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Semantic Properties of T-consequence Relation

in Logics of Quasiary Predicates∗

Mykola Nikitchenko, Stepan Shkilniak

Abstract

In the paper we investigate semantic properties of program-
oriented algebras and logics defined for classes of quasiary pred-
icates. Informally speaking, such predicates are partial predi-
cates defined over partial states (partial assignments) of variables.
Conventional n-ary predicates can be considered as a special case
of quasiary predicates. We define first-order logics of quasiary
non-deterministic predicates and investigate semantic properties
of T -consequence relation for such logics. Specific properties of
T -consequence relation for the class of deterministic predicates
are also considered. Obtained results can be used to prove logic
validity and completeness.

Keywords: First-order logic, quasiary predicate, partial
predicate, non-deterministic predicate.

1 Introduction

Mathematical logic is one of the basic disciplines for computer science.
To use effectively mathematical logic it is important to construct log-
ical systems that are adequate for problems considered in computer
science. Classical logic, despite its numerous advantages, has some re-
strictions for its use in this area. For example, classical logic is based
on the class of total n-ary predicates, while in computer science partial
and non-deterministic predicates often appear. Therefore many logical
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systems which better reflect properties of such kind were constructed
[1, 2]. One of specific features for computer science is quasiarity of pred-
icates. Such predicates are partial predicates defined over partial states
(partial assignments) of variables. Conventional n-ary predicates can
be considered as a special case of quasiary predicates. In our previous
works [3, 4, 5] we investigated the class of partial deterministic (single-
valued) predicates and constructed corresponding logics. For such logic
a natural extension of conventional logical consequence relation, called
irrefutability relation, was used.

This paper aims to develop a semantic basis for construction of
logics of non-deterministic (many-valued) quasiary predicates. To re-
alize this idea we first construct predicate algebras using composition-
nominative approach [6]. Terms of such algebras specify the language
of logic. Then we define interpretation mappings. At last, we construct
calculi of sequent type for defined logics. It is important to admit that
constructed logics better reflect specifics of computer science problems,
but the opposite side of this feature is that the methods of logic investi-
gation turn out to be more complicated. In particular, the irrefutability
relation collapses for the class of non-deterministic predicates. There-
fore in this paper which is an extended version of [7] we concentrate on
semantic properties of a special T -consequence relation. We also for-
mulate properties of this relation for logics of deterministic predicates.

The rest of the paper is structured as follows. In Section 2 we define
first-order algebras of quasiary predicates. In Sections 3 we define logics
of quasiary predicates. Section 4 is devoted to semantic properties
of such logics. In Section 5 T -consequence relation is specified and
its main properties are studied. Section 6 is devoted to properties of
T -consequence relation for the class of deterministic predicates. In
Section 7 conclusions are formulated.

Arrows
t

−→,
p

−→, and
r

−→ specify total, partial, and relational map-
pings respectively. Notations not defined in this paper are understood
in a sense of [4].
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2 First-order algebras of quasiary predicates

Let V be a nonempty set of names. According to tradition, names
from V are also called variables. Let A be a set of basic values (A 6= ∅).
Given V and A, the class VA of nominative sets is defined as the class
of all partial mappings from V to A, thus, VA = V

p
−→ A. Informally

speaking, nominative sets represent states of variables.

Though nominative sets are defined as mappings, we follow math-
ematical tradition and also use set-like notation for these objects. In
particular, the notation d = [vi 7→ ai | i ∈ I] describes a nominative
set d; the notation vi 7→ ai ∈n d means that d(vi) is defined and its
value is ai (d(vi) ↓= ai). The main operation for nominative sets is

a total unary parametric renomination rv1,...,vnx1,...,xn
: VA

t
−→ VA, where

v1, ..., vn, x1, ..., xn ∈ V , v1, ..., vn are distinct names, n ≥ 0 , which is
defined by the following formula:

rv1,...,vnx1,...,xn
(d) =

= [v 7→ a∈nd | v /∈ {v1, ..., vn}] ∪ [vi 7→ d(xi) | d(xi) ↓, i ∈ {1, ..., n}].
Intuitively, given d this operation yields a new nominative set changing
the values of v1, ..., vn to the values of x1, ..., xn respectively. We also
use simpler notation for this formula: rv̄x̄(d) = d∇v̄ 7→ d(x̄). Also note
that we treat a parameter v1,...,vn

x1,...,xn
as a total mapping from {v1, ..., vn}

into {x1, ..., xn} thus parameters obtained by pairs permutations are
identical.

Operation of deleting a component with a name v from a nominative
set d is denoted d|−v. Notation d =−v d

′ means that d|−v = d′|−v. The
set of assigned names (variables) in d is defined by the formula

asn(d) = {v ∈ V | v 7→ a ∈n d for some a ∈ A}.

Let Bool = {F, T} be a set of Boolean values.

Let PrRV
A = VA

r
−→ Bool be the set of all non-deterministic (rela-

tional) predicates over VA. Such predicates are called non-deterministic
(relational) quasiary predicates. The term ’relational’ means that
graphs of such predicates are binary relations from VA × Bool. Note
that non-determinism in logic was intensively studied, see, for example,
[8].

