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Abstract

We look at the living cells as complex systems of ion pumps
working in parallel to ensure proper physiologic functionalities.
To model such a system of pumps, we define a simple and ele-
gant approach that allows working with multisets of ions, explicit
interpretation of the transportation (from inside to outside, and
from outside to inside) based on the number of existing ions, and
a maximal parallel execution of the involved pumps.

1 Introduction

All living cells can be seen as complex systems of interacting com-
ponents, having different concentrations of ions (e.g., Na+, K+ and
Ca++) across the cell membrane. Under resting conditions, Na+ and
Ca++ ions enter the cells and K+ ions exit the cell because the concen-
tration of K+ is high inside the cell and low outside, while the opposite
situation is found for Na+ and Ca++. A fundamental mechanism in
most of the living cells is the Na+/K+-ATPase that is essential for
the maintenance of Na+ and K+ concentrations across the membrane
by transporting Na+ out of the cell and K+ back into the cell. This
pump is the first discovered ion transporter; for this discovery, the
Danish chemist Jens Skou received the Nobel Prize in 1997.

In this paper we model the movement of ions and the conforma-
tional transformations of ion transporters (NaK ion pumps, Na and
K ion channels) by using BioMaxP , a very simple but powerful ap-
proach. We use an operational semantics able to capture quantitative
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aspects (e.g., number of ions) and abstract conditions associated with
evolution (e.g., the number of ions is between certain thresholds). The
modelling aims to facilitate a better understanding of the living cell
viewed as a complex system of parallel ion transporters.

The novelty of our approach is that we model systems composed of
more than one pump as usually done (e.g., see [5]). Since the pumps
non-deterministically choose which ions to transport, the complexity of
such systems increases with the number of pumps. For further notions
about NaK pump, the interested reader can consult [1].

2 Syntax and Semantics of BioMaxP

The prototyping language BioMaxPprovides sufficient expressiveness to
model in an elegant way the interaction in complex systems of parallel
ion pumps. The cell is a complex system of parallel pumps trying to
keep the equilibrium of ions inside the cell. In order to model these
pumps, we enforce that their functioning takes place only if the number
of various types of ions is between some accepted limits given by min
and max values. Therefore the syntax and semantics emphasize the
process of counting them, and the way the quantities of ions vary during
evolution. The semantics of BioMaxP is provided by multiset labelled
transitions in which multisets of actions are executed in parallel.

Syntax of BioMaxP The syntax of BioMaxP is given in Table 1,
where the following are assumed:

• a set Chan of ion transportation channels a, and a set Id of process
identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process id(u1, . . . , umid
:

T1, . . . , Tmid
)
def
= Pid, where the distinct variables ui are parame-

ters, and the Ti are ions types;

• v is a tuple of expressions built from values, variables and allowed
operations;

• T represent ions types.
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Table 1. BioMaxP Syntax

Processes
P,Q ::= amin!(v : T ) then P p (sending)

amax?(f(u : T )) then P p (receiving)
id(v) p (recursion)
P | Q (parallel)

A constraint min associated with a sending action amin!(z : T ) then

P makes the channel a available for sending z units/ions of type T
only if the total available quantity of ions of type t is greater than
min. A constraint max associated to a receiving action amax?(x : T )
then P along a channel a is activated only if the number of ions of
the type T available is less than max. The function f of the receiving
action can be either id (we often omit it), meaning that the received
ions are to be transported, or add, meaning that the ions are received
from some other process. The only variable binding constructor is
amax?(u : T ) then P ; it binds the variable u within P . The free variables
of a process P are denoted by fv(P ); for a process definition, is assumed
that fv(Pid) ⊆ {u1, . . . , umid

}, where ui are the process parameters.
Processes are defined up-to an alpha-conversion, and {v/u}P denotes
P in which all free occurrences of the variable u are replaced by v,
eventually after alpha-converting P in order to avoid clashes. Processes
are further constructed from the parallel composition P | Q. A system
of parallel pumps is represented as a process with some initial values
for the numbers of ions.

Remark 1 In order to focus on the local interaction aspects of
BioMaxP , we abstract from arithmetical operations, considering by de-
fault that the simple ones (comparing, addition, subtraction) are in-
cluded in the language.

Operational Semantics of BioMaxP The operational semantics
rules of BioMaxP is presented in Table 2. The multiset labelled transi-

125



B. Aman, G. Ciobanu

tions of form P
Λ
−→ P ′ use a multiset Λ to indicate the actions executed

in parallel in one step. When the multiset Λ contains only one ac-

tion λ, in order to simplify the notation, P
{λ}
−−→ P ′ is simply written

as P
λ
−→ P ′. We assume that in order to interact the processes can

commute, namely P | Q is the same process as Q | P .

