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Bounds on Global Total Domination in Graphs

Nader Jafari Rad, Elahe Sharifi

Abstract

A subset S of vertices in a graph G is a global total dominating
set, or just GTDS, if S is a total dominating set of both G and G.
The global total domination number v4(G) of G is the minimum
cardinality of a GTDS of G. We present bounds for the global
total domination number in graphs.
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1 Introduction

We consider finite, undirected and simple graphs G with vertex set
V(G) and edge set E(G). The number of vertices |V(G)| of a graph
G is called the order of G and is denoted by n = n(G). We denote
the open neighborhood of a vertex v of G by N¢(v), or just N(v), and
its closed neighborhood by Nglv] or N[v]. For a vertex set S C V(G),
we denote N(S) = UyesN(v) and N[S] = UyesN[v]. The degree of
a vertex x, deg(x) (or deggy(z) to refer G) in a graph G denotes the
number of neighbors of z in G. We refer 6 = §(G) as the minimum
degree of the vertices of G. If S is a subset of V(G), then we denote
by G]S] the subgraph of G induced by S. A set of vertices S in G is a
dominating set, if N[S|] = V(G). The domination number, v(G), of G
is the minimum cardinality of a dominating set of G. A set of vertices
S in G is a total dominating set, or just TDS, if N(S) = V(G). The
total domination number, v(G), of G is the minimum cardinality of
a total dominating set of G. For references and also terminology on
domination and total domination in graphs see for example [9, 10].
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Global domination in graphs was introduced by Sampathkumar in
[12], and further has been studied by Brigham et al. [3, 4], Dutton et
al. [7, 8] and Arumugam et al. [2]. A subset S of vertices of a graph
G is a global dominating set if S is a dominating set of both G and G.
The global domination number of a graph G, v4(G), is the minimum
cardinality of a global dominating set of G. Global total domination in
graphs was introduced by Kulli et al. in [11]. A subset S of vertices in
a graph G is a global total dominating set, or just GTDS, if S is a TDS
of both G and G. The global total domination number of G, v4(G), is
the minimum cardinality of a GTDS of G. If a graph G of order n has
a GTDS, then 6(G) > 1 and A(G) < n — 2. That is neither G nor G
have an isolated vertex.

In this paper, we present probabilistic bounds for the global total
domination number in graphs. We adopt the methods of [1]. We make
use of the following.

Theorem 1 (Cockayne et al. [6]). If G is a connected graph of order
n > 3, then 1(G) < 2n/3.

Theorem 2 (Brigham et al. [5]). Let G be a connected graph of order
n > 3. Then v(G) = 2n/3 if and only if G is C3, Cg or 2-corona of a
connected graph.

Note that the corona of a graph G, denoted by cor(G), is a graph
obtained from G by adding a leaf for every vertex of G, and the 2-
corona of G is a graph obtained from G by adding a leaf of a path P,
for every vertex of G.

2 Bounds
Let 6 = 6(G) and ¢’ = min{d, 6}.

Theorem 3. For any graph G with §' > 3,

s
'Ygt(G) < n(l - ?)<51’(1—i—5’)1'~'61/)‘
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Proof. Let A be a set formed by an independent choice of vertices of
(G, where each vertex is selected with probability

p=1-— %
(B(1+0))¥
The condition on ¢’ > 3 implies that p < % Let us denote B =
V(G) \ Ng[A]. We consider the following cases.

Case 1. There exists a vertex v € V(G) \ AU B such that v is
adjacent to every vertex of AU B.

Let C be the set of vertices of G that are dominated by no vertex
of AU B in graph G. Then C # 0, since v € C. Furthermore, each
vertex of C is adjacent to every vertex of AU B in G. Let ' =
{z € C,Ng(x) N C = 0}. For each vertex = € C’, we choose a vertex
x* € Ng(x). Let C* = {z*,x € C'}. For the expectation of |B| and
|C|, it is easy to show that

E(|B|) = ZvEV(G) Prve B) = n(l —p)1+degc(v)

< n(l—=p)' <n(l-p)t*,
E(|C]) = ZveV(G’) PrveC) = n(l _p)l-i-(jeg@(v)

< nl-p)'* <n(l-p)'t7.

Since |C*| < |C|, we have
E(IC*)) < E(CI) < n(1 —p)'*7.

It is obvious that the set D1 = AU B UC U C* is a total global
dominating set. Clearly C* N (AU B) = (). Thus any vertex of C* is
adjacent to some vertex of A. Thus G[D;] contains no isolated vertex.
Furthermore, G[D;] contains no isolated vertex, since in G any vertex
of A is adjacent to every vertex of B and any vertex of C' is adjacent to
some vertex of C' U C*. Let d € V(G) — D;. Then clearly d € Ng(A).
Since d ¢ C, d is not adjacent to all vertices of AU B. Thus d is
dominated by some vertex of A in G, and is dominated by some vertex
of AUB in G. Thus D is a TDS of both G and G. Consequently D,
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is a global total dominating set. The expectation of |D1] is

E(|D1]) < E(|A]) + E(IB]) + E(|C|) + E(|C7)
<np+n(l—p)"" +n(l —p)' +n(1 —p)*7
=n(p+3(1-p)*).

