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Structuring of Specification Modules
(extended)*

Razvan Diaconescu

Abstract

This paper has two goals. One goal is to provide a brief
introduction to the concept of modularisation in the context of
formal specifications. The other goal is to survey some recent
developments in this area, including parameter instantiation with
sharing and module systems for behavioural specifications.

1 Composition of Specification Modules

1.1 Formal methods in software engineering

The field of formal methods for software and hardware systems is with-
out alternative in safety-critical or security areas where one cannot take
the risk of failure. Moreover formal methods are crucial in ensuring a
smooth development of large software systems as well as their evolu-
tion and maintainability. In general one may distinguish between two
classes of formal methods:

1. model checking; and
2. formal specification.

While the former has gained certain prominence, being especially suc-
cesfull in discovering errors in the system development process, only
the latter may fully guarantee correctness.
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1.2 Formal specification

In simple terms, formal specification activity can be described at two
levels:

— At specification level, the system is specified axiomatically in a
formal logical system (not necessarily a conventional one).

— At wverification level, the properties of the system are derived as
theorems, getting a fully formal proof.

Perhaps the most prominent classes of formal specifications are those
that are based upon algebraic principles (in a wide sense of the term).
While traditionally algebraic specification [3] is based upon a general
form of algebra (such as the equational logic of many-sorted algebra),
modern algebraic specification employs a wide variety of logical sys-
tems of higher levels of sophistication. Modern algebraic specification
systems include CASL [2], CafeOBJ [20], Maude [10], Specware [29],
etc. Heterogeneous environments [20, 32] constitute a recent integrat-
ing trend in logic-based formal specification that provides a very flexible
approach when choosing the appropriate language and formalism. The
theoretical infrastructure developed over many decades of research in
formal specification has been exported also to other areas of computing
science such as ontologies (e.g. [30]) or declarative programming.

In some cases there is a rather strong integration between the speci-
fication and the verification levels (like in OBJ, CafeOBJ, Maude, etc.).
These are systems that in some sense are most faithful to the original
algebraic specification culture that has equational logic at its core. The
algebraic features of those systems smoothen up significantly the ver-
ification process by integrating techniques with good computational
properties such as rewriting. In a way such specification languages,
also called ezxecutable languages, may function quite well as very high
level (declarative) programming languages. However equational logic
poses some limitations in the specification power. In other cases (such
as CASL, Specware, etc.) there is not a direct integration between the
specification and the verification levels, allowing for more sophisticated
logics meaning significant gains in specification power. In these cases
the formal verification methodologies may involve external automatic
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provers (SPASS [41], etc.) and/or proof assistants (Coq, Isabelle, etc.).
The difference between these two lies at the level of human involvement,
while in the former situations this is minimal, in the case of the proof
assistants the formal proofs are human guided.

An important distinctive feature of formal/algebraic specifications
is its rock solid mathematical foundations based upon the principle of
specification languages being rigorously based upon underlying formal
logical systems such that each language constructs reflect rigorously
as a mathematical concept in the underlying logic. Modern specifica-
tion theory is based upon Goguen and Burstall’s theory of institutions
[24, 14] which is a general category theoretic [31] approach to logic.
This makes the general theory independent of the actual choice of a
logical system, which means great uniformity and applicability to a
wide variety of specification languages.

1.3 Modular specifications

Modularisation is the only way to cope with the complexity of formal
specifications of large software systems. It greatly enhances readability
and reusability of specification code. Moreover structuring techniques
also reduce the complexity of the formal verification process.

The work on specification modules has a long history that starts
with the specification language Clear developed by Goguen and Burstall
[9]. That laid general founding principles for module systems of formal
specifications that have been realised by a multitude of subsequent
languages and systems, notably including programming languages such
as ADA or ML.