Table 2. BioMaxP Operational Semantics

(Com)
v : T and min ≤ |T | ≤ max

amin!〈v〉 then P | amax?(f(u : T )) then P ′ {v/u}
−−−→ P | {v/u}P ′

and |T | = |T | − v if f = id or |T | = |T |+ v if f = add

(Call)
{v/u}Pid

id
−→ P ′

id

id(v)
id
−→ P ′

id

where id(v : T )
def
= Pid

(Par1)
P1

Λ1−→ P ′
1 P 6→

P1 | P
Λ1−→ P ′

1 | P
(Par2)

P1
Λ1−→ P ′

1 P2
Λ2−→ P ′

2

P1 | P2
Λ1∪Λ2−−−−→ P ′

1 | P
′
2

In rule (Com), an output process amin!〈v〉 then P succeeds in send-
ing a tuple of values v over channel a to process amax?(u : T ) then P
if v has the same type T as u and if the number of ions of type T is
between min and max, namely v : T and min ≤ |T | ≤ max. Both
processes continue to execute, the first one as P and the second one
as {v/u}P ′. Once the ions are send away, f = id, the number of ions
of type T becomes T − |v|, while if they are received, f = add, then
the number of ions of type T becomes T + |v|. Rule (Call) describes
the evolution of a recursion process. Rules (Par1) and (Par2) are
used to compose larger processes from smaller ones by putting them
in parallel, and considering the union of multisets of actions. In rule
(Par2), P 6→ denotes a process P that cannot evolve. It can be noticed
that in rule (Par2) we use negative premises: an activity is performed
based on the absence of actions. This is due to the fact that sequencing
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the evolution can only be defined using negative premises, as done for
sequencing processes [6, 10].

Example 1 The use of BioMaxP for specifying complex systems of
pumps is illustrated by describing in an explicit way the molecular in-
teractions and conformational transformations of a large system of ion
transporters, namely Na+K+ ATPases and Na and K ion channels,
that are concerned with the movement of sodium-potassium ions in and
out of a cell whenever certain thresholds are verified. The system we
consider is formed from n1 NaK pumps, n2 Na channels and n3 K
channels. Each pump i is modelled by three processes: one that models
the interaction of the pump with the environment, one modelling the
interaction with the cell and another one that models the transport of
ions through the membrane. The molecular components are processes
modelled as the ends of a channel (one end for input, and another for
output), while the molecular interaction coincides with communication
on channels.

The initial system of pumps is described in BioMaxP by:
Cell(NaEnv,KEnv,NaCell,KCell, AtP,ADP, P ) =

| NaKPumpEnv(0) | NaKPumpCell(0) | NaKPump(0)
· · · | NaKPumpEnv(n1-1) | NaKPumpCell(n1-1) | NaKPump(n1-1)

| NaPumpEnv(n1) | NaPumpCell(n1) | NaPump(n1)
· · ·|NaPumpEnv(n1+n2−1) |NaPumpCell(n1+n2−1) |NaPump(n1+n2−1)

| KPumpEnv(n1 + n2) | KPumpCell(n1 + n2) | KPump(n1 + n2)
· · · | KPumpEnv(n1 + n2 + n3-1) | KPumpCell(n1 + n2 + n3-1) |

KPump(n1 + n2 + n3-1)
CreateATP | ConsumeADP

We present in detail some of the above processes. The others are writ-
ten in a similar manner.

• Cell(NaCell,KCell, AtP,ADP,NaEnv,KEnv, P ) is the sys-
tem in which several quantities of ions are initialized.

• Each NaK-ATPase is described by three processes:

∗ NaKPumpEnv(id) = site2[id]160?(add(yna : NaEnv))
then site2[id]2!〈2K〉
then p[id]6?(add(yp : P ))

then NaKPumpEnv(id)
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The environment site of the pump contains the channel
site2[id] used for receiving three ions of Na+ and also for
sending two ions of K+, and also the channel p[id] for re-
ceiving the produced P molecules. The sending and receiv-
ing operations modify also the number of ions present in the
system of pumps: e.g., when sending two K+ ions, an op-
eration of the form KEnv = Kenv − 2 is performed, while
receiving the yna : NaEnv ions an operation of the form
NaEnv = NaEnv + 3 is performed due to the add func-
tion that is used to add the amount of received ions to the
corresponding multiset.

∗ NaKPumpCell(id) = site1[id](12,1)!〈(3Na,ATP )〉
then adp[id]6?(add(xadp : ADP ))
then site1[id]150?(add(xk : KCell))

then NaKPumpCell(id)

The cell site of the pump contains the channel site1[id] used
for sending three ions of Na+ and one ATP and also for
receiving two ions of K+, and also the channel adp[id] for
receiving the produced ADP molecules.

