after Q, then R∗ is
postponable after Q∗ as well. Containing this statement as a particular
case, the following result can be viewed as its natural generalization.

Postponement Lemma. Let Q and R be binary relations on a set A
such that for any triple of elements of A, at least one of the following

diagrams holds:

·
Q

��✁
✁
✁
✁

R

��
❂❂

❂❂
❂❂

❂ ·

Q+

��
✤

✤

✤

✤

✤

✤
R

��
❂❂

❂❂
❂❂

❂

·

R∗

��
❂

❂
❂

❂ ·

Q
��✁✁
✁✁
✁✁
✁

or ·

Q
��✁✁
✁✁
✁✁
✁

· ·

Then R∗ is postponable after Q∗ and (Q ∪R)∗ = Q∗◦R∗.
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Proof. Since R∗ ◦ Q∗ ⊆ (Q ∪ R)∗, for proving the postponability, it is
sufficient to show that (Q ∪R)∗ ⊆ Q∗◦R∗, which also substantiates the
second statement (the inclusion opposite to the latter holds trivially).
Let a and c be any elements of A with a (Q∪R)∗c. Obviously, it can be
assumed that a 6= c. Then there is, for some elements b1, . . . , bn−1 ∈ A,
a valid sequence of the form

b0 S0 b1 S1 b2 S2 . . . Sn−2 bn−1 Sn−1 bn , (1)

where b0 = a, bn = c, and Si ∈ {Q,R} for every i ∈ {0, n − 1}.
Consider its leftmost “two-step” segment of the form bkRbk+1Qbk+2

(if there is no such a segment, there is nothing to prove). If, for simp-
licity, the “Q-prefix” of (1) is empty, then (1) has the following form:

b0Rb1Rb2R . . . R bk−1Rbk Rbk+1Qbk+2 Sk+2 bk+3 Sk+3 . . . Sn−1bn . (2)

Applying one of the diagrams from the conditions of the lemma to
the underlined segment, one of the following sequences will be obtained:

b0R . . . R bk−1Rbk Qb′k+1Rb′k+1, 1R . . . R b′k+1,mRbk+2Sk+2 . . . Sn−1 bn

(in the case of the left diagram), where m is a natural number, or

b0R . . . R bk−1Rbk Qb′k+1, 1Q . . . Q b′k+1, mQbk+2Sk+2 . . . Sn−1 bn

(in the case of the right diagram), wherem is a positive natural number.
Comparing the obtained sequences with the previous one, notice

that in the both cases, the position of the leftmost occurrence of Q is
one item to the left than that was in (2). Therefore, the proof can be
completed by induction, applied to the set of sequences of the form (1)
that is considered to be lexicographically ordered in accordance with
the positions of all occurrences of Q in a sequence under consideration
when reading it from left to right. �

Remark. The Postponement lemma states less than that was proved.
Actually, the above given proof determines an algorithm of reconstruc-
ting each sequence (1) to a form b0Q . . . Q dR . . . R bn which will be
referred to as postponing R after Q. (Of cause, this algorithm makes
sense provided the conditions of the lemma are satisfied.)
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3 Postponement of η-reduction

Note that when considering diagrams over the set of λ-terms some ar-
rows of which are labelled by one-step reductions, it is often convenient
to introduce additional labels for (some of) these arrows for indicating
the contracted redex occurrences. (Examples are given below.)

Given a one-step βη-reduction sequence σ : t1
△
−→βη t2. If △1 is

such a βη-redex occurrence in t1 that has exactly one residual in t2
(w.r.t. σ), then the latter will be denoted by

−→
△1. If △2 is a βη-redex

occurrence in t2, then it can be trivially verified that there can be
at most one βη-redex occurrence in t1 for which △2 is a residual of
(or belongs to the set of residuals of); in this case, it is denoted by

←−
△2,

i.e.
←−
△2 is a “coresidual” of △2 w.r.t. σ.

η-Postponement Theorem. [1; 2] Every finite βη-reduction sequ-

ence σ : t1 ։βη t2 can be reconstructed into a sequence of the form

σ′ : t1։β u ։η t2, for some λ-term u.