We will also use set-theoretic notations for quasiary predicates.
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Full image of d ∈ VA under p ∈ PrRV
A is defined by the formula

p[d] = {b ∈ Bool | (d, b) ∈ p}.
For p ∈ PrRV

A the truth and falsity domains of p are respectively

T (p) = {d ∈ VA | (d, T ) ∈ p} and F (p) = {d ∈ VA | (d, F ) ∈ p}.

Considering predicates from PrRV
A in set-theoretic style we can

speak about such operations as union ∪ and intersection ∩. The fol-
lowing statement is obvious.

Lemma 1. The set < PrRV
A ;∪,∩ > is a complete distributive lattice.

The greatest and the least elements of this lattice are denoted ⊤V
A

and ⊥V
A respectively. For these elements T (⊤V

A) = VA, F (⊤V
A) = VA,

T (⊥V
A) = ∅, F (⊥V

A) = ∅.
Operations over PrRV

A are called compositions. The set C(V ) of
first-order compositions is {∨,¬, Rv̄

x̄,∃x}. Compositions have the fol-
lowing types:

∨ : PrRV
A × PrRV

A

t
−→ PrRV

A ; ¬, R
v1,...,vn
x1,...,xn

,∃x : PrRV
A

t
−→ PrRV

A

and are defined by the following formulas (p, q ∈ PrRV
A):

– T (p ∨ q) = T (p) ∪ T (q); F (p ∨ q) = F (p) ∩ F (q);

– T (¬p) = F (p); F (¬p) = T (p);

– T (Rv̄
x̄(p)) = {d ∈ VA | rv̄x̄(d) ∈ T (p)};

F (Rv̄
x̄(p)) = {d ∈ VA | rv̄x̄(d) ∈ F (p)};

– T (∃xp) = {d ∈ VA | d∇x 7→ a ∈ T (p) for some a ∈ A};

F (∃xp) = {d ∈ VA | d∇x 7→ a ∈ F (p) for all a ∈ A}.

Here d∇x 7→ a = [v 7→ c ∈n d | v 6= x] ∪ [x 7→ a]. Conventional
notation is d[v 7→ a].

Please note that definitions of compositions are similar to strong
Kleene’s connectives and quantifiers.

Also note that parametric compositions of existential quantification
and renomination can also represent classes of compositions. Thus,
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notation ∃x can represent one composition, when x is fixed, or a class
{∃x | x ∈ V } of such compositions for various names.

A pair AQR(V,A) =< PrRV
A ;C(V ) > is called a first-order algebra

of non-deterministic quasiary predicates.

It is not difficult to prove the following statement.

Lemma 2. Singleton sets {⊤V
A} and {⊥V

A} are sub-algebras of algebra
AQR(V,A).

Algebras AQR(V,A) (for various A) form a semantic base for the
constructed first-order pure quasiary predicate logic LQR (called also
quasiary logic). Let us now proceed with formal definitions.

3 First-order pure quasiary logic

To define a logic we should first specify its semantic component, syn-
tactic component, and interpretational component [3, 4, 5]. Then a
consequence relation should be defined. Semantics of the logic under
consideration is specified by algebras of the type AQR(V,A) (for vari-
ous A), so, we proceed with syntactic component of the logic.

3.1 Syntactic component

A syntactic component specifies the language of LQR. Let Cs(V ) be a
set of composition symbols that represent compositions in algebras de-
fined above – Cs(V ) = {∨,¬, Rv̄

x̄,∃x}. For simplicity, we use the same
notation for symbols of compositions and compositions themselves.

Let Ps be a set of predicate symbols. A triple ΣQ = (V,Cs(V ), Ps)
is a language signature. Given ΣQ , we inductively define the language
of LQR – the set of formulas Fr(ΣQ):

1) if P ∈ Ps, then P ∈ Fr(ΣQ); such formulas are called atomic;

2) if Φ, Ψ ∈ Fr(ΣQ), then (Φ ∨Ψ) ∈ Fr(ΣQ);

3) if Φ ∈ Fr(ΣQ), then (¬Φ) ∈ Fr(ΣQ);
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4) if Φ ∈ Fr(ΣQ), v1, ..., vn, x1, ..., xn ∈ V , v1, ..., vn are distinct
names, n ≥ 0, then (Rv1,...,vn

x1,...,xn
(Φ)) ∈ Fr(ΣQ);

for such formulas notation Rv1,...,vn
x1,...,xn

Φ or Rv̄
x̄Φ can be also used;

5) if Φ ∈ Fr(ΣQ), x ∈ V , then (∃xΦ) ∈ Fr(ΣQ).

Extra brackets can be omitted using conventional rules of operation
priorities. Derived operations like conjunction ∧, implication → etc.
are defined in a usual way.

3.2 Interpretational component

Given ΣQ and nonempty set A we can consider an algebra of quasiary
predicates AQR(V,A) =< PrRV

A ;C(V ) >. Composition symbols have
fixed interpretation, but we additionally need interpretation IPs :

Ps
t

−→ PrRV
A of predicate symbols; obtained predicates are called

basic predicates. A tuple J = (ΣQ, A, IPs) is called an interpretation.

Formulas and interpretations in LQR are called LQR-formulas and
LQR-interpretations respectively. Usually the prefix LQR is omitted.
Given a formula Φ and an interpretation J we can speak of an inter-
pretation of Φ in J . It is denoted by ΦJ .