∗ NaKPump(id) = site1[id](28,9)?((xna : NaCell, xatp : ATP ))
then adp[id]0!〈ADP 〉
then site2[id]100!〈2Na〉
then site2[id]6?(yk : KEnv)
then p[id]0!〈P 〉 then site1[id]110!〈2K〉
then NaKPump(id)

This process describes the evolution of the pump, namely the
transport of Na and K ions between the environment and
the cell.

3 Timed Automata

Due to their simplicity, timed automata, extended with integer vari-
ables, structured data types, user defined functions, and channel syn-
chronization, have been used by several tools (e.g., Uppaal ) for the
simulation and verification of timed automata [2]. In what follows we
consider a particular case of timed automata, namely we ignore the
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time aspects as they are not relevant to our approach and will refer to
timed automata as automata.

Syntax Assume a finite set of integer variables C ranged over by x,
y, . . . standing for data, and a finite alphabet Σ ranged over by a,
b, . . . standing for actions. A constraint is a conjunctive formula of
constraints of the form x ∼ m for x ∈ C, ∼∈ {≤, <,==, >,≥}, and
m ∈ N. The set of constraints, ranged over by g, is denoted by B(C).

Definition 1 An automaton A is a tuple 〈N,n0, E〉, where

• N is a finite set of nodes;

• n0 is the initial node;

• E ⊆ N × B(C)× Σ× N
C ×N is the set of edges.

n
g,a,r
−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈ E. r denotes

fresh assignments to variables after the transition is performed.

Networks of Automata A network of automata is the parallel com-
position A1 | . . . | An of a set of automata A1, . . . ,An combined into
a single system. Synchronous communication inside the network is by
handshake synchronization of input and output actions. In this case,
the action alphabet Σ consists of a? symbols (for input actions), a!
symbols (for output actions), and τ symbols (for internal actions). A
detailed example is found in [9]. A network can perform action tran-
sitions (following an enabled edge). An action transition is enabled if
all guards on the corresponding edges are satisfied.

Let u, v, . . . denote assignments mapping C to naturals N. g |= u
means that the values u satisfy the guard g. Let ni stand for the ith
element of a node vector n, and n[n′

i/ni] for the vector n with ni being
substituted with n′

i. A network state is a pair 〈n, u〉, where n denotes
a vector of current nodes of the network (one for each automaton),
and u is an assignment storing the current values of all network integer
variables.
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Definition 2 The operational semantics of an automaton is a transi-
tion system where states are pairs 〈n, u〉 and transitions are defined by
the rules:

• 〈n, u〉
τ
−→ 〈n[n′

i/ni], u
′〉 if ni

g,τ,r
−−−→ n′

i, g |=u and u′=r[u];

• 〈n, u〉
τ
−→ 〈n[n′

i/ni][n
′
j/nj], u

′〉 if there exist i 6= j such that

1. ni
gi,a?,ri−−−−→ n′

i, nj
gj ,a!,rj
−−−−→ n′

j, gi ∧ gj |= u,
2. u′ = ri[rj [u]].

4 Relating BioMaxP to Automata

In order to use existing tools such as Uppaal for the verification of
complex systems of parallel pumps, we establish a relationship between
BioMaxP and automata.

Building an automaton for each process: Given a process P
without the parallel operator at the top level, we associate to it an
automaton A = 〈N,n0, E〉, where n0 = l0, N = {l0}, E = ∅. The
initial values of the BioMaxP system composed of P are set as the initial
values of the automaton A. The nodes of the associated automata are
labelled using a fresh label l, and an index such that the nodes are
uniquely labelled in this automaton (we start with the index 0, and
increment it when necessary). The components N and E are updated
depending on the structure of process P :

• for P = amin!〈v〉 then P1 we have

– N = N ∪ {li+1} where i = max{j | lj ∈ N};
∗ The added node li+1 indicates the execution of the pro-

cess P , leading to P1.

– E = E ∪ {n,min ≤ |T |, a!, , li+1};

∗ If i > 0 it means that the automaton already contains
some edges, and the process P was launched from the
then branch of a process P ′. Since the translation is
made depending on the structure of the processes, it
means that the action leading to P is already modelled
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in the automaton. If P ′ = bmin′

!〈w〉 then P or P ′ =
bmax′

?(u : T ′) then P , then the action of P ′ is modelled
by an edge with the last component lk, and thus n = lk.

∗ Otherwise, n = l0.

The edge encodes the then branch leading to process P1.
Channel a is an urgent channel (communication takes place
as soon as possible).