The main structuring constructs include

— Module imports (various kinds);

— Module sum/aggregation;

— Renamings;

— Information hiding;

— Parameterised (generic) modules and parameters instantiation by
VIews;

— Complex module expressions;
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The current modularisation theory and methodologies include many
developments that have been fuelled by the actual practice in formal
specification and by the design of new modern languages and systems
supporting this activity. Moreover the modularisation technology has
been exported from the area of formal specifications to other computer
science areas, e.g. ontologies (the OMG standard OntoIOp).

Two quite major ideas have shaped the current approaches to spec-
ification modules.

1.3.1 Institution theory

The first idea is to abstract away from the details of the logic underlying
the actual specification language. The module composition techniques
are largely independent of the logical formalism employed by the re-
spective specification language; in fact this important observation con-
stituted the main idea behind the language Clear and has triggered
the conception of institution theory [24] as an abstract framework for
modularisation. This very general mathematical study of formal logi-
cal systems, with emphasis on semantics, is based upon a mathematical
definition for the informal notion of logical system, called institution.
This definition accommodates not only well established logical systems
but also very unconventional ones and moreover it has served and it
may serve as a template for defining new ones. Institution theory ap-
proaches logic from a relativistic, non-substantialist perspective, quite
different from the common reading of logic. This is not opposed to the
established logic tradition, since it rather includes it from a higher
abstraction level. However the real difference is made at the level
of methodology, top-down (in the case of institution theory) versus
bottom-up (in the case of conventional logic tradition). Institution the-
ory has had a strong impact in computer science and logic for over
more than three decades (see [16]), and it continues to attract an ever
growing interest in institution theory by computer scientists and (more
recently) logicians.
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Let us very briefly recall here the main concept of institution theory.

Definition 1 (Institutions) An institution is a tuple
(Sign, Sen, Mod, (Fs)se|sign||) that consists of

— a category Sign whose objects are called signatures,

— a functor Sen: Sign — Set (to the category of sets) giving for
each signature a set whose elements are called sentences over that
stgnature,

— a (contravariant) functor Mod : (Sign)°? — CAT (to the ‘category’
of categories), giving for each signature X a category whose o0b-
jects are called ¥-models, and whose arrows are called Y-(model)
homomorphisms, and

— a relation =y, C |Mod(X)| x Sen(X) for each ¥ € |Sign|, called
the satisfaction relation,

such that for each morphism p: ¥ — ¥/ € Sign, the Satisfaction Con-
dition

M' sy Sen(p)(p) if and only if Mod(p)(M') f=sx p (1)

holds for each M' € |Mod(X')| and p € Sen(X).

The literature (e.g. [14, 39]) shows myriads of logical systems from
computing or from mathematical logic captured as institutions. In
fact, an informal thesis underlying institution theory is that any ‘logic’
may be captured by the above definition. While this should be taken
with a grain of salt, it certainly applies to any logical system based on
satisfaction between sentences and models of any kind.

1.3.2 Core specification building operators

A second important idea envisaged in many works (e.g. [38, 4, 39], etc.)
is to have a core set of specification building operators, with a clearly
defined semantics, that can be used to define composition operators in
actual module systems. The most prominent such set of specification
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building operators has been introduced in [38]; we recall them below
in the more modern form of [8].

Given any institution (Sign, Sen, Mod, =) with designated classes
of signature morphisms 7 and D the class of the (T,D)-structured
specifications [8] is the least class such that

— it contains all finite presentations, i.e. pairs (3, E) with X signa-
ture and F finite set of Y-sentences; we also define
— ®(X,E) =% and
— Mod(X,E) ={M € |[Mod(2)| | M = E},

— if SP; and SP; are structured specifications such that ®(SP;) =
®(SP,), then SP; USPy is also a structured specification and we
define

- q)(SPl U SPQ) = @(SPZ) and
— ‘MOd(SPl @] SPQ)’ = ‘MOd(SPl) N MOd(SPg)’,

— if SP is a structured specification and (¢: ®(SP) — X') € T, then
SP % ¢ is structured specification and
— O(SPx¢) = X' and
— |Mod(SP % )| = {M" | Mod(p)(M') € Mod(SP)}, and

— if SP’ is a structured specification and (p: ¥ — ®(SP’)) € D,
then @OSP’ is structured specification and

— ®(pOSP') = X and
— |Mod(¢DSP")| = {M'],, | M’ € Mod(SP)}.