3.3 Extensions of LQR

The logic LQR being a rather powerful logic still is not expressive
enough to represent transformations required for proving its complete-
ness. Therefore we introduce its two extensions: LUR — a logic with
unessential variables, and LUR

ε — a logic with unessential variables
and a parametric total deterministic variable unassignment predicate
εz which checks if a variable z is unassigned in a given nominative set.

To define LUR we should specify its semantic, syntactic, and inter-
pretational components.

Let U be an infinite set of variables such that V ∩U = ∅ . Variables
from U are called unessential variables (analogs of fresh variables in
classical logic) that should not affect the formula meanings.
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Algebras
AQR(V ∪ U,A) =< PrV ∪U

A ;C(V ∪ U) >
(for different A) form a semantic base for LUR.

A syntactic component is specified by the set of formulas Fr(ΣU),
where ΣU = (V ∪ U,Cs(V ∪ U), Ps) is the signature of LUR.

An interpretational component restricts the class of LUR-interpreta-
tions in such a way that interpretations of predicate symbols are neither
sensitive to the values of the component with an unessential variable
u in nominative sets, nor to presence of such components. Formally, a
variable u ∈ U is unessential in an interpretation of predicate symbols
IPs if IPs(P )[d] = IPs(P )[d′] for all P ∈ Ps, d, d′ ∈ V ∪UA such that
d =−u d′.

The following statement is obvious.

Lemma 3. LUR is a model-theoretic conservative extension of LQR.

Note that given p ∈ PrRV ∪U
A and v ∈ V ∪ U we say that v is

unessential for p if p[d] = p[d′] for any d, d′ ∈ V ∪UA such that d =−v d′.

The next logic LUR
ε is an extension of LUR by a null-ary parametric

composition (predicate) εz (z ∈ V ∪ U) defined in interpretation J by
the following formulas:

T (εzJ) = {d ∈ V ∪UA | z /∈ asn(d)},
F (εzJ ) = {d ∈ V ∪UA | z ∈ asn(d)}.

Thus, for this logic the set of compositions is equal to {∨,¬, Rv̄
x̄,∃x, εz}.

Note that in free logic [9] E!z corresponds to negation of εz.

Algebras of the form
ARE(V ∪ U,A) =< PrV ∪U

A ;∨,¬, Rv̄
x̄,∃x, εz >

(for different A) constitute a semantic base for LUR
ε .

A syntactic component is specified by the set of formulas Fr(ΣU
ε ),

where ΣU
ε = (V ∪ U, {∨,¬, Rv̄

x̄,∃x, εz}, Ps) is the signature of LUR
ε .

An interpretational component of LUR
ε is defined in the same way

as for LUR.

By construction of LUR
ε we get the following statement.

Lemma 4. LUR
ε is a model-theoretic conservative extension of LUR.
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Predicates εz specify cases when z is assigned or unassigned. This
property can be used for construction of sequent rules for quantifiers.

For a formula Φ and a set of formulas Γ let nm(Φ) denote all
names (variables) that occur in Φ, nm(Γ) denote all names that oc-
cur in formulas of Γ. Names from U\nm(Φ) are called fresh unessen-
tial variables for Φ and their set is denoted fu(Φ), in the same way
fu(Γ) = U\nm(Γ) is the set of fresh unessential variables for Γ. We
also use natural extensions of this notation for a case of several formulas
and sets of formulas like nm(Γ,∆, Rū

v̄ (∃xΦ)) and fu(Γ,∆, Rū
v̄ (∃xΦ)).

Such notation is also used when we consider properties of predicate
algebras. We write x ∈ v̄ to denote that x is a variable from v̄. We
write {v̄, x̄} to denote the set of variables that occur in the sequences
v̄ and x̄.

In the sequel we adopt the following convention: a, b denote el-
ements from A; x, y, z, v, w (maybe with indexes) denote variables
(names) from V ∪U ; d, d′, d1, d2 denote nominative sets from V ∪UA; p, q
denote predicates from ARE(V ∪ U,A); Φ,Ψ,Ξ denote LUR

ε -formulas,
Γ,∆ denote sets of LUR

ε -formulas, J denotes LUR
ε -interpretation.

4 Semantic properties of quasiary logics

The set of compositions {∨,¬, Rv̄
x̄,∃x, εz} of quasiary logics specifies

four types of properties related to propositional compositions ∨ and ¬,
to renomination composition Rv̄

x̄, to unassignment composition (pred-
icate) εz, and to existential quantifier ∃x.

4.1 Properties related to propositional compositions

Properties of propositional compositions are traditional. In particular,
disjunction composition is associative, commutative, and idempotent;
negation composition is involutive

¬¬: ¬¬p = p.
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4.2 Properties related to renomination composition

Renomination composition is a new composition specific for logics of
quasiary predicates. Its properties are not well-known therefore we
describe them in more detail. The main attention will be paid to dis-
tributivity properties.

Lemma 5. For every algebra ARE(V ∪U , A) the following properties
related to renomination composition hold:

R∨: Rv̄
x̄(p ∨ q) = Rv̄

x̄(p) ∨Rv̄
x̄(q);

R¬: Rv̄
x̄(¬p) = ¬Rv̄

x̄(p);
RI: Rz,v̄

z,x̄(p) = Rv̄
x̄(p);

RU: Ry,v̄
z,x̄(p) = Rv̄

x̄(p), y is unessential for Rv̄
x̄(p);

RR: Rv̄
x̄(R

w̄
ȳ (p)) = Rv̄

x̄ ◦
w̄
ȳ (p);

R: R(p) = p;
R∃s: Rv̄

x̄(∃yp) = ∃y(Rv̄
x̄(p)), y /∈ {v̄, x̄};

R∃r: ∃yp = ∃zRy
z(p), z is unessential for p;

R∃: Rv̄
x̄(∃yp) = ∃zRv̄

x̄(R
y
z(p)), z is unessential for Rv̄

x̄(∃yp);
R∃R: Ry,v̄

z,x̄(∃yp) = Rv̄
x̄(∃yp).

Here Rv̄
x̄◦

w̄
ȳ represents two successive renominations Rw̄

ȳ and Rv̄
x̄.

Proof. We prove the lemma by showing that truth and falsity domains
of predicates in the left- and right-hand sides of equalities coincide. Let
us consider properties R∃s, R∃r, and R∃ only.

For R∃s we have:
d ∈ T (Rv̄

x̄(∃yp)) ⇔ rv̄x̄(d) ∈ T (∃yp) ⇔ rv̄x̄(d)∇y 7→ a ∈ T (p) for
some a ∈ A ⇔ (since y /∈ {v̄, x̄}) rv̄x̄(d∇y 7→ a) ∈ T (p) for some a ∈ A
⇔ d∇y 7→ a ∈ T (Rv̄

x̄(p)) for some a ∈ A ⇔ d ∈ T (∃y(Rv̄
x̄(p)));

d ∈ F (Rv̄
x̄(∃yp)) ⇔ rv̄x̄(d) ∈ F (∃yp) ⇔ rv̄x̄(d)∇y 7→ a ∈ F (p) for

all a ∈ A ⇔ (since y /∈ {v̄, x̄}) rv̄x̄(d∇y 7→ a) ∈ F (p) for all a ∈ A
⇔ d∇y 7→ a ∈ F (Rv̄

x̄(p)) for all a ∈ A ⇔ d ∈ F (∃y(Rv̄
x̄(p))).

For R∃r we have:
d ∈ T (∃z(Ry

z(p))) ⇔ d∇z 7→ a ∈ T (Ry
z(p)) for some a ∈ A ⇔

ryz (d∇z 7→ a) ∈ T (p) for some a ∈ A ⇔ (d∇z 7→ a)∇y 7→ a ∈ T (p) for
some a ∈ A ⇔ (since z is unessential for p) d∇y 7→ a ∈ T (p) for some
a ∈ A ⇔ d ∈ T (∃yp).
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In the same way we demonstrate coincidence of the falsity domains
for R∃r.

By R∃s and R∃r we obtain R∃.

4.3 Properties related to unassignment composition

Here we formulate only that null-ary unassignment composition (pred-
icate) is total deterministic predicate, i.e.

T (εy) ∪ F (εy) = VA and T (εy) ∩ F (εy) = ∅.

4.4 Properties related to quantifier composition

The following lemmas describe properties of quantifiers.

Lemma 6. For every algebra ARE(V ∪ U,A) and every p ∈ PrRV ∪U
A

the following properties hold (x 6= y):
T∃v : T (Rx

y(p)) ∩ F (εy) ⊆ T (∃xp);
F∃v : F (∃xp) ∩ F (εy) ⊆ F (Rx

y(p));
T∃u : T (Rx

y(p)) ⊆ T (εy) ∪ T (∃xp);
F∃u : F (∃xp) ⊆ T (εy) ∪ F (Rx

y(p)).

Proof. To prove T∃v consider arbitrary d ∈ T (Rx
y(p)) ∩ F (εy). This

means that y is assigned in d with some value a and d∇x 7→ a ∈ T (p),
therefore d ∈ T (∃xp).

Property F∃v is proved in the same manner.

Properties T∃u and F∃u are obtained from T∃v and F∃v using the
following property of Boolean algebra of sets:

SI: S1 ∩ S2 ⊆ S3 ⇔ S1 ⊆ S2 ∪ S3,
where S2 denotes supplement of S2 and the properties that T (εy) =
F (εy) and F (εy) = T (εy).

Lemma 7. For every algebra ARE(V ∪ U,A) the following property
holds (x 6= y):

∃eL: T (∃xp) =−y (T (Rx
y(p)) ∩ F (εy)) if y is unessential for p.

Proof. Let d ∈ T (∃xp)|−y. It means that there exists d′ ∈ V ∪UA and
a ∈ A such that d′∇x 7→ a ∈ T (p) and d′ =−y d. Since y is not
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essential for p, then (d′∇x 7→ a)∇y 7→ a ∈ T (p). By definition, we get
that d′∇y 7→ a ∈ T (Rx

y(p)) ∩ F (εy). But d = d′|−y. Thus,
T (∃xp)|−y ⊆ (T (Rx

y(p)) ∩ F (εy))|−y .

The inverse follows from T∃v.

5 T -consequence relation for sets of formulas

Traditionally, for logics of quasiary predicates a conventional logical
consequence is considered [3, 4].

Let Γ ⊆ Fr(ΣU
ε ) and ∆ ⊆ Fr(ΣU

ε ) be sets of formulas. ∆
is a consequence of Γ in an interpretation J (denoted ΓJ |= ∆), if⋂

Φ∈Γ

T (ΦJ) ∩
⋂

Ψ∈∆

F (ΨJ) = ∅.

∆ is a logical consequence of Γ (denoted Γ |= ∆), if ΓJ |= ∆ in
every interpretation J . The introduced relation of logical consequence
specifies irrefutability.

For the class of non-deterministic predicates the logical consequence
relation collapses, i.e. it is empty. Indeed, for any Γ and ∆ we have
that ΓJ 6|= ∆ if we in J interpret predicate symbols as non-deterministic
predicate ⊤V

A (Lemma 2).

Therefore we introduce another consequence relation which arises
naturally in Computer Science [10].

∆ is a T-consequence of Γ in an interpretation J (denoted by ΓJ |=T

∆), if
⋂

Φ∈Γ

T (ΦJ) ⊆
⋃

Ψ∈∆

T (ΨJ). ∆ is a T -consequence of Γ (denoted

by Γ |=T ∆), if ΓJ |=T ∆ in every interpretation J .

We will also use the following notation: T∧(ΓJ) =
⋂

Φ∈Γ

T (ΦJ) and

T∨(ΓJ) =
⋃

Φ∈Γ

T (ΦJ).

Now we describe the main properties of T -consequence relation.

First, let us give the following definitions for arbitrary consequence
relation |=∗ [11]:

– |=∗ is called paraconsistent if there exist Γ, ∆, and Φ, such that
Γ,Φ ∧ ¬Φ 6|=∗ ∆;
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– |=∗ is called paracomplete if there exist Γ, ∆, and Ψ such that
Γ 6|=∗ Ψ ∨ ¬Ψ,∆;

– |=∗ is called paranormal if there exist Γ, ∆, Φ, and Ψ such that
Γ,Φ ∧ ¬Φ 6|=∗ Ψ ∨ ¬Ψ,∆.

We say that |=∗ is consistent, complete, and normal if it is not para-
consistent, not paracomplete, and not paranormal respectively.

It is easy to see that paranormality implies paraconsistency and
paracompleteness; consistency or completeness implies normality.

Theorem 1. T -consequence relation is paraconsistent, paracomplete,
and paranormal.

Proof. To prove the theorem it is sufficient do demonstrate only para-
normality of T -consequence relation. Indeed, let Γ = ∅, ∆ = ∅, Φ be
P1 ∈ Ps, Ψ be P2 ∈ Ps such that P1 6= P2. Then it is easy to check
that interpreting P1 as predicate ⊤V

A and P2 as predicate ⊥V
A we get

that P1 ∧ ¬P1 6|=T P2 ∨ ¬P2.

In a similar way we can prove the following statement.

Lemma 8. For T -consequence relation the following properties hold:

– Γ,¬Φ |=T ∆ and Γ 6|=T Φ,∆ for some Γ, ∆, and Φ;

– Γ,Φ |=T ∆ and Γ 6|=T ¬Φ,∆ for some Γ, ∆, and Φ;

– Γ |=T ¬Φ,∆ and Γ,Φ 6|=T ∆ for some Γ, ∆, and Φ;

– Γ |=T Φ,∆ and Γ,¬Φ 6|=T ∆ for some Γ, ∆, and Φ.

This lemma states that rules of sequent calculi permitting moving
(negated) formulas from one side of a sequent to its another side are
not valid for T -consequence relations. Consequently, sequent calculi
for |=T will be more complicated.

Still, such transformations are possible for a formula interpreted as
total deterministic predicate (see Theorem 2(4)).

Lemma 9. Let Φ be a formula, Γ,Γ′,∆,∆′ be sets of formulas. Then
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(M) if Γ ⊆ Γ′ and ∆ ⊆ ∆′, then Γ |=T ∆ ⇒ Γ′ |=T ∆′;

(C) Φ,Γ |=T ∆,Φ.

Proof of the lemma follows immediately from definitions.
Now we continue with those properties of T -consequence relation

which induce sequent rules for the logic under consideration. Such
properties are constructed upon semantic properties of compositions.
To do this the following lemma is often used.

Theorem 2. Let Φ, Ψ, and Ξ be formulas, Γ and ∆ be sets of formulas,
J be LUR

ε -interpretation. Then

(1) if T (ΦJ) = T (ΨJ), then
Φ,Γ J|=T ∆ ⇔ Ψ,Γ J|=T ∆ and Γ J|=T Φ,∆ ⇔ Γ J|=T Ψ,∆;

(2) if T (ΦJ) = T (ΨJ) ∩ T (ΞJ), then
Φ,Γ J|=T ∆ ⇔ Ψ,Ξ,Γ J|=T ∆,

Γ J|=T Φ,∆ ⇔ (Γ J|=T Ψ,∆ and Γ J|=T Ξ,∆);

(3) if T (ΦJ) = T (ΨJ) ∪ T (ΞJ), then
Γ J|=T Φ,∆ ⇔ Γ J|=T Ψ,Ξ,∆,

Φ,Γ J|=T ∆ ⇔ (Ψ,Γ J|=T ∆ and Ξ,Γ J|=T ∆);

(4) if T (ΦJ) ∪ F (ΦJ) =
VA and T (ΦJ) ∩ F (ΦJ) = ∅, then

Φ,Γ J|=T ∆ ⇔ Γ J|=T ¬Φ,∆ and¬Φ,Γ J|=T ∆ ⇔ Γ J|=T Φ,∆;
Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and Γ |=T ∆,Φ);

(5) if y ∈ fu(Γ,∆), then Γ J|=T ∆ ⇔ Γ J|=T ∆, εy;

(6) if T (ΦJ) =−y T (ΨJ) for y ∈ fu(Ψ,Γ,∆), then
Φ,Γ J|=T ∆ ⇔ Ψ,Γ J|=T ∆.

Proof. Property (1) is obvious. For (2) we have
Φ,Γ J|=T ∆ ⇔ T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔
⇔ T (ΨJ) ∩ T (ΞJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ Ψ,Ξ,Γ J|=T ∆.

In the same way the second part of (2) and property (3) are proved.
Let us consider (4). We have
Φ,Γ J|=T ∆ ⇔ T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔
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⇔ T∧(ΓJ) ⊆ T (ΦJ) ∪ T∨(∆J) ⇔ T∧(ΓJ) ⊆ T (¬ΦJ) ∪ T∨(∆J) ⇔
⇔ Γ J|=T ¬Φ,∆.

In the same way other properties of (4) are proved.

Let us consider (5). By Lemma 9(M) we have that
Γ J |=T ∆ ⇒ Γ J |=T ∆, εy. We need to prove that Γ J |=T ∆, εy ⇒
Γ J|=T ∆. It is equivalent to
T∧(ΓJ) ⊆ T∨(∆J) ∪ T (εy) ⇔ T∧(ΓJ ) ∩ F (εy) ⊆ T∨(∆J).

Let d ∈ T∧(ΓJ) ∩ F (εy). Since y is unessential for Γ, it means
that d|−y ∈ T∧(ΓJ ). From this follows that d|−y ∈ T∨(∆J). Since y is
unessential for ∆, it means that d ∈ T∨(∆J). Thus, T

∧(ΓJ) ⊆ T∨(∆J)
that proves the property under consideration.

Let us consider (6). We should prove that
T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ T (ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J).

Let d ∈ T (ΨJ) ∩ T∧(ΓJ). Since T (ΦJ) =−y T (ΨJ), there exists
d′ ∈ T (ΦJ) such that d′ =−y d. Since y is unessential for Γ, we have
that d′ ∈ T∧(ΓJ). Hence d′ ∈ T∨(∆J). Again, y is also unessential for
∆ therefore d ∈ T∨(∆J). This proves the direct implication.

Let us prove the inverse implication. First, we prove that T (ΦJ) ⊆
T (ΨJ). Indeed, let d ∈ T (ΦJ). Since T (ΦJ) =−y T (ΨJ), there exists
d′ ∈ T (ΨJ) such that d′ =−y d. Since y is unessential for Ψ, d ∈ T (ΨJ).
Thus, T (Φ) ⊆ T (Ψ).

From this follows that Ψ,Γ J|=T ∆ ⇒ Φ,Γ J|=T ∆.

This completes the proof of (6).

Theorem 3. The following properties hold for T -consequence relation.

– Properties related to propositional compositions:

¬¬L) ¬¬Φ,Γ |=T ∆ ⇔ Φ,Γ |=T ∆.

¬¬R) Γ |=T ∆,¬¬Φ ⇔ Γ |=T ∆,Φ.

∨L) Φ ∨Ψ,Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and Ψ,Γ |=T ∆).

¬ ∨L ) ¬(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬Φ,¬Ψ,Γ |=T ∆.

∨R) Γ |=T ∆,Φ ∨Ψ ⇔ Γ |=T ∆,Φ,Ψ.

¬ ∨R ) Γ |=T ∆,¬(Φ ∨Ψ) ⇔ (Γ |=T ∆,¬Φ and Γ |=T ∆,¬Ψ).
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– Properties related to renomination compositions:

R ∨L ) Rv̄
x̄(Φ ∨Ψ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ),Γ |=T ∆.

¬R ∨L ) ¬Rv̄
x̄(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬(Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ)),Γ |=T ∆.

R ∨R ) Γ |=T ∆, Rv̄
x̄(Φ ∨Ψ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ).

¬R ∨R ) Γ |=T ∆,¬Rv̄
x̄(Φ ∨Ψ) ⇔ Γ |=T ∆,¬(Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ)).

RL) R(Φ),Γ |=T ∆ ⇔ Φ,Γ |=T ∆.

RR) Γ |=T ∆, R(Φ) ⇔ Φ,Γ |=T ∆,Φ.

RIL) R
z,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ),Γ |=T ∆.

¬RIL) ¬R
z,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆.

RIR) Γ |=T ∆, Rz,v̄
z,x̄(Φ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ).

¬RIR) Γ |=T ∆,¬Rz,v̄
z,x̄(Φ) ⇔ Γ |=T ∆,¬Rv̄

x̄(Φ).

RUL) R
y,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ),Γ |=T ∆, if y ∈ fu(Φ).

¬RUL) ¬R
y,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆, if y ∈ fu(Φ).

RUR) Γ |=T ∆, Ry,v̄
z,x̄(Φ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ), if y ∈ fu(Φ).

¬RUR) Γ |=T ∆,¬Ry,v̄
z,x̄(Φ),⇔ Γ |=T ∆,¬Rv̄

x̄(Φ), if y ∈ fu(Φ).

