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Construction of a transitive orientation using

B-stable subgraphs∗

Nicolae Grigoriu

Abstract

A special method for construction of transitive orientations of
the undirected graph G = (X; U) is proposed. The method uses
an iterative procedure for factorization of graph G. Factorization
procedure consists in replacing of a B-stable subgraph with a
vertex. Transitive orientations are obtained by a polynomial time
algorithm which is presented in the paper.

Keywords: stable subgraph, B-stable subgraph, transitive
orientation, graph factor

1 Introduction

Transitively orientable graphs offer solutions for some theoretical prob-
lems [3], [8] and have many practical applications [2], [5], [9], [10]. This
class of graphs was studied by many mathematicians [4], [6], [8] et
al. As a result, a number of theoretical results and algorithms [1]
was obtained. Transitively orientable graphs can be characterised by
some special structures, like stable subgraphs and non-triangulated
chains. In the mathematical literature a transitively orientated graph−→
G = (X;

−→
U ) is the graph for which there is satisfied the transitive re-

lation, [x, y] ∈ −→UG & [y, z] ∈ −→UG =⇒ [x, z] ∈ −→UG, where x, y, z ∈ XG. A
transitively orientable graph is an undirected graph for which such an
orientation of edges can be assigned, that the resulted directed graph
is transitive.
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2 B-stable subgraphs

Definition 1. [11] Subgraph G(A) is called stable subgraph of the graph
G, if ∀x ∈ X \A and ∀y ∈ A only one of the following relations holds:

1. [x, y] ∈ UG;

2. [x, y] /∈ UG.

Definition 2. [7] Stable subgraph F of the undirected graph G =
(X; U) is called B-stable subgraph if for every stable subgraph M of
G one of the following conditions is satisfied:

1. XF ∩XM = ∅;
2. XF ⊆ XM .

Theorem 1. [7] If F is a B-stable subgraph of the graph G = (X; U),
and x ∈ XG \ XF is a vertex adjacent to the set XF , then for every
transitive orientation

−→
G only one of the following relations holds:

1. [x, y] ∈ −→UG, ∀y ∈ XF ;

2. [y, x] ∈ −→UG, ∀y ∈ XF .

Remark 1. If F is a stable subgraph of the undirected graph G =
(X; U), then for every vertex x ∈ XG \XF so that [x, y] ∈ UG, where
y ∈ XF , the following relation holds:

deg(x) ≥ deg(y). (1)

Remark 2. If F is a B-stable subgraph, then:

deg(x) > deg(y). (2)

We use the Depth-First-Search algorithm in order to find a B-stable
subgraph in the graph G. For each level a potential subgraph is ob-
tained as a candidate to be a B-stable subgraph. We use the recursive
procedure POTENTIAL(x, y). As well, for each processed vertex a
special class processed(x) with boolean values TRUE or FALSE is
attached.

12



Construction of the transitive orientation

Algorithm 1.
Input: Vertex x that is adjacent to the potential B-stable
subgraph and a vertex y that is included in the set of
vertices of the potential B-stable subgraph.
Output: The set of vertices that defines a potential B-
stable subgraph.
Procedure POTENTIAL(x, y)
. For each z /∈ Γ(x):
. If Γ(z) = Γ(x):
. E ←− z;
. If E 6= ∅:
. E ←− y;
. For each z ∈ Γ(y):
. If processed(z) = FALSE&Γ(z)∪{z} ⊆ Γ(x)∪{x}:
. processed(z) ←− TRUE;
. P ←− z;
. POTENTIAL(x, z);
. If E = ∅:
. Return P ;
Return E;

Theorem 2. Construction of the potential B-stable subgraph can be
done in O(∆) time, where ∆ is the maximum degree of a vertex.

Proof. All cycles in the POTENTIAL(x, y) procedure have Γ(x)
items. Instructions in these cycles run in constant time. It means
that for each cycle we have O(Γ(x)) time. If we choose the maximal
degree in graph, then time needed for construction of the potential
B-stable subgraph is O(∆).

Theorem 3. Construction of the B-stable subgraph can be done in
O(n∆) time, where n is the number of vertices of the graph G and ∆
is the maximum degree of a vertex.

Proof. The algorithm of processing potential B-stable subgraphs uses
the recursive procedure SBS(G). This procedure also explores the
graph G using the Depth-First-Search technique.
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Graph G is sorted in a descending order based on the degree of the
vertices. In the procedure SBS(G) each vertex of the graph is explored.
So, for each iteration the procedure POTENTIAL(x, x) is called. As
it is proved in the Theorem 2, the procedure POTENTIAL(x, x) can
be executed in O(∆) time. As a result, we can obtain a B-stable
subgraph in O(n∆) time, if we use the SBS(G) procedure, where n is
the number of vertices of the graph G and ∆ is the maximum degree
of a vertex.

This procedure is presented in the algorithm below.

Algorithm 2.
Input: The adjacency list of the graph G.
Output: B-stable F or the graph G if it doesn’t contain
any stable subgraph.
Procedure SBS(G)
. If G is not a complete graph:
. S ←− G;
. SORT (S);
. For each x ∈ XS:
. processed(x) ←− TRUE;
. P ←− ∅; E ←− ∅:
. G ←− POTENTIAL(x, x):
. If G 6= S:
. SBS(G);
Return G;

3 Transitive orientations of the graph

Let F0 be a stable subgraph of the graph G = (X;U). We denote by
G/F0 the graph that can be obtained from G by the following rules:

1. B-stable subgraph F0 is replaced with the vertex xF0 ;

2. All edges [x, z] ∀x ∈ XF0 , z ∈ XG \ XF0 are replaced with the
edge [xF0 , z].
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The graph G/F0 is called graph factor that corresponds to the B-
stable subgraph F0. The operation of obtaining the graph factor G/F0

is called factorization.
If the graph G1 = G/F0 contains another B-stable subgraph F1,

then we can get the next graph factor G1/F1 by using the factorization
procedure. If this graph also contains another B-stable subgraph, then
we can repeat the same procedure described above until we get a graph
factor that does not contain any B-stable subgraph. So, we can obtain
a sequence of undirected graphs starting from the B-stable subgraph
F0:

G, G1 = G/F0, G
2 = G1/F1, . . . , G

k = Gk−1/Fk−1 (3)

with the following properties:

a) Fi is a B-stable subgraph in the graph Gi, where 0 ≤ i ≤ k − 1,
(consider that G0 = G);

b) the graph Gk = Gk−1/Fk−1 does not contain B-stable subgraphs.

The sequence (3) constructed by the rules mentioned above is called
complete sequence of graph factors of the graph G. Mention that
this sequence contains k + 1 undirected graphs.

Let A and B be two B-stable subgraphs of the undirected graph
G = (X;U).

Lemma 1. If

G,G1 = G/A,G2 = G1/A1, . . . , G
k = Gk−1/Ak−1 (4)

G,G1 = G/B,G2 = G1/B1, . . . , G
t = Gt−1/Bt−1 (5)

are two complete sequences of graph factors, then k = t.

Proof. In other words, we should prove that the number of steps needed
to get the graph, on which the factorization operation cannot be applied
for each subgraph, is the same.

From Lemma 1 [7] it results that B-stable subgraphs A and B
are independent. So, if we apply the factorization procedure in the
graph G on the subgraph A, then the resulting graph factor G1 = G/A
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contains the B-stable subgraph B. The same logic can be applied on
the factorization of the subgraph B. So, it doesn’t matter how we
choose the B-stable subgraph on which the factorization operation is
applied. Certainly, other B-stable subgraphs are in the resulting graph
factors.

Next, we need to show that a bijective application is between the
graphs G/A and G/B. In other words, we should prove that the factor-
ization of the subgraph A does not generate another B-stable subgraph
that cannot be obtained by factorization of the subgraph B.

Let xA be a vertex obtained in the factorization operation ap-
plied on the B-stable subgraph A. Suppose that in the resulting
graph G1 = G/A there is another B-stable subgraph A1 so that
xA ∈ XA1 . Based on Lemma 1 from [7], the intersection of the B-
stable subgraphs is an empty set. It means that in the sequence
G,G1 = G/A,G2 = G1/A1, . . . , G

k = Gk−1/Ak−1 there can not be
another B-stable subgraph that contains vertex xA. We obtain a new
vertex that can be part of another B-stable subgraph as the result of
the factorization operation. This graph also can be used in the factor-
ization of the resulting graph factor. This fact indicates that depending
on the vertex which was factorized first, every resulting B-stable sub-
graph from the factorization operation can be obtained from different
steps of this operation. The order of the graphs can be changed in the
construction of the sequence of the graph factors, but not the number
of them. This lemma is proved based on these results.

Remark 3. For every sequence of the graph factors of the graph G the
number of transitive orientations of the G is the same.

Let G0 = G,G1 = G0/F0, G
2 = G1/F1, . . . , G

p+1 = Gp/Fp be
a complete sequence of graph factors, where Gp+1 does not contain
any B-stable subgraphs, Fi is a B-stable subgraph of the graph Gi,
0 ≤ i ≤ p.

Theorem 4. Number of the transitive orientations of the graph G can
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be calculated by the following formula:

τ(G) = τ(Gp+1)
p∏

i=1

τ(Fi). (6)

The number of transitive orientations of the resulting graph factor
is multiplied by the number of transitive orientations of the B-stable
subgraph on which the factorization was applied, because the transitive
orientation of the B-stable subgraphs is obtained independently from
the rest of the graph.

Algorithm 3. The algorithm for calculation of number of transitive
orientations in a graph

Input: undirected graph G.
Output: Number of transitive orientations τ(G).
Initialisation: τ(G) ←− 1; i ←− 1, G/F0 ←− G.
Step 1. Determination of B-stable subgraph Fi;
Step 2. Calculation of number τ(Fi);
Step 3. τ(G) ←− τ(G) · τ(Fi);
Step 4. If τ(G) = 0 STOP: G is not transitively ori-
entable;
Step 5. If Fi = G/Fi STOP: Return τ(G);
Step 6. Generate graph factor G/Fi;
Step 7. i ←− i + 1; Go to Step 1.

Theorem 5. Calculation of the transitive orientation of the graph us-
ing B-stable subgraphs can be done in O(kn∆) time, where k is the
number of B-stable subgraphs in the sequence of the graph factors, n is
the number of vertices in G and ∆ is the maximum degree of a vertex.

Proof. Consider that k is the length of the complete sequence of graph
factors of the graph G. This sequence is generated during the graph
factorization. The SBS procedure is called for every graph factor. This
procedure uses O(n∆) time. Calculation of the number τ(Fi) has no
influence on the run time of the algorithm because it is constant. The
6th step of the algorithm runs in O(n) time. Based on the mentioned
facts, we have that the execution time of the algorithm is O(kn∆).
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Compared to the algorithm developed by M.C.Golumbic in [6],
which runs in O(m∆) time, where m is the number of the edges of
the graph and ∆ is the maximum degree of a vertex, it looks like this
algorithm is not so efficient. But many examples have proved that this
algorithm is as good as the one presented in [6].

Next, we analyse the algorithm for construction of a transitive ori-
entation based on the sequence of the graph factors.

Algorithm 4. Algorithm for construction of a transitive orientation
Input: Complete series of graph factors.
Output: A transitive orientation

−→
G of the graph G.

Step 1. Construction of transitive orientation of the
graph factor Gi/Fi;

Step 2. If i = 0 Return: Orientation
−−−−→
G0/F0 =

−→
G ;

Step 3. i ←− i− 1;
Step 4. Go to Step 1.

Theorem 6. Construction of the transitive orientation of the graph
can be made in O(k∆) time, where ∆ is the maximal degree of a vertex
and k is the number of B-stable subgraphs in the sequence of the graph
factors in G.

Proof. The previous algorithm offers in each iteration a transitive orien-
tation of the B-stable subgraphs. A transitive orientation is generated
during the exploration of the sequence of the B-stable subgraphs. So,
construction of the transitive orientation can be achieved in O(∆) time.
Exploration of the sequence of B-stable subgraphs can be executed in
O(k) time. In this case, total time necessary for a single transitive
orientation is O(k∆).

4 Construction of a transitive orientation with
a given set of arcs

The set of arcs that induces a transitive orientation is denoted as
−→
AG.

The set
−→
AG formally can be presented as follows:

−→
AG = {[x, y] ∈−→

UG|−→G = (XG;
−→
UG)}, where

−→
G is a transitive orientation.
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It is clear that not every set of arcs
−→
AG is a subset of the

−→
UG. Next,

we present conditions over set
−→
AG to obtain

−→
AG ⊆ −→

UG.

Remark 4. If the arcs [x, y], [y, z], [z, x] ∈ −→AG, then the set
−→
AG does

not define a transitive orientation.

Definition 3. If F = (XF ; UF ) is a B-stable subgraph of the transi-
tively orientable graph G, then the set of edges UF is called the internal
factor defined by the subgraph F .

Let F be a B-stable subgraph of the graph G. Internal factor defined
by F is denoted as IF .

Remark 5. If transitively orientable graph G = (X;U) does not con-
tain any B-stable subgraph, then the set of edges UG defines the internal
factor of the graph G.

Let F be a B-stable subgraph of the transitively orientable graph
G, and IF is an internal factor defined by the subgraph F , then the
next remark holds.

Remark 6. If [x, y] and [s, t] are two arcs that are contained in the
internal factor IF defined by the B-stable subgraph F , then the transi-
tive orientation defined by the arc [x, y] is the same as the transitive
orientation defined by the arc [s, t].

Definition 4. Let x ∈ XG \ XF , where F is a B-stable subgraph of
the transitively orientable graph G, is a vertex adjacent to the set XF .
Then, the set of edges [x, y], ∀y ∈ XF is called the external factor
defined by the subgraph F .

Let F be a B-stable subgraph of the graph G. External factor
defined by F is denoted as EF .

Remark 7. If F is a B-stable subgraph of the transitively orientable
graph G, and EF is an external factor defined by F , then for each
x ∈ XEF

and y ∈ XF only one of the following relations is satisfied:

1. [x, y] ∈ EF ;
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2. [y, x] ∈ EF .

It means that all arcs in an external factor have the same direction.
We can formalize the algorithm for the construction of the transitive

orientation defined by the set of arcs
−→
AG from the results mentioned

above. This algorithm is split into two stages. We obtain a graph on
which there cannot be applied the factorization operation as well as
the set

−−−−→
AG/Fk

in the first stage. The transitive orientation defined by

the set
−→
AG is obtained in the second stage of the algorithm.

Theorem 7. Construction of the transitive orientation with a given
set of arcs can be done in O(pk∆) time, where p is the number of arcs
in
−→
AG, k is the number of graph factors in the sequence G, and ∆ is

the maximal degree of the G.

Proof. Algorithm of construction of a transitive orientation forced by
a given set of arcs is a modification of the algorithm of construction of
an arbitrary transitive orientation. Time needed for the construction
of the transitive orientation with a given set of arcs is dependent only
on the set

−→
AG and number of B-stable subgraphs. So, it is necessary to

explore all graph factors in order to get a transitive orientation for the
graph. In every graph factor we define a transitive orientation for the
arcs in the set

−→
AG. Suppose that k is the number of graph factors in

sequence and p is the number of arcs in
−→
AG. As a result, the running

time of the algorithm is O(pk∆).

If the set
−→
AG has only one arc, then the time needed for construction

of a transitive orientation is O(k∆). Number of graph factors cannot
be greater than number of edges in graph. The time needed for con-
struction of a transitive orientation forced by an arc using operation
of the graph factorization based on B-stable subgraphs is less than the
time needed for construction of a transitive orientation using implica-
tion classes. The algorithm for construction of a transitive orientation
forced by a set of arcs is presented below. This algorithm explores the
sequence of graph factors. In the first stage we get the sequence of
graph factors and the modified set of arcs

−→
Ai

G for each graph. In the
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second stage the complete sequence of graph factors is parsed back-
wards. We obtain a transitive orientation for each graph factor until
the last graph is the needed one.

Algorithm 5. Algorithm for construction of a transitive orientation
based on the set

−→
AG

Input: Transitively orientable graph G, the set of arcs←−
AG.
Output: Transitive orientation

−→
G of the graph G.

STAGE I
Step 1. If

−→
AG is not transitively orientable: STOP - The

set
←−
AG does not define a transitive orientation;

Step 2. i ←− 1,
−−−−→
AGi/Fi

←− −→
AG;

Step 3. Defines B-stable subgraph Fi;
Step 4. Constructs graph factor Gi/Fi;
Step 5. Constructs set

−−−−→
AGi/Fi

;
Step 6. If Gi/Fi = Gi−1/Fi−1: Go to the 2nd stage;
Step 7. i ←− i + 1;
Step 8. Go to Step 2;
STAGE II
Initialisation: i ←− k;
Step 1. pi ←− |AGi/Fi

|, j ←− 1;

Step 2. If arc u ∈ −−−−→AGi/Fi
another transitive orientation

STOP - There cannot be constructed a transitive orien-
tation defined by the set

−→
AG;

Step 3. Construction of transitive orientation
−−−→
Gi/Fi de-

fined by the arc uij ;
Step 4. If j ≥ pi: Go to Step 6;
Step 5. j ←− j + 1, Go to Step 2;
Step 6. Orientation of the edges that are not dependent
on the set

−−−−→
AGi/Fi

;

Step 7. If i = 0: Return
−−−−→
G0/F0;

Step 8. i ←− i− 1;
Step 9. Go to Step 1;
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5 Conclusions

In this article we have described algorithms for construction of an arbi-
trary transitive orientation and construction of a transitive orientation
forced by the set of arcs.

Methods presented in [6] offer solution for construction of a tran-
sitive orientation based on the direction of only one arc. Algorithms
described in this paper can be applied for transitive orientation of the
graph forced by a set of arcs. This generalization has applications in
many theoretical and practical problems.
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