Given a structured specification SP as above ®(SP) is its signature
®(SP) and Mod(SP) is its class of models. The signature and the class
of models of a specification SP represents its semantics.

When the actual specification language provides tight semantics ca-
pabilities, then an initial or final semantics operator is also typically
included. However occasionally (see [18]) these specification building
operators do not suffice, therefore other operators have also to be con-
sidered.
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1.3.3 Inclusion systems

At the end of this section we would like to briefly present a category
theoretic device that plays an important technical role in the theory of
specification modules.

Inclusion systems were introduced in [23] with the aim of support-
ing an abstract general study of structuring specifications and program-
ming modules that is independent of any underlying logic. While com-
puter science is usually a heavy consumer of mathematics, inclusion
systems can be seen as opposite, i.e. a rare contribution of computer
science to pure mathematics. Inclusion systems have been used in a
series of general module algebra studies such as [23, 27, 14], and also
in institutional model theory studies [14, 36, 13, 1, 14]. Inclusion sys-
tems capture categorically the concept of set-theoretic inclusion in a
way reminiscent of the manner in which the rather notorious concept
of factorisation system [7] captures categorically the set-theoretic injec-
tions; however, in many applications the former are more convenient
than the latter. The definition below can be found in the recent liter-
ature on inclusion systems (see, e.g. [14]), and differs slightly from the
original one of [23].

Definition 2 (Inclusion system) An inclusion system for a cate-
gory C is a structure (Z, E) such that T and £ are broad subcategories
of C satisfying the following two properties:

— T is a partial order (with the ordering relation denoted by C), and

— every arrow f in C can be factored uniquely as f = ey;iy, with
efe€& andiycl.

In [12] it was shown that the category Z of abstract inclusions de-
termines the category & of abstract surjections. In this sense, [12] gives
an explicit equivalent definition of inclusion systems that relies only on
the category Z of abstract inclusions.

The standard example of inclusion system is that from Set, with
set theoretic inclusions in the role of abstract inclusions and surjective
functions in the role of abstract surjections. The literature contains
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many other examples of inclusion systems for the categories of signa-
tures and for the categories of models of various institutions from logic
or specification theory.

2 Recent Developments

In this section we survey some recent developments in the theory of
modular formal specifications. Three topics are considered: general
theory, genericity and sharing, and module systems for behavioural
specifications.

2.1 General theory

Pivotal developments in the institutional theory of structured spec-
ifications (such as [38, 23] etc.) provide an abstract treatment of
the underlying logic as an abstract institution but consider fixed sets
of concrete structuring operators. To overcome this limitation, but
also to achieve unification between the Goguen-Burstall [24, 23] and
the Sannella-Tarlecki [38, 39] approaches to the semantics of struc-
tured specifications, the recent paper [15] introduces a second level of
institution-independence by treating the class of the structured spec-
ifications together with their model theory as an abstract institution.
The relationship between the level of structured specifications and the
level of the underlying logic is axiomatized by a special kind of insti-
tution morphism. The following definition recalls from [15] the main
concept of this theory.

Definition 3 (Structured institution) An institution
T’ = (Sign’, Sen’, Mod', |=") is said to be structured over a base insti-
tution T = (Sign, Sen, Mod, =) through a structuring functor ®, or
(®,Z)-structured, when

— ® is a functor Sign’ — Sign,

~ for every I'-signature X', Sen(®(¥')) = Sen’(X'), and similarly,
for every T'-signature morphism ', Sen(®(y')) = Sen’(¢'),
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— for every T'-signature Y, Mod' (X') is a full subcategory of
Mod(®(X')) such that the diagram below commutes for every I'-
signature morphism ¢: ¥ — X5, and

Mod' () —=> Mod(®(%}))
Mod’(so)T TMod(@(so))
Mod'(3%) — Mod(®(3)

— for every I'-signature X', ¥'-model M’ and Y'-sentence p,

M' =5 p o if and only if M’ g5y p.

