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Abstract

Here we tackle a problem from biology in terms of discrete
mathematics. We are interested in a complex DNA manipula-
tion process happening in eukaryotic organisms of a subclass of
ciliate species called Stichotrichia during so-called gene assembly.
This process is in particular interesting since one can interpret
gene assembly in ciliates as sorting of permutations. We survey
here results related to studies on sorting permutations with some
specific rewriting rules that formalize elementary intramolecular
gene assembly operations. The research question is “what per-
mutation may be sorted with our operations?”

Keywords: ciliates, gene assembly, elementary operations,
combinatorics, molecular computing

1 Introduction

The involved process of DNA folding-recombination that takes place in
ciliates during gene assembly represents high interest both for biologists
as well as for computer scientists [1, 2, 3, 5, 6, 7, 9, 12, 13]. It turns out
that the gene assembly process bears strong computational nature and
can be thought of in such terms as linked lists, strings, permutations,
graphs, etc.. Currently, the research on gene assembly in ciliates focuses
both on molecular details of the process as well as on its computational
aspects [16].

Ciliates are eukaryotic organisms with the peculiar feature of pos-
sessing two types of nuclei called micronucleus and macronucleus. Our

c©2014 by Vladimir Rogojin

386



On combinatorial properties of elementary intramolecular operations

focus is at a subclass of ciliates called Stichotrichia for which the fea-
tures discussed in the following are especially pronounced. A macronu-
cleus contains short gene-sized DNA molecules, where each molecule
stores a single gene represented as a contiguous sequence of nucleotides.
Meanwhile, a micronucleus contains long DNA organized on chromo-
somes, where each DNA contains many genes, each gene is broken into
fragments (called MDSs), those fragments are separated by non-genetic
nucleotide sequences (called IESs), MDSs are shuffled throughout the
molecule, and some of the MDSs may be even inverted (for example
we refer to Fig.1).

When two ciliate organisms are mating, they destroy their macronu-
clei and exchange the genetic material stored in their micronuclei. After
the mating ciliates separate, they grow new macronuclei from some of
their micronuclei. This means that ciliates assemble their macronu-
clear genes from the micronuclear form after the mating process oc-
curred. During gene assembly, the micronuclear DNA molecules get
transformed into the macronuclear form. During this process IESs get
removed from DNA and MDSs are spliced together so that to form
mature macronuclear genes (for mode details see [2]).

(a) (b)

Figure 1. From [10]. Micronuclear and macronuclear versions of actin
I gene from Stylonychia lemnae. (a) Micronuclear gene pattern: the
gene is broken into 8 MDSs. Each MDS (blue rectangle) is separated
from each other by an IES (white rectangle). MDS2 is inverted. (b)
Assembled macronuclear gene: all IESs are removed, all MDSs are
properly ordered and linked to each other to form the contiguous gene.
The orientation of MDS2 is restored.

The intramolecular model explains gene assembly in terms of three
molecular folding-recombination operations Ld, Hi and Dlad that op-
erate within a single molecule and splice together two or more MDSs.
Operation Ld removes an IES between two consecutive MDSs and splice
the MDSs into one larger composite MDS, Hi inverts a piece of DNA
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containing MDSs and IESs that results in larger composite MDS, and
Dlad exchanges two pieces of DNA with places in such a way that
two or more MDSs get spliced together into larger composite MDSs.
Sequence of application of Ld, Hi and Dlad operations eventually trans-
forms a micronuclear gene pattern into the macronuclear one. The
folding, alignment of splicing sites and recombination of a DNA while
applying Ld, Hi and Dlad is presented at Figure 2.