• for P = amax?(f(u : T )) then P1 we have
– N = N ∪ {li+1} where i = max{j | lj ∈ N};

– E =

{

E ∪ {li, |T | ≤ max, a!, |T | = |T | − |u|, li+1}, if f = id;

E ∪ {li, |T | ≤ max, a!, |T | = |T |+ |u|, li+1}, if f=add.
A similar reasoning as for the previous case. Depending
on function f , ions are removed or added from the number
representing the existing ions of type T .

• for P =P1 | . . . |Pk, k > 1, and Pj does not contain operator | at
top level, then

– N = N ∪ {li+1} where i = max{j | lj ∈ N};
∗ If P contains some indexed nodes l (namely l0, . . . , li),

then add li+1 to N .
– E = E ∪ {n, , a!, {x = 0}, li+1};

∗ If i > 0, using a similar argument as for the commu-
nication actions, it holds that n = lk. We use a new
channel labelled a as a broadcast channel, in order to
start at the same time all the parallel processes from P .

∗ Otherwise, n = l0.
The new edge leads to process P1. For each of the other
processes Pj , j > 1, a new automaton Aj = 〈Nj , nj0, Ej , Ij〉
is build, where:
∗ nj0 = l0; Nj = {l0, l1}; Ej = {l0, , a?, {x = 0}, l1};

Ij(l0) = ∅.
The automaton is constructed recursively using the defini-
tion of Pj .

Building an automaton for each process leads to the next result about
the equivalence between a BioMaxPprocess P and its corresponding
automaton AP in state 〈nP , uP 〉 (i.e., (AP , 〈nP , uP 〉). Their transition
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systems differ not only in transitions, but also in states; thus, we adapt
the notion of bisimilarity:

Definition 3 A symmetric relation ∼ between BioMaxP processes and
their corresponding automata is a bisimulation if whenever (N, (AN ,

〈nN , uN 〉)) ∈∼ if P
λ
−→ P ′, then 〈nP , uP 〉

τ
−→ 〈nP ′ , uP ′〉 and (P ′, (AP ′ ,

〈nP ′ , uP ′〉)) ∈∼ for some P ′.

After defining bisimulation, we can state the following result.

Theorem 1 Given a BioMaxP process P , there exists an automata AP

with a bisimilar behaviour. Formally, P ∼ AP .

Proof. [Sketch] The construction of the automaton simulating a given
BioMaxPprocess is presented above. A bisimilar behaviour is given by
the fact that a communication rule is matched by a synchronization
between the edges obtained by translations. ✷

Thus, the size of an automata AP is polynomial with respect to the size
of a BioMaxPprocess P , and the state spaces have the same number of
states.

Reachability Analysis. Qualitative properties abstract away from
any quantitative information like time aspects or energy costs of tar-
geted biological systems. One of the most useful question to ask about
an automaton is the reachability of a given set of final states. Such
final states may be used to characterize safety properties of a system.

Definition 4 For an automata with initial state 〈n0, u0〉, 〈n, u〉 is

reachable if and only if 〈n0, u0〉
τ

→∗ 〈n, u〉. More generally, given a
constraint φ ∈ B(C) if 〈n, u〉 is reachable for some u satisfying φ, then
a state 〈n, φ〉 is reachable.

The reachability problem is decidable [4]. The reachability problem
can be also defined for BioMaxPnetworks.
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Definition 5 Starting from a BioMaxP process P0, a process P1 is

reachable if and only if P0

λ
→∗ P1.

The following result is a consequence of Theorem 1.

Corollary 1 For a BioMaxP process, the reachability problem is decid-
able.

5 Conclusion

Previously, we provided a formal description of the sodium-potassium
ion transport across cell membranes in terms of the π-calculus [8]. In
[7], the transfer mechanisms were described step by step, and a software
tool called Mobility Workbench [11] was used to verify some properties
of the described system formed of only one pump. Inspired by the
functioning of this pump, we introduced and studied a ratio-based type
system using thresholds in a bio-inspired framework [3]. The aim was
to avoid errors in the definition of the formal models used to mimic the
evolution of some biologic processes.

In this paper we try to unify and extend our previous attempts to
model the movement of ions in the sodium-potassium-pump by using
BioMaxP , a simple and elegant approach able to capture the quantita-
tive aspects (e.g., number of ions) and abstract conditions associated
with evolution (e.g., the number of ions is between certain thresholds).
This approach facilitates a better understanding of the processes hap-
pening in a cell viewed as a complex system of ion pumps working in
parallel. The novelty is that we are able to model systems consisting
of more than just a NaK pump by adding different amounts of other
types of ion pumps.
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