Case 2. No vertex of V'\ AUB is adjacent to every vertex of AUB.

Let A’ be the set of vertices a € A such that a is an isolated vertex

in G[A], and B’ be the set of vertices b € B such that b is an isolated

vertex in G[B]. For each a € A" we choose a vertex a* € Ng(a), and

for each b € B’ we choose a vertex b* € Ng(b). Let A* = {a*|a € A’}
and B* = {b*|b € B'}. Tt follows that

BlA) = 3 Prve A7) = np(1 — p)iE®) < np(1 — p)?.

veV(G)

Since |B*| < |B|, thus we have
E(|B*|) < E(IB) < n(1—p)"*",

Any vertex of A is adjacent to some vertex of AUA™ in G and is adjacent
to every vertex of B in G. Similarly any vertex of B is adjacent to some
vertex of B U B* in G and is adjacent to every vertex of A in G. Let
a € A* — A. By hypothesis a is not adjacent to every vertex of AU B.
Similarly for every vertex b € B* — B, b is not adjacent to every vertex
of AU B. Thus the graphs induced by Ds = AUBUA* U B* in G and
G have no isolated vertex. Let ¢ € V(G) — Ds. Then by hypothesis ¢
is dominated by some vertex of Ds. Thus D- is a TDS for both G and
G. Consequently D is a global total dominating set. The expectation
of |Ds| is

E(|Ds]) < E(|A]) + E(|B]) + E(|A™]) + E(|B¥|)
<np+n(l—p)* +ap(l —p)% +n(l—p)+
=n(p+2(1—p)"™ +p(1 - p)¥).
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Since p < 3, p(1 — p)¥ < (1—p)*+9" and thus E(|Dq]) < n(p+3(1 —
p)1+5/). Therefore in both cases there is a global total dominating set
D with

E(|D]) < n(p+3(1—p)'*%). (1)
By the pigeonhole property of expectation we obtain that

Y9t (G) < n(p+3(1 — p)+?)

5/
:n(l——i 1+L).
357 (148"

Corollary 1. For any graph G with §' > 3,

In(14+6)+In3+1
Y9t (G) < ( ( 1)_1_5/ )n

Proof. We follow the proof of Theorem 3 considering p = w

Using the inequality 1 —p < e™P, we obtain the following estimation of

(1):
E(|D]) = n(p +3(1 _p)1+5/) <np+ 3ne PI+Y),

A simple calculation implies that

1+9) —|—ln3—|—1>
1+46 "
Now the result follows by the pigeonhole property of expectation. [J

B(p)) < (™

Zverovich and Poghosyan [13] proved that when n is large there
exists a graph G such that

’YQ(G) > (ln(l +(i/)+_;}n2+ 1)n(1 +o(1)).

With an identical proof of them we can obtain that when n is large
there exists a graph G such that

(@) > (ln(l +‘i,);;,ln3+ 1>n(1 +o(1)).

Thus the upper bound of Corollary 1 is asymptotically best possible.
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Theorem 4. For any graph G with §' = 3, v4(G) < 0.683n.

Proof. 1t is a routine matter using calculus to see that the equation
4a® —152% + 182 — 6 = 0

has a root zg with % < g < 1. We follow the proof of Theorem 3 with
p = . Since p > 3, we conclude that E(|D1]) < n(p +2(1 — p)* +
p(1—p)?). Thus in both cases we obtain a global total dominating set
D with

E(|ID]) < n(p+2(1 = p)* +p(1 - p)°).
With the estimation p = 0.545 and the pigeonhole property of ex-
pectation we obtain the desired bound. O

Theorem 5. For any graph G with 6’ = 2, v4(G)

<3
Proof. We follow the proof of Theorem 3 with p = % Since p > 2, we
conclude that E(|Dq|) < n(p+2(1 — p)® + p(1 — p)?)). Thus in both
cases we obtain a global total dominating set D with

22

Tk

Now the proof follows by the pigeonhole property of expectation. [

E(ID]) < n(p+2(1 —p)* + p(1 — p)*) =

Theorem 6. For any graph G with &' =1, v5(G) < %n + 1, and this
bound is sharp.

Proof. Without loss of generality assume that §(G) = 1. Let a be
a vertex with deg(a) = 1 and b be the unique neighbor of a. Let
S be a y(G)-set. If %(G) = Zn then by Theorem 2 G is 2-corona
of a connected graph H. Then clearly S is a TDS of G, and thus
Y9t(G) < 2n. Thus by Theorem 1, %(G) < 2n/3 — 1. Assume that
G[S] is not a complete graph. Let = € S be a vertex that is not
adjacent to every vertex of S, and let y € N( ) —S. Then S U {y} is
a TDS for both G and G, and thus v4(G) < 2n. We thus assume that
G[S] is a complete graph. Let y € V(G) — (SU {a}). Then SU{a,y}
is a TDS for both G and G, and thus 74(G) < 2n + 1. To see the
sharpness consider G = cor(C3). O
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