Our focus is at the elementary intramolecular operations. Those are
intramolecular operations that are “allowed” to invert/relocate piece
of DNA containing only one micronuclear (i.e., non-composite) MDS.
As the result of such a restriction, unlike the general model, elemen-
tary operations may not assemble all the micronuclear gene patterns.
Moreover, for the same micronuclear gene pattern there may exist both
successful (assemble the gene) as well as non-successful (fail to assemble
the gene) strategies. In this way, it is not easy to answer the question
what micronuclear gene patterns can be assembled into macronuclear
one by elementary intramolecular operations. The goal is to find an
efficient method to decide whether a micronuclear gene pattern can be
assembled by elementary operations. The problem is translated into
a permutation sorting problem. Here we present the recent results
related to this problem.

We refer to a recent review on general, simple (less restrictive than
elementary) and elementary model here [8].

2 Mathematical preliminaries

Here we recall a number of concepts and definitions from formal lan-
guages and graph theory and set the proper terminology in order to
describe the following results.

By Np,q for some p ≤ q we denote set of integers {p, p + 1, p +
2, . . . , q − 1, 1}.

We consider a set of integers Πn = {1, 2, . . . , n} and denote set of
sequences (words) of integers from Πn as Π∗n. For a word v over Π∗n we
denote its domain as dom(()v) = {i ∈ Πn|i occurs in v}. The signed
version of Πn we define as Πn = {i|i ∈ Πn} such that Πn ∩ Πn = ∅
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(a) Ld: the molecule
folds to form a loop.
A pair of recombination
sites gets aligned next to
each other.

(b) Ld: enzymes
enable splicing on
the recombination
sites.

(c) Ld: the loop por-
tion of the molecule is
removed as a circular
molecule.

(d) Hi: the molecule folds
to form a hairpin loop.
A pair of recombination
sites gets aligned next to
each other.

(e) Hi: enzymes
enable splicing on
the recombination
sites.

(f) Hi: the loop portion
of the molecule gets in-
verted.

(g) Dlad: the molecule
folds to form a double loop.
Two pairs of recombination
sites get aligned next to
each other.

(h) Dlad: en-
zymes enable
simultaneous
splicing on the
recombination
sites.

(i) Dlad: two parts of the
molecule flanked by occur-
rences of the recombination
sites from the two different
pairs exchange their places.

Figure 2. From [10]. Intramolecular recombination operations:
Ld (Loop, Direct-repeat excision), Hi (Hairpin loop, Inverted-repeat
excision-reinsertion) and Dlad (Double-Loop, Alternating Direct-repeat
excision-reinsertion). In each case we illustrate the fold, the recombi-
nation, and the end result.

389



Vladimir Rogojin

and . is a bijection between sets Πn and Πn. We say that i ∈ Πn is a
signed version of i ∈ Πn and agree that i = i. For set of words over
(Πn ∪ Πn)∗ we consider an inversion automorphism as v = kn . . . k2k1

where v = k1k2 . . . kn is a word over Πn ∪ Πn. We also define a sign
removal operation as a surjective mapping ||.|| : Πn ∪ Πn → Πn that
for any integer i ∈ Πn let ||i|| = ||i|| = i. We extend this operation on
words over Πn ∪Πn and let ||v|| = ||k1||||k2|| . . . ||kn||.

We denote substring u of string v as u ≤ v and recall that u is
called a substring of v when v = xuy and x, y, u, v ∈ (Πn ∪ Π∗n). We
denote subsequence u of string v as u ≤s v and recall that u is called
a subsequence of v when v = v0k1v1k2v2 . . . kmvm and k1, k2, . . . , kn ∈
Πn∪Πn, u, v, v0, v1, v2 . . . , vm ∈ (Πn∪Π∗n). Let s ⊆ Πn∪Πn. Let v be a
string over Πn∪Πn. By v|s we denote the maximal length subsequence
in v that contains only letters from the subset s.

We let φk be a substring rewriting rule basing on integer k ∈ Πn

and we denote its domain as dom(φk) = k. We say that a composition
of rewriting rules Φ = φkm ◦φkm−1 ◦. . .◦φk2 ◦φk1 is a strategy and we de-
note its domain as dom(Φ) = {dom(φk1), dom(φk2), . . . , dom(φkm)} =
{k1, k2, . . . , km}. Let v be a string over Πn. We say that strategy Φ
is applicable to v, when all operations of Φ can be applied to v in the
order established by Φ such that a next operation φkl

from Φ applies
to the result vl−1 produced by the preceding operation φkl−1

, and the
first operation φk1 applies to v0 = v.

We recall that a permutation over Πn is a bijection π : Πn → Πn

that can be represented as a word π = π(1)π(2) . . . π(n). We say that
a string π over Πn ∪ Πn is a signed permutation over Πn when ||π|| is
a permutation over Πn. We regard a signed permutation π over Πn as
sorted if either:

• π = t(t + 1) . . . n12 . . . (t− 1), or

• π = (t− 1) . . . 21n . . . (t + 1)t,

where t ∈ Πn. In the former case we say that π is sorted to an orthodox
order, while in the later case we say that t is sorted to an inverted order.
When t = 1 we say that π is a linearly sorted permutation, otherwise
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we say that π is a circularly sorted permutation. We say that a strategy
Φ that is applicable to π is a sorting strategy or successful strategy if
Φ(π) is a sorted permutation.

We recall that a directed graph (digraph) is a structure G = (V,E)
that represents set of vertices V interconnected by a set of directed
edges E. An alternating sequence of vertices and edges that starts and
ends by two different or the same vertex is called a path in G. A path
ρ = (i1, i2, . . . , im) in G starts with vertex i1 ∈ V , ends with vertex
im ∈ V and contains intermediate vertices from V and edges from
E that follow in orders i1, i2, . . . , im and (i1, i2), (i2, i3), . . . , (im−1, im)
respectively. Path ρ is called a cycle when i1 = im. Path ρ is called
cyclic when ik = il for some 1 ≤ k, l ≤ m. Also, path ρ can be regarded
as a word over V .

We say that subgraph GR = (VR, ER) is induced by a set of paths
in R in G when VR =

⋃
ρ∈R dom(ρ) and ER = {(i, j)|(i, j) ∈ ρ and

ρ ∈ R}.

3 Elementary gene assembly as permutation
sorting

A gene pattern with n MDSs is formalized as a signed permutation π
over set of integers Πn = {1, 2, . . . , n}. Here, an integer i represents
the ith MDS, while signed integer i represents the inverted ith MDS in
the pattern. For instance, the micronuclear gene pattern from Fig. 1 is
represented as permutation π = 3 4 5 7 2 1 6 8.

Operations eh and ed formalize Hi and Dlad respectively as rewriting
rules over Π∗n [4]

• orthodox eh

– ehi(ui(i + 1)v) = ui(i + 1)v;

– ehi(ui(i + 1)v) = ui(i + 1)v.

• inverted eh

– ehi(u(i + 1)iv) = u(i + 1)iv;
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– ehi(u(i + 1)iv) = u(i + 1)iv.

• orthodox ed

– edi(uiv(i− 1)(i + 1)w) = uv(i− 1)i(i + 1)w;

– edi(u(i− 1)(i + 1)viw) = u(i− 1)i(i + 1)vw.

• inverted ed

– edi(uiv(i + 1)(i− 1)w) = uv(i + 1)i(i− 1)w;

– edi(u(i + 1)(i− 1)viw) = u(i + 1)i(i− 1)vw,

where i ≥ 1 and u, v, w ∈ Π∗n.
The process of gene assembly is represented as a permutation sort-

ing process by eh and ed operations.

Example 1. Let us consider signed permutation π = 1 2 3 6 4 8 5 10 7 9 12
11 13. A sequence of eh, ed operations Φ = eh2 ◦ eh3 ◦ ed6 ◦ eh4 ◦ ed8 ◦
◦ ed10 ◦ ed12 (should be read from the right to the left) will sort π as
follows:

1. π1 = ed12(π) = 1 2 3 6 4 8 5 10 7 9 11 12 13;

2. π2 = ed10(π1) = 1 2 3 6 4 8 5 7 9 10 11 12 13;

3. π3 = ed8(π2) = 1 2 3 6 4 5 7 8 9 10 11 12 13;

4. π4 = eh4(π3) = 1 2 3 6 4 5 7 8 9 10 11 12 13;

5. π5 = ed6(π4) = 1 2 3 4 5 6 7 8 9 10 11 12 13;

6. π6 = eh3(π5) = 1 2 3 4 5 6 7 8 9 10 11 12 13;

7. π7 = eh2(π6) = 1 2 3 4 5 6 7 8 9 10 11 12 13.

The fact that Φ transforms π into π7 we will write as Φ(π) = π7 =
12 3 4 5 6 7 8 9 10 11 12 13. We note that Φ sorts π to an orthodox lin-
early sorted permutation.
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The following results establish the symmetric relations between or-
thodox and inverted eh, ed operations. First of all, if there is a strategy
Φ applicable to a signed permutation π, then Φ is also applicable to π.
However, any orthodox eh, ed used while applying Φ to π changes to
the inverted eh, ed when applying Φ to π and viceversa, any inverted
eh, ed used during application of Φ to π changes to the orthodox one
when applying Φ to π (see Theorem 1).

Theorem 1 ([4]). Let π be a signed permutation over Πn, and Φ a
strategy of simple operations applicable to π. Then, Φ is applicable to
π as well, and we have that Φ(π) = Φ(π).

The following theorem (Theorem 2) says that a sortable signed
permutation π cannot be sorted to an orthodox one when an inverted
operation is applicable to it. Which also implies that a permutation
can be sorted either to an orthodox or to an inverted form, but not to
both.

Theorem 2 ([4]). Permutation π is sortable to an orthodox order if
and only if π is sortable and no inverted operation is applicable to π.

Any strategy that sorts a permutation to the orthodox order will
not use any of the inverted operations. Symmetrically, any strategy
sorting a permutation to the inverted order will not use any of the
orthodox operations. Theorem 3 establishes this fact.

Theorem 3 ([10]). Let π be a signed permutation and Φ a strategy
sorting π either to the orthodox or to the inverted order. If Φ sorts π to
the orthodox, then Φ contains only orthodox eh and ed. Symmetrically,
if Φ sorts π to the inverted, then Φ contains only inverted eh and ed.

In this manner, it turns out that we can consider without loss of
generality only orthodox eh, ed operations. Hereby, in the following
sections we talk about orthodox operations only, unless specified oth-
erwise.

Theorem 4 tells that no operation can be used more than once at
a strategy applicable to a permutation π.
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Theorem 4 ([4]). Let π be a signed permutation over Πn and i ∈ Πn.
Then there is no strategy applicable to π that uses either of ehi or edi

more than once and no strategy that would use both ehi−1 and edi.

4 Order dependencies between eh, ed opera-
tions

The task of deciding whether a given permutation π can be sorted by
eh and ed operations requires in particular that one either finds a eh, ed
strategy that sorts π or at least proves its existence. As a prerequisite,
one has to explore the order in which eh and ed operations can be
used in a strategy applicable to π. In this section we consider so-
called dependency graphs introduced in [10] that represent the order
dependencies between orthodox eh, ed operations.

Definition 1. [10] Let π be a signed permutation over Πn. The signed
dependency graph associated to π is digraph Γπ = (Vπ, Eπ), defined as
follows: Vπ = dom(π), Eπ = Ed−d,π ∪Ed−h,π ∪Eh−d,π ∪Eh−h,π, where

Ed−d,π = {(1, 1), (n, n)} ∪ {(j, i) | (i− 1)j(i + 1) ≤s ||π|| and
i ≤s π} ∪ {(i, i) | (i + 1)(i− 1) ≤s ||π|| or i ≤s π},

Eh−d,π = {(i− 2, i) | (i− 1) ≤s π and i ≤s π}∪
{(i + 1, i) | (i + 1) ≤s π and i ≤s π},

Ed−h,π = {(j, i) | ij(i + 1) ≤s ||π|| and
i or (i + 1) is signed in π},

Eh−h,π = {(i− 1, i), (i + 1, i) | i(i + 1) ≤s π for i > 1}∪
{(i, i) | (i + 1)i ≤s ||π|| or i(i + 1) ≤s π}∪
∪{(2, 1) | if 1 2 ≤s π} ∪ {(n, n)}.

An edge (j, i) ∈ Ed−d,π means that in any strategy applicable to
π that uses orthodox edi the application of edj should precede edi.
In the same manner, edge (j, i) ∈ Eh−d,π means that application of
orthodox edi is always preceded by orthodox ehj , and edge (i, j) ∈
Ed−h,π means that application of orthodox ehi is always preceded by
edj . The situation is somewhat different with edges from Eh−h,π due
to the fact that application of any of orthodox ehj−1 and of orthodox
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ehj yields j to be unsigned in π. Moreover, by the definition of the
dependency graph we may have only edges of type (i−1, i) and (i+1, i)
in Eh−h,π for any i > 1 and also egde (2, 1) or we may have self-loop
(i, i). In other words, if (j, i) ∈ Eh−h,π and j 6= i, then either j = i− 1
or j = i + 1 if i > 1, and j = 2 otherwise. Moreover, for i > 1 and
(j, i) ∈ Eh−h,π we have that (i − 1, i), (i + 1, i) ∈ Eh−h,π. In this way,
having edge (j, i) ∈ Eh−h,π means that either ehi−1 or ehi+1 should
precede ehi when i > 1, and eh2 should precede ehi = eh1 otherwise.
The following example demonstrates the idea.

Example 2. Consider signed permutations π1 = 1 2 3 5 4 6 and π2 =
12 3 6 4 8 5 10 7 9 12 11 13. Their dependency graphs are in Figures 3
and 4. In particular, Figure 3 tells us that in any strategy where eh2 is
used, either eh1 or eh3 should be used first. Indeed, in order to apply
eh2, one has to unsign either 2 or 3 in π first, that can be done by
orthodox eh1 or eh3 respectively. Next, in order to use eh3, one has to
apply either eh2 or eh4 first, and also, ed5. Indeed, for eh3 to become
applicable, one has to remove 5 that stays in between of 3 and 5. But
that could be done by ed5 only. Also, in order to use ed5, one has to
apply eh3 first, because ed5 can be applied when 4 is not signed, but
4 can be unsigned by eh3 or eh4. By Theorem 4 there is no strategy
applicable to π1 that uses both eh4 and ed5. Moreover, as we have
established already, in order to use eh3 one has to use ed5 first. I.e.,
we have a cycle here: in order to use ed5 one has to use ed5 first, what
by Theorem 4 is not possible. Thus, eh3 and ed5 cannot be used in a
strategy applicable to π. Operation ed4 cannot be used in any strategy
either since one has to use either ed4 or ed5 before to set 4 and 5 in
proper positions. In this way, subsequence of integers 3, 4 and 5 cannot
be brought to the appropriate order, thus π1 cannot be sorted neither
to an orthodox as well as to the inverted orders. Moreover, from the
graph in Figure 3 we can tell immediately that ed1, ed2, ed3, ed4, eh4,
eh5, ed6 and eh6 can never be used due to the respective self-loops on
the nodes.

On the other hand, from graph in Figure 4 we see that in order to
sort π2 we can use operations in order ed12 followed by ed10, followed
by ed8, then eh4, then ed6 followed by eh3, followed by eh2.
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In this way, the dependency graphs serve well when identifying
which operations should follow which operations and what operations
(or sets of operations) can never be used in a strategy applicable to a
signed permutation. Theorems 5, 6 and 7 illustrate these ideas.

ONMLHIJK6

d→d,h→h¤¤
ONMLHIJK1

d→d¤¤

h→h
²²

ONMLHIJK2

d→d¤¤

h→h
²²

ONMLHIJK5

h→h¤¤

d→h

88
ONMLHIJK3

d→d¤¤h→d
xx

h→h

OO

ONMLHIJK4

d→d,h→h¤¤

h→hoo

Figure 3. Dependency graphs for permutation π1 = 1 2 3 5 4 6. The
graphs include edges from: Ed−d,π indicated as label d → d, Ed−h,π

indicated as d → h, Eh−d,π indicated as h → d, Eh−h,π indicated as
h → h.

Theorem 5. [10] Let π be a signed permutation over Πn, and Γπ =
(Πn, Ed−d,π ∪Ed−h,π ∪Eh−d,π ∪Eh−h,π) be its dependency graph. Let Φ
be a strategy applicable to π, with Φ = Φ2 ◦ edi ◦Φ1 and edi orthodox.
Then, for any edge (j, i) of Γπ, we have that:

1. if (j, i) ∈ Ed−d,π, then i 6= j and Φ1 = Φ′′1 ◦ edj ◦Φ′1;

2. if (j, i) ∈ Eh−d,π, then i 6= j and Φ1 = Φ′′1 ◦ ehj ◦Φ′1, where ehj is
orthodox.

Theorem 6. [10] Let π be a signed permutation over Πn, and Γπ =
(V = Πn, Eπ = Ed−d,π ∪ Ed−h,π ∪ Eh−d,π ∪ Eh−h,π) be its dependency
graph. Let Φ be a strategy applicable to π, with Φ = Φ2 ◦ ehi ◦Φ1 and
ehi orthodox. Then, for any edge (j, i) ∈ E we have that:
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WVUTPQRS13

d→d,h→h¤¤
ONMLHIJK8

h→h¤¤

d→h
²²

WVUTPQRS11

h→h¤¤
ONMLHIJK7

h→h¤¤

d→doo ONMLHIJK4

d→d¤¤

h→h
²²

d→doo

ONMLHIJK9

h→h¤¤
d→d

OO

ONMLHIJK5

d→d,h→h¤¤

d→doo ONMLHIJK3

d→d¤¤

h→h
oooooooo

wwoooooooo

h→doo

ONMLHIJK1

d→d¤¤

h→h //ONMLHIJK2

d→d¤¤
h→hoooooooo

77oooooooo

ONMLHIJK6

h→h¤¤
d→h

OO

WVUTPQRS12

h→h¤¤

d→d // WVUTPQRS10

h→h¤¤
d→d

OO

Figure 4. Dependency graphs for permutation π2 =
12 3 6 4 8 5 10 7 9 12 11 13. The graphs include edges from: Ed−d,π

indicated as label d → d, Ed−h,π indicated as d → h, Eh−d,π indicated
as h → d, Eh−h,π indicated as h → h.

• if (j, i) ∈ Ed−h,π, then i 6= j and Φ1 = Φ′′1 ◦ edj ◦Φ′1;

• if (j, i) ∈ Eh−h,π and i > 1, then j ∈ {i − 1, i + 1} and (i −
1, i), (i + 1, i) ∈ Eh−h,π, and either Φ1 = Φ′′1 ◦ ehi−1 ◦Φ′1 where
ehi−1 is orthodox or Φ1 = Φ′′1 ◦ ehi+1 ◦Φ′1 where ehi+1 is orthodox
independently on j;

• if (j, i) ∈ Eh−h,π and i = 1, then j = 2 and Φ1 = Φ′′1 ◦ eh2 ◦Φ′1
where eh2 is orthodox.

Theorem 7. [10] Let π be a signed permutation, Γπ its dependency
graph and i ∈ dom(π).
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(i) If (i, i) ∈ Ed−d,π, then there is no strategy where orthodox edi is
used in π;

(ii) If (i, i) ∈ Eh−h,π, then there is no strategy where orthodox ehi is
used in π.

5 Deciding eh, ed-sortability

In the following simple example we show why deciding the sortability
of a signed permutation by eh, ed operations may be difficult.

Example 3. Let π = 1 3 5 2 4 be a signed permutation. If we apply
strategy Φ1 = ed3, we get permutation π1 = Φ1(π) = ed3(π) = 1 5 2 3 4.
No ed, eh application is applicable to π1, thus Φ1 lead us to an un-
sortable permutation. However, if we apply strategy Φ2 = ed4 ◦ ed2,
we get π2 = Φ2(π) = 1 2 3 4 5, what is a sorted permutation. Thus, the
same permutation may have both successful and unsuccessful strategies.

Another example demonstrates that different successful strategies
can lead to different sorted permutations.

Example 4. Let π = 2 4 6 1 3 5 be a signed permutation. If we apply
strategy Φ1 = ed5 ◦ ed3, we get a circularly sorted permutation π1 =
23 4 5 6 1. If we use strategy Φ2 = ed4 ◦ ed2, we get circularly sorted
permutation π2 = 61 2 3 4 5. In this way, two different sorting strategies
may lead to two different circularly sorted permutations.

In the following we will present results concerning the decision pro-
cedure in terms of directed graphs and permutations.

In [4] we have presented a characterization of eh, ed sortable per-
mutations in terms of directed graphs and correctly “guessed” sets.

Theorem 8. [4] Let π be an unsigned permutation. Then π is ed-
sortable if and only if there exists a partition {1, 2, . . . , n} = D ∪ U ,
such that the following conditions are satisfied:

(i) π|U is sorted;
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(ii) The subgraph induced by D in Gπ is acyclic;

(iii) If (p, q) ∈ Gπ with q ∈ D, then p ∈ D;

(iv) For any p ∈ D, (p− 1)(p + 1) ≤s π;

(v) For any p ∈ D, (p− 1), (p + 1) ∈ U .

Another theorem that characterizes eh, ed-sortable permutations re-
quires slightly modified definition of our dependency tree that depends
on some preselected sets and signed permutation rather then the signed
permutation alone.

Definition 2. [4]
Consider a permutation π. Let H, D ⊆ {1, 2, . . . , n}, H ∩ D = ∅.

The (orthodox) dependency graph Γπ,H,D generated by π, H and D has
Πn as its set of vertices, while its edges are defined as follows:

1. For q ∈ D and some p ∈ Πn,

– if (q − 1) p (q + 1) ≤s ||π||, then (p, q) ∈ Γπ,H,D;

– if (q + 1) (q − 1) ≤s ||π||, then (q, q) ∈ Γπ,H,D;

– if q − 1, q have different signs in π, then (q − 2, q) ∈ Γπ,H,D;

– if q, q + 1 have different signs in π, then (q + 1, q) ∈ Γπ,H,D.

2. For q ∈ H and some p ∈ Πn,

– if q p (q + 1) ≤s ||π||, then (p, q) ∈ Γπ,H,D;

– if (q + 1) q ≤s ||π|| or q (q + 1) ≤s π, then (q, q) ∈ Γπ,H,D;

– if q(q + 1) ≤s π, then

• if q−1 is not in H or (q, q−1) is an edge, then (q+1, q) ∈
Γπ,H,D,

• else (q − 1, q) ∈ Γπ,H,D.

For a composition Φ applicable to π, we denote HΦ = {p ∈ Σn |
shp ∈ Φ} and DΦ = {p | sdp ∈ Φ}. Also, we denote Γπ,Φ = Γπ,HΦ,DΦ

.
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The following theorem uses Definition 2 in order to characterize
eh, ed sortable permutation.

Theorem 9. [4] A permutation π is eh, ed-sortable to an orthodox
order if and only if there is a partition {1, 2, . . . , n} = D ∪H ∪U such
that the following conditions are satisfied:

(i) