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Bounds on Global Total Domination in Graphs

Nader Jafari Rad, Elahe Sharifi

Abstract

A subset S of vertices in a graph G is a global total dominating
set, or just GTDS, if S is a total dominating set of both G and G.
The global total domination number γgt(G) of G is the minimum
cardinality of a GTDS of G. We present bounds for the global
total domination number in graphs.

Keywords: Domination; Total domination; Global total
domination.

1 Introduction

We consider finite, undirected and simple graphs G with vertex set
V (G) and edge set E(G). The number of vertices |V (G)| of a graph
G is called the order of G and is denoted by n = n(G). We denote
the open neighborhood of a vertex v of G by NG(v), or just N(v), and
its closed neighborhood by NG[v] or N [v]. For a vertex set S ⊆ V (G),
we denote N(S) = ∪v∈SN(v) and N [S] = ∪v∈SN [v]. The degree of
a vertex x, deg(x) (or degG(x) to refer G) in a graph G denotes the
number of neighbors of x in G. We refer δ = δ(G) as the minimum
degree of the vertices of G. If S is a subset of V (G), then we denote
by G[S] the subgraph of G induced by S. A set of vertices S in G is a
dominating set, if N [S] = V (G). The domination number, γ(G), of G
is the minimum cardinality of a dominating set of G. A set of vertices
S in G is a total dominating set, or just TDS, if N(S) = V (G). The
total domination number, γt(G), of G is the minimum cardinality of
a total dominating set of G. For references and also terminology on
domination and total domination in graphs see for example [9, 10].
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Global domination in graphs was introduced by Sampathkumar in
[12], and further has been studied by Brigham et al. [3, 4], Dutton et
al. [7, 8] and Arumugam et al. [2]. A subset S of vertices of a graph
G is a global dominating set if S is a dominating set of both G and G.
The global domination number of a graph G, γg(G), is the minimum
cardinality of a global dominating set of G. Global total domination in
graphs was introduced by Kulli et al. in [11]. A subset S of vertices in
a graph G is a global total dominating set, or just GTDS, if S is a TDS
of both G and G. The global total domination number of G, γgt(G), is
the minimum cardinality of a GTDS of G. If a graph G of order n has
a GTDS, then δ(G) ≥ 1 and ∆(G) ≤ n − 2. That is neither G nor G
have an isolated vertex.

In this paper, we present probabilistic bounds for the global total
domination number in graphs. We adopt the methods of [1]. We make
use of the following.

Theorem 1 (Cockayne et al. [6]). If G is a connected graph of order
n ≥ 3, then γt(G) ≤ 2n/3.

Theorem 2 (Brigham et al. [5]). Let G be a connected graph of order
n ≥ 3. Then γt(G) = 2n/3 if and only if G is C3, C6 or 2-corona of a
connected graph.

Note that the corona of a graph G, denoted by cor(G), is a graph
obtained from G by adding a leaf for every vertex of G, and the 2-
corona of G is a graph obtained from G by adding a leaf of a path P2

for every vertex of G.

2 Bounds

Let δ̄ = δ(G) and δ′ = min{δ, δ̄}.
Theorem 3. For any graph G with δ′ > 3,

γgt(G) ≤ n
(
1− δ′

3
1
δ′ (1 + δ′)1+ 1

δ′

)
.
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Proof. Let A be a set formed by an independent choice of vertices of
G, where each vertex is selected with probability

p = 1− 1

(3(1 + δ′))
1
δ′

.