Several examples of structured institutions are presented in some
detail in [15]. One of the most important ones is that of the structured
specifications of Sect. 1.3.2. In that example, Sign’ is the category
of the structured specifications, Mod'(SP) is Mod(SP) as defined in
Sect. 1.3.2 and the satisfaction relation of Z’ is inherited from Z in the
obvious way.

Recent papers such as [15, 40, 11, 19, 17] develop elements of mod-
ularisation theory in this abstract framework.

2.2 Genericity and Sharing

Generic or parameterised modules represent one of the most important
module composition techniques because they can be (re)used in vari-
ous ways by appropriate instantiations of their parameters. In simple
terms, a parameterised module (denoted SP(P)) can be regarded as
a module import P — SP, with P being its parameter and SP being
its body. Instantiation of parameterised modules is performed through
interpretations of their parameters. In the specification literature they
are usually called views and they are syntactic mappings v: P — SP;
that satisfy two conditions:

1. they match consistently the signature of the parameter P to the
signature of the value SP; (which is also a specification module);
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technically this amounts to the fact that v is a signature mor-
phism; and

2. any implementation! of SP; has to be a an implementation of the
parameter P via the interpretation of the syntactic entities given
by v.

Given a parameterised module SP(P) and a view v: P — SP; the
instance SP(P < v) is commonly defined by the using the pushout
technique (cf. [9, 39], etc.) from category theory [31], which informally
can be explained as a ‘user-defined’ form of union. This is a two-steps
process. First consider the underlying signatures of the specifications
and compute a pushout in the category of signatures:

®(P) —=> ®(SP)

w

B(SP1) —— 3

At the second stage we built the actual instance

P SP (2)

SP; — = SP(P < v)

by defining
SP(P < v) = (SPy xi') U (SPx').

This requires that, minimally, there are unions and translations avail-
able as building operators.

While this is the traditional approach to parameter instantia-
tion which is widely employed by actual specification formalisms (e.g.
[9, 2, 20], etc.) and also by programming languages such as ML and

!Mathematically speaking, ‘implementations’ are treated as models or interpre-
tations in the underlying logic.
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other languages influenced by it, it still raises several technical issues
of important methodological significance and that can be summarised
as follows:

1. Since the pushout construction is unique only up to isomorphic
renaming, actual implementations of module systems involving
parameters provide ad-hoc constructions for the results of param-
eter instantiations. But how can we ensure in general that there
exists an instantiation such that SP; — SP(P <« v) behaves like
an import, and moreover would this be uniquely defined?

2. In order to avoid technical complications the actual specification
systems commonly dismiss the sharing between the body (SP)
and the instance (SP;), a situation that in practice constitutes a
real restriction, as for example it may lead to duplication of the
same data.

3. In the case of multiple parameters, for example SP(Py, P,), we
can instantiate them sequentially (first (SP(P, < v1)(P;) and
next SP(P; < v1)(P2 < wvy), or the other way around) or in
parallel by regarding SP as parameterised by a single parameter,
SP(P; + P, <= v + v2). Are the two sequential instantiations
and the parallel one equivalent methods in the sense of yielding
isomorphic results?

The main technicalities involved in the answer to these questions in-
clude both a reshape of the definition of parameter instantiation and a
general property of the signatures of the specification language formu-
lated. In brief the traditional pushout square (2) has to be redefined
as

PUSP, —=~SPUSP, (3)
UUlspll lvl
SP, — = SP(P < v)

7

(where v U 1gp, implies that v is identity on the part shared between
P and SPy)
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and the signatures have to enjoy the following general property: for
any signature morphism ¢: ¥ — ¥; and any inclusion ¥ C ¥’

NQ—S=3%'NQ

S

<@ = -y @|c
® 6) ‘/gp’

5 —— 3

b))

there exists a pushout @) such that for any signature Q if @) holds then
@ holds too.