RRL) R
v̄
x̄(R

w̄
ȳ (Φ)),Γ |=T ∆ ⇔ Rv̄

x̄ ◦
w̄
ȳ (Φ),Γ |=T ∆.

¬RRL) ¬R
v̄
x̄(R

w̄
ȳ (Φ)),Γ |=T ∆ ⇔ ¬Rv̄

x̄ ◦
w̄
ȳ (Φ),Γ |=T ∆.

RRR) Γ |=T ∆, Rv̄
x̄(R

w̄
ȳ (Φ)) ⇔ Γ |=T ∆, Rv̄

x̄ ◦
w̄
ȳ (Φ).

¬RRR) Γ |=T ∆,¬Rv̄
x̄(R

w̄
ȳ (Φ)) ⇔ Γ |=T ∆,¬Rv̄

x̄ ◦
w̄
ȳ (Φ).

R¬L) R
v̄
x̄(¬Φ)),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆.

¬R¬L) ¬R
v̄
x̄(¬Φ)),Γ |=T ∆ ⇔ ¬¬Rv̄

x̄(Φ),Γ |=T ∆.

R¬R) Γ |=T ∆, Rv̄
x̄(¬Φ)) ⇔ Γ |=T ∆,¬Rv̄

x̄(Φ).

¬R¬R) Γ |=T ∆,¬Rv̄
x̄(¬Φ)) ⇔ Γ |=T ∆,¬¬Rv̄

x̄(Φ).

R∃RL) R
ū,x
v̄,y (∃xΦ),Γ |=T ∆ ⇔ Rū

v̄ (∃xΦ),Γ |=T ∆.

¬R∃RL) ¬R
ū,x
v̄,y (∃xΦ),Γ |=T ∆ ⇔ ¬Rū

v̄ (∃xΦ),Γ |=T ∆.

R∃RR) Γ |=T ∆, Rū,x
v̄,y (∃xΦ) ⇔ Γ |=T ∆, Rū

v̄ (∃xΦ).
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¬R∃RR) Γ |=T ∆,¬Rū,x
v̄,y (∃xΦ) ⇔ Γ |=T ∆,¬Rū

v̄ (∃xΦ).

R∃sL) R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃yRv̄

x̄(Φ),Γ |=T ∆, if y /∈ {v̄, x̄}.

¬R∃sL) ¬R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃y¬Rv̄

x̄(Φ),Γ |=T ∆, if y /∈ {v̄, x̄}.

R∃sR) Γ |=T ∆, Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃yRv̄

x̄(Φ), if y /∈ {v̄, x̄}.

¬R∃sR) Γ |=T ∆,¬Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃y¬Rv̄

x̄(Φ), if y /∈ {v̄, x̄}.

R∃L) R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃zRv̄

x̄ ◦
y
z (Φ),Γ |=T ∆,

if z ∈ fu(Rv̄
x̄(∃yΦ)).

¬R∃L) ¬R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ¬∃zRv̄

x̄ ◦
y
z (Φ),Γ |=T ∆,

if z ∈ fu(Rv̄
x̄(∃yΦ)).

R∃R) Γ |=T ∆, Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃zRv̄

x̄ ◦
y
z (Φ),

if z ∈ fu(Rv̄
x̄(∃yΦ)).

¬R∃R) Γ |=T ∆,¬Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,¬∃zRv̄

x̄ ◦
y
z (Φ),

if z ∈ fu(Rv̄
x̄(∃yΦ)).

– Properties related to unassignment predicates:

εLR) Γ |=T ∆ ⇔ εy,Γ |=T ∆ and Γ |=T ∆, εy.

εR) Γ |=T ∆ ⇔ Γ |=T ∆, εz, if z ∈ fu(Γ,∆).

– Properties related to quantifiers:

∃eL) ∃xΦ,Γ |=T ∆ ⇔ Rx
z (Φ),Γ |=T ∆, εz, if z ∈ fu(Γ,∆,∃xΦ).

¬∃eL) ¬∃xΦ,Γ |=T ∆, εy ⇔ ¬∃xΦ,¬Rx
y(Φ),Γ |=T ∆, εy.

∃eR) Γ |=T ∆,∃xΦ, εy ⇔ Γ |=T ∆,∃xΦ, Rx
y(Φ), εy.

¬∃eR) Γ |=T ∆,¬∃xΦ ⇔ Γ |=T ∆,¬Rxz(Φ), εz,
if z ∈ fu(Γ,∆,∃xΦ).

Proof. Proof of the formulated properties is based on semantic proper-
ties of compositions and properties of T -consequence relation. Con-
sider, for instance, properties ∨L and ¬∨L. For ∨L we have that
Φ ∨Ψ,Γ J|=T ∆ ⇔ (T (ΦJ) ∪ T (ΨJ)) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ (T (ΦJ) ∩
T∧(ΓJ))∪ (T (ΨJ )∩T∧(ΓJ)) ⊆ T∨(∆J) ⇔ (T (ΦJ)∩T∧(ΓJ) ⊆ T∨(∆J)
and T (ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J)) ⇔ (Φ,Γ J |=T ∆ and Ψ,Γ J |=T ∆)
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for any interpretation J . Thus, Φ ∨ Ψ,Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and
Ψ,Γ |=T ∆).

For ¬∨L we have that ¬(Φ ∨ Ψ),Γ J |=T ∆ ⇔ T (¬(Φ ∨ Ψ)J) ∩
T∧(ΓJ) ⊆ T∨(∆J) ⇔ F (ΦJ) ∩ F (ΨJ) ∩ T∧(ΓJ ) ⊆ T∨(∆J) ⇔
T (¬ΦJ) ∩ T (¬ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ ¬Φ,¬Ψ,Γ J |=T ∆ for any
interpretation J . Thus, ¬(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬Φ,¬Ψ,Γ |=T ∆.

Properties related to renomination composition hold by Lemma 5.
Property εLR follows from Theorem 2(4); property εR follows from

Theorem 2(5).
Properties related to quantifiers are consequences of Lemma 6,

Lemma 7, and Theorem 2(6). Detailed proof is omitted here.

Properties presented in Theorem 3 induce sequent rules for calculus
formalizing |=T . For example, property ∃eL induces a rule

Rx
z (Φ),Γ → ∆, εz

∃xΦ,Γ → ∆
, z ∈ fu(Γ,∆,∃xΦ).

Detailed construction of such a calculus will be presented in forth-
coming papers.

6 T -consequence relation for the class of deter-

ministic predicates

A class of deterministic quasiary predicates is an important subclass of
the class of non-deterministic predicates.

Predicate p ∈ PrRV
A is called deterministic (partial single-valued)

if T (p) ∩ F (p) = ∅. The class of such predicates is denoted PrVA .

Lemma 10. Class PrVA is a sub-algebra of algebra AQR(V,A).

The lemma is proved by direct checking that all compositions pre-
serve the class of deterministic predicates. Defined algebra is denoted
AQ(V,A).

Such algebras form a semantic base for a logic of quasiary deter-
ministic predicates LQ. The extended logics LU and LU

ε are defined
in the same way as for non-deterministic predicates. In this section a
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sign |=T denotes a T -consequence relation for the class of deterministic
quasiary predicates.

Here we present only those properties of logics of deterministic pred-
icates that differ from corresponding properties for non-deterministic
predicates. In particular, a formula from the right side of T -
consequence relation can be placed as a negated formula into the left
side of the relation. Such property does not hold for the class of non-
deterministic predicates.

Lemma 11. The following properties hold for T -consequence relation
for the logic of deterministic quasiary predicates:

– Γ |=T ∆,Φ ⇒ ¬Φ,Γ |=T ∆;

– Γ |=T ∆,¬Φ ⇒ Φ,Γ |=T ∆.

Proof. For any Γ, ∆, Φ, and interpretation J we have that
Γ J|=T ∆,Φ ⇔ T∧(ΓJ) ⊆ T (Φ) ∨ T∨(∆J ) ⇔ T∧(ΓJ) ∩ T (Φ) ⊆ T∨(∆J).
Since T (¬Φ) ⊆ T (Φ) for deterministic predicates, we have that

T∧(ΓJ) ∩ T (Φ) ⊆ T∨(∆J) ⇒ T∧(ΓJ) ∩ T (¬Φ) ⊆ T∨(∆J).
Thus, Γ J|=T ∆,Φ ⇒ ¬Φ,Γ J|=T ∆. Therefore

Γ |=T ∆,Φ ⇒ ¬Φ,Γ |=T ∆.

The second property is proved in the same manner.

Properties concerning paraconsistency, paracompleteness, and para-
normality also differ for the class of deterministic predicates.

Theorem 4. T -consequence relation for the logic of deterministic
quasiary predicates is consistent, paracomplete, and normal.

Proof. For the class of deterministic predicates we have that Φ ∧
¬Φ,Γ J|=T Ψ,∆ ⇔ (T (ΦJ)∩T (¬ΦJ))∩T∧(ΓJ) ⊆ T (ΨJ)∨T∨(∆J) for
any Γ, ∆, Φ, Ψ, and interpretation J . This inclusion holds because for
deterministic predicates T (ΦJ)∩ T (¬ΦJ) = ∅. Thus, |=T is consistent;
consequently, |=T is normal. To demonstrate paracompleteness of |=T

we take an interpretation J such that T (ΦJ) 6= ∅ and ΨJ = ⊥V
A. Then

Φ J 6|=T Ψ ∨ ¬Ψ.
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In general, comparing properties of T -consequence relation for
classes of deterministic and non-deterministic predicates, we can say
that the latter is poorer and the former is richer. In particular, if we
consider F -consequence relation, which is dual to T -consequence rela-
tion, and a combined TF -consequence relation, then all three relations
coincide for the class of non-deterministic predicates, but they are dif-
ferent for the class of deterministic predicates. Also, the irrefutability
consequence relation is quite natural for the class of deterministic pred-
icates while it collapses for the class of non-deterministic predicates.

7 Conclusion

In the paper we have investigated a special kind of program-oriented
algebras and logics defined for classes of non-deterministic and deter-
ministic quasiary predicates. We have considered the main semantic
properties of T -consequence relations for such logics. We have pre-
sented properties related to propositional compositions, renomination,
variable unassignment predicates, and quantifier compositions. These
properties form a basis for construction of sequent calculi for logics
of non-deterministic and deterministic quasiary predicates. We plan
to present such calculi and prove their validity and completeness in
forthcoming papers.
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