The condition on δ′ > 3 implies that p < 1
2 . Let us denote B =

V (G) \NG[A]. We consider the following cases.
Case 1. There exists a vertex v ∈ V (G) \ A ∪ B such that v is

adjacent to every vertex of A ∪B.
Let C be the set of vertices of G that are dominated by no vertex

of A ∪ B in graph G. Then C 6= ∅, since v ∈ C. Furthermore, each
vertex of C is adjacent to every vertex of A ∪ B in G. Let C ′ =
{x ∈ C, NG(x) ∩ C = ∅}. For each vertex x ∈ C ′, we choose a vertex
x∗ ∈ NG(x). Let C∗ = {x∗, x ∈ C ′}. For the expectation of |B| and
|C|, it is easy to show that

E(|B|) =
∑

v∈V (G) Pr(v ∈ B) = n(1− p)1+degG(v)

≤ n(1− p)1+δ ≤ n(1− p)1+δ′ ,

E(|C|) =
∑

v∈V (G) Pr(v ∈ C) = n(1− p)1+degG(v)

≤ n(1− p)1+δ̄ ≤ n(1− p)1+δ′ .

Since |C∗| ≤ |C|, we have

E(|C∗|) ≤ E(|C|) ≤ n(1− p)1+δ′ .

It is obvious that the set D1 = A ∪ B ∪ C ∪ C∗ is a total global
dominating set. Clearly C∗ ∩ (A ∪ B) = ∅. Thus any vertex of C∗ is
adjacent to some vertex of A. Thus G[D1] contains no isolated vertex.
Furthermore, G[D1] contains no isolated vertex, since in G any vertex
of A is adjacent to every vertex of B and any vertex of C is adjacent to
some vertex of C ∪ C∗. Let d ∈ V (G)−D1. Then clearly d ∈ NG(A).
Since d 6∈ C, d is not adjacent to all vertices of A ∪ B. Thus d is
dominated by some vertex of A in G, and is dominated by some vertex
of A ∪B in G. Thus D1 is a TDS of both G and G. Consequently D1
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is a global total dominating set. The expectation of |D1| is

E(|D1|) ≤ E(|A|) + E(|B|) + E(|C|) + E(|C∗|)
≤ np + n(1− p)1+δ′ + n(1− p)1+δ′ + n(1− p)1+δ′

= n(p + 3(1− p)1+δ′).

Case 2. No vertex of V \A∪B is adjacent to every vertex of A∪B.
Let A′ be the set of vertices a ∈ A such that a is an isolated vertex

in G[A], and B′ be the set of vertices b ∈ B such that b is an isolated
vertex in G[B]. For each a ∈ A′ we choose a vertex a∗ ∈ NG(a), and
for each b ∈ B′ we choose a vertex b∗ ∈ NG(b). Let A∗ = {a∗|a ∈ A′}
and B∗ = {b∗|b ∈ B′}. It follows that

E(|A∗|) =
∑

v∈V (G)

Pr(v ∈ A∗) = np(1− p)deg(v) ≤ np(1− p)δ′ .

Since |B∗| ≤ |B|, thus we have

E(|B∗|) ≤ E(|B|) ≤ n(1− p)1+δ′ .

Any vertex of A is adjacent to some vertex of A∪A∗ in G and is adjacent
to every vertex of B in G. Similarly any vertex of B is adjacent to some
vertex of B ∪ B∗ in G and is adjacent to every vertex of A in G. Let
a ∈ A∗ −A. By hypothesis a is not adjacent to every vertex of A ∪B.
Similarly for every vertex b ∈ B∗−B, b is not adjacent to every vertex
of A∪B. Thus the graphs induced by D2 = A∪B ∪A∗ ∪B∗ in G and
G have no isolated vertex. Let c ∈ V (G) −D2. Then by hypothesis c
is dominated by some vertex of D2. Thus D2 is a TDS for both G and
G. Consequently D2 is a global total dominating set. The expectation
of |D2| is

E(|D2|) ≤ E(|A|) + E(|B|) + E(|A∗|) + E(|B∗|)
≤ np + n(1− p)1+δ′ + np(1− p)δ′ + n(1− p)1+δ′

= n(p + 2(1− p)1+δ′ + p(1− p)δ′).
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Since p < 1
2 , p(1 − p)δ′ ≤ (1 − p)1+δ′ and thus E(|D2|) ≤ n(p + 3(1 −

p)1+δ′). Therefore in both cases there is a global total dominating set
D with

E(|D|) ≤ n(p + 3(1− p)1+δ′). (1)

By the pigeonhole property of expectation we obtain that

γgt(G) ≤ n(p + 3(1− p)1+δ′)

= n
(
1− δ′

3
1
δ′ (1 + δ′)1+ 1

δ′

)
.

Corollary 1. For any graph G with δ′ > 3,

γgt(G) ≤
( ln(1 + δ′) + ln 3 + 1

1 + δ′
)
n.

Proof. We follow the proof of Theorem 3 considering p = ln(1+δ′)+ln 3
1+δ′ .

Using the inequality 1− p ≤ e−p, we obtain the following estimation of
(1):

E(|D|) ≤ n(p + 3(1− p)1+δ′) ≤ np + 3ne−p(1+δ′).

A simple calculation implies that

E(|D|) ≤
( ln(1 + δ′) + ln 3 + 1

1 + δ′
)
n.

Now the result follows by the pigeonhole property of expectation.

Zverovich and Poghosyan [13] proved that when n is large there
exists a graph G such that

γg(G) ≥
( ln(1 + δ′) + ln 2 + 1

1 + δ′
)
n(1 + o(1)).

With an identical proof of them we can obtain that when n is large
there exists a graph G such that

γgt(G) ≥
( ln(1 + δ′) + ln 3 + 1

1 + δ′
)
n(1 + o(1)).

Thus the upper bound of Corollary 1 is asymptotically best possible.
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Theorem 4. For any graph G with δ′ = 3, γgt(G) ≤ 0.683n.

Proof. It is a routine matter using calculus to see that the equation

4x3 − 15x2 + 18x− 6 = 0

has a root x0 with 1
2 < x0 < 1. We follow the proof of Theorem 3 with

p = x0. Since p > 1
2 , we conclude that E(|D1|) ≤ n(p + 2(1 − p)4 +

p(1− p)3). Thus in both cases we obtain a global total dominating set
D with

E(|D|) ≤ n(p + 2(1− p)4 + p(1− p)3).

With the estimation p = 0.545 and the pigeonhole property of ex-
pectation we obtain the desired bound.

Theorem 5. For any graph G with δ′ = 2, γgt(G) ≤ 22
27n.

Proof. We follow the proof of Theorem 3 with p = 2
3 . Since p > 1

2 , we
conclude that E(|D1|) ≤ n

(
p + 2(1 − p)3 + p(1 − p)2)

)
. Thus in both

cases we obtain a global total dominating set D with

E(|D|) ≤ n(p + 2(1− p)3 + p(1− p)2) =
22
27

n.

Now the proof follows by the pigeonhole property of expectation.

Theorem 6. For any graph G with δ′ = 1, γgt(G) ≤ 2
3n + 1, and this

bound is sharp.

Proof. Without loss of generality assume that δ(G) = 1. Let a be
a vertex with deg(a) = 1 and b be the unique neighbor of a. Let
S be a γt(G)-set. If γt(G) = 2

3n then by Theorem 2 G is 2-corona
of a connected graph H. Then clearly S is a TDS of G, and thus
γgt(G) ≤ 2

3n. Thus by Theorem 1, γt(G) ≤ 2n/3 − 1. Assume that
G[S] is not a complete graph. Let x ∈ S be a vertex that is not
adjacent to every vertex of S, and let y ∈ N(x) − S. Then S ∪ {y} is
a TDS for both G and G, and thus γgt(G) ≤ 2

3n. We thus assume that
G[S] is a complete graph. Let y ∈ V (G)− (S ∪ {a}). Then S ∪ {a, y}
is a TDS for both G and G, and thus γgt(G) ≤ 2

3n + 1. To see the
sharpness consider G = cor(C3).
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