Proof. Let us verify the diagrams from the conditions of the Post-
ponement lemma (with Q =−→β and R =−→η). For a given two-step

βη-reduction sequence of the form t1
△η
−→η t2

△β
−→β t3, note that the

coresidual
←−
△β always exists and is always a β-redex occurrence in t1.

Let △η ≡ λx.wx, △β ≡ (λy.p′)q′ and
←−
△β ≡ (λz.p)q. Consider all the

possible cases of mutual locations of the redeces △η and
←−
△β in t1:

1. △η ∩
←−
△β = ∅

2. △η⊃
←−
△β

3. △η⊂
←−
△β

3.1. △η ≡ λz.p ≡ λx.(λy.p′)x (hence z ≡ x and q ≡ q′)

3.2. △η ⊆ p (hence z ≡ y and q ≡ q′)

3.3. △η ⊆ q (hence z ≡ y and p ≡ p′)

The cases 1, 2 and 3.2 are trivial: one only needs to reverse the
order of contractions (first, to contract

←−
△β in t1 and then, to contract

the residual
−→
△η of △η in the resulting term), which all lead to a diagram

of the form:

157



Alexandre Lyaletsky

t1
←−
△β

β
��✁
✁
✁
✁

△η

η��❄
❄❄

❄❄
❄❄

·

−→
△η

η
��
❂

❂
❂

❂ t2

△β

β
��⑧⑧
⑧⑧
⑧⑧
⑧

t3

Case 3.1:
. . . (λx.(λy.p′)x)q′ . . .

(λx.(λy.p′)x)q′

β
xxq
q
q
q
q
q
q
q
q
q
q
q

λx.(λy.p′)x

η
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼

. . . (λy.p′)q′ . . .

(λy.p′)q′

β &&▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

. . . (λy.p′)q′ . . .

(λy.p′)q′

βxxqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

. . . p′[y := q′] . . .

Case 3.3. First, consider the subcase when q ≡△η ≡ λx.wx:

. . . (λy.p′)(λx.wx) . . .

(λy.p′)(λx.wx)

β
ww♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

λx.wx

η
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

. . . p′[y := λx.wx] . . .

η '' ''❖
❖

❖
❖

❖
❖

❖
❖

❖
❖

❖
❖

. . . (λy.p′)w . . .

(λy.p′)w

βxxqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq

. . . p′[y := w] . . .

Finally, in the general conditions of the case 3.3, one has
q ≡ . . . λx.wx . . . , which leads to a diagram similar to the latter. �
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4 βη-Normal forms

Note that for a λ-term of the form (λx.wx)q, where x /∈ w, the both

contractions (λx.wx)q
(λx.wx)q
−−−−−→β wq and (λx.wx)q

λx.wx
−−−−→η wq lead to

the same result wq.

Definition 2. An η-redex occurrence △η ≡ λx.wx in a λ-term t is
called β-replaceable, if △η is a re-part of some β-redex occurrence in t,
i.e. there is a term q such that (λx.wx)q is a β-redex occurrence in t.

Lemma 1. Given a finite η-reduction sequence σ : t ։η t′ in which

neither of the contracted η-redeces is β-replaceable. If t′ is a β-normal

form, then so is t.

Proof. Obviously, it is sufficient to prove the lemma for the case of

a one-step η-reduction sequence σ : t
△η
−→η t′. If t is not a β-normal

form, then it contains some β-redex occurrence (λx.p)q and hence
t ≡ . . . (λx.p)q . . . . Since △η is not β-replaceable, it follows that
△η 6≡ λx.p. Then, evidently, (λx.p)q has a nonempty residual in t′

which is a β-redex occurrence. Thus, t′ is not a β-normal form. �

βη-Normal Form Theorem. [1; 3] An arbitrary λ-term t has a

βη-normal form ⇔ t has a β-normal form.

Proof. The sufficiency is obvious, since if t has a β-normal form t′,
then any η-redex contraction in t′ does not create new β-redeces and
decreases the length of t′.

Let us prove the necessity. Suppose a λ-term t has a βη-normal
form t′. By the Church-Rosser theorem for βη-reduction ([1; 2]), then
there is a βη-reduction sequence σ : t ։βη t′. Moreover, it can be as-
sumed without loss of generality that neither of the η-redeces being
contracted in σ is β-replaceable (since any such an η-redex can be re-
placed in σ with the corresponding β-redex). Furthermore, from the
analysis of the diagrams from the proof of the η-Postponement theorem
it can be concluded that when postponing η-reduction in σ, no con-
tracted β-replaceable η-redeces can emerge. Therefore, there exists a
βη-reduction sequence of the form σ′ : t ։β u ։η t′, for some λ-term u,
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that does not contract neither of the β-replaceable η-redeces. Lemma
1 finally implies that u is the needed β-normal form of t. �

5 Normalization theorem for βη-reduction

Recall that for a given notion R of reduction and λ-term t, an R-left-
most redex is any such an R-redex occurrence in t, the position (in t) of
the first symbol of which cannot be strictly to the right of the position
of the first symbol of any other R-redex occurrence. Therefore, this
notion is not deterministic in the general case, i.e. for some notion R
of reduction, a term t may have two or more distinct leftmost R-redex
occurrences. By this reason, the latter notion is sometimes strength-
ened to the notion of the R-leftmost-outermost redex occurrence which
is always unique in every λ-term (if any).

As to the βη-reduction, the notion of a βη-leftmost redex occurrence
is not deterministic as well. However this is a small problem, since the
only possibility for the ambiguity in this case is when considering terms
with subterm occurrences of the form (λx.px)q, where x /∈ p (having
two distinct leftmost βη-redex occurrences: λx.px and (λx.px)q, the
both contractions of which lead to the same result pq).

By leftβη denote the so-called βη-leftmost strategy which in every
λ-term always contracts the βη-leftmost-outermost redex occurrence
(if any). For each term t, it determines a certain finite or infinite
βη-reduction sequence starting with t which is also called βη-leftmost.
Analogously, by leftβ denote the β-leftmost strategy.

We write t −−−−→
βη-left

t′ and t −−−−→
β-left

t′ instead of, resp., t′ = leftβη (t)

and t′ = leftβ (t). The notation t
△

−−−−→
βη-left

η t
′ means that t −−−−→

βη-left
t′

and t
△
−−→η t′. Therefore, −−−−→

βη-left
η can be considered as a binary rela-

tion on the set of λ-terms; by
βη-left, 6=∅

// //
η denote its transitive closure.

The relations −−−−→
βη-left

β and
βη-left, 6=∅

// //
β are introduced analogously,

the same concerns −−−−→
β-left

β and
β-left, 6=∅

// //
β .
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Lemma 2. The following diagram holds:

·
β-left, 6=∅

β ����✁
✁
✁
✁ βη-left, 6=∅

η�� ��❂
❂❂

❂❂
❂❂

·

βη-left, 6=∅

η
�� ��
❂

❂
❂

❂ ·

β-left, 6=∅

β
����✁✁
✁✁
✁✁
✁

·

Proof. First consider the case of a two-step reduction sequence of the

form t1
△η

−−−−→
βη-left

η t2
△β
−−−−→
β-left

β t3. Since △η is the βη-leftmost-outermost

redex, it follows that △η is strictly to the left of
←−
△ β in t1. Obviously,

this is possible only in the cases 1 and 2 from the proof of the η-Postpo-
nement theorem, which, as noted there, leads to the following diagram:

t1
β-left

β ←−
△β △η���

�
�
� βη-left

η
��
❃❃

❃❃
❃❃

❃❃

t′2

βη-left

η

−→
△η △β

��
❃

❃
❃

❃
t2

β-left

β
����
��
��
��

t3

(at that, evidently,
←−
△ β is indeed the β-leftmost redex occurrence in t1

and
−→
△η the βη-leftmost-outermost redex occurrence in t′2).

Now the general case can be concluded from the following typical
example of a diagram can arise under such conditions (in which all the
labels are omitted due to the triviality of its construction):

· //

��
✤
✤
✤ · //

��
✤
✤
✤ · //

��
✤
✤
✤ · //

��
✤
✤
✤ ·

��
· //❴❴❴

��
✤
✤
✤ · //❴❴❴

��
✤
✤
✤ · //❴❴❴

��
✤
✤
✤ · //❴❴❴

��
✤
✤
✤ ·

��
· //❴❴❴

��
✤

✤

✤ · //❴❴❴

��
✤

✤

✤ · //❴❴❴

��
✤

✤

✤ · //❴❴❴

��
✤

✤

✤ ·

��
· //❴❴❴ · //❴❴❴ · //❴❴❴ · //❴❴❴ · �
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Recall that a βη-strategy f is called normalizing if whenever a term
t has a βη-normal form, fn(t) is a βη-normal form for some natural
number n.

Normalization Theorem for βη-Reduction. [4; 5] The strategy

leftβη is normalizing.

Proof. Supposing the contrary, there is a term t having a βη-normal
form, the βη-leftmost reduction sequence σ of which is infinite. It will
be proved, by means of postponing η-reduction with the help of Lemma
2, that σ can be reconstructed into the infinite β-leftmost reduction
sequence (starting with t), which leads to a contradiction: indeed, by
the Normalization theorem for β-reduction ([1; 3]), then t does not
have a β-normal form and by the βη-Normal form theorem, t does not
have a βη-normal form as well.

It can be assumed without loss of generality that σ contracts at
least one η-redex (otherwise, σ is already β-leftmost) and, moreover,
that it contracts the infinite number of η-redeces (otherwise, exclude
from σ such an initial segment that the resulting sequence contracts
β-redeces only, which sends back to the previous case). On the other
hand, σ should contract the infinite number of β-redeces, since the
notion of η-reduction is strongly normalizing. In addition to all these
conditions, it can also be assumed, for definiteness, that σ starts with
an η-redex contraction (otherwise, exclude from σ its β-prefix). Then
σ can be represented in a form of the following infinite sequence:

σ : t0
βη-left, 6=∅

// //
ηu0 βη-left, 6=∅

// //
β t1 βη-left, 6=∅

// //
ηu1 βη-left, 6=∅

// //
β . . . ,

where t0 ≡ t (i.e. σ is being divided into alternating η- and β-segments).

Finally, notice that every βη-leftmost reduction sequence that con-
tracts β-redeces only is evidently the β-leftmost reduction sequence as
well. Now the following infinite diagram can be constructed with the
help of Lemma 2:
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t0
β-left, 6=∅

β ��
��
✤

✤

✤ βη-left, 6=∅ η
// // u0

β-left, 6=∅

β����

·

β-left, 6=∅

β ��
��
✤

✤

✤ βη-left, 6=∅ η
// //❴❴❴❴❴❴❴ t1

βη-left, 6=∅ η
// // u1

β-left, 6=∅

β����

·

β-left, 6=∅

β ��
��
✤

✤

✤ βη-left, 6=∅ η
// //❴❴❴❴❴❴❴❴❴❴❴❴❴❴ t2

βη-left, 6=∅ η
// // u2

β-left, 6=∅

β����

·

��
��

βη-left, 6=∅ η
// //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ t3

βη-left, 6=∅ η
// // u3

��
��

· · · · · ·

Its vertical line determines the β-leftmost reduction sequence starting
with t0 ≡ t. Thus, the latter is indeed infinite, just as expected. �

Note that this proof is rather close to that from [5]. (Both the
proofs are based on the idea to reduce the Normalization theorem for
βη-reduction to its analogue for β-reduction by means of postponing
η-reduction and taking into account that η-reduction is strongly nor-
malizing, both of them are proceeded by contradiction and exploit
Lemma 2, however in the other proof the contradiction is obtained
in a different way.)

An interested reader is invited to compare the constructed proofs
with their original or known analogues. The detailed references to the
latter are contained in the following table compiled for his convenience:

η-Postponement theorem
[1, pp. 384 − 386]
[2, pp. 132 − 135]

βη-Normal form theorem
[1, pp. 384 − 386]
[3, pp. 313 − 314]

Normalization theorem for βη-reduction
[4, pp. 279 − 290]
[5, pp. 529 − 537]
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