In the works [18, 15, 40] the concepts of inclusion (C), union (U),
intersection (N), disjointness, etc. are treated abstractly within the
framework of ‘inclusion systems’ as presented in Sect 1.3.3. In this way
the solution proposed is general and can be applied to almost all exist-
ing specification formalisms (with the notable exception of behavioural
specifications discussed below). The required property above holds
naturally for all specification formalisms of interest, often in a stronger
form than actually required (see [18, 40]). The generality of this so-
lution implies also that it can be employed also by new specification
formalisms to be defined in the future.

2.3 Module systems for behavioural specifications

Modern algebraic specification theory and practice has extended the
traditional many-sorted algebra-based specification to several new
paradigms. Omne of the most promising is behavioural specification,
which originates from the work of Horst Reichel [33, 34] and can be
found in the literature under names such as hidden algebra [25, 26],
observational logic [5, 28], coherent hidden algebra [21] and hidden
logic [35]. Behavioural specification characterises how objects (and
systems) behave, not how they are implemented. This new form of
abstraction can be very powerful for the specification and verification
of software systems since it naturally embeds other useful paradigms
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such as concurrency, object-orientation, constraints, nondeterminism,
etc. (see [26] for details). In the tradition of algebraic specification,
the behavioural abstraction is achieved by using specification with hid-
den sorts and a behavioural concept of satisfaction based on the idea of
indistinguishability of states that are observationally the same, which
also generalizes process algebra and transition systems (see [26]). An
important effort has been undertaken to develop languages and systems
supporting the behavioural extension of conventional or less conven-
tional algebraic specification techniques; these include CafeOBJ [20, 22],
CIRC [37] and BOBJ [35]. In other situations, behavioural specifica-
tion, although not directly realized at the level of the language defini-
tion, is employed as a mere methodological device [6]. In all cases there
is the unavoidable need of a structuring mechanism for behavioural
specifications.

However the modularisation of behavioural specifications poses spe-
cific challenges with respect to the standard modularisation techniques.
Some important properties that in general are taken for granted do not
hold in the case of behavioural specifications, for example the basic
operation of union (aggregation) of behavioural specifications is only
partial. The root cause of these problems lies in the ‘encapsulation con-
dition’ on the signature morphisms, which prohibits new behavioural
operations on old hidden sorts (i.e. that correspond to sorts of the
source signature). Therefore the basic compositionality properties of
behavioural specifications hold in a partial rather than total algebra
style form. For example (see [19]) the associativity of union of be-
havioural specifications

(SP USP’) USP” = SP U (SP’ U SP”)

means that either both members are defined and are equal semantically
or else that neither of them is defined.

In the case of the instantiation of parameterised behavioural speci-
fications the pushout square (2) is replaced with the following pushout
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square:
PU(SPNSP;) —=SP (4)
vUid\L l
SP, sp!

when P U SP; is defined. When SP U SP; is defined too, (4) can be
replaced by the technically more convenient (3). However in this case
the condition underlying (3) is stronger than that of (4) (note that
according to [19] while unions of behavioural specifications are partial,
intersections are total).

3 Conclusions and Future Research

We have presented some important elements of modularisation the-
ory in formal specification, including important mathematical tools
(institutions, inclusion systems) and methods (pushout-style parame-
terisation). In the second part of the paper we have discussed recent
developments such as two-layered institution-independence, upgrade
to pushout-style, multiple parameters, and behavioural specification.
The latter three topics have been developed in close collaboration with
Tonut Tutu.

At this moment there is ongoing work on parameterisation with
sharing for behavioural specifications, on general views for parameter
instantiation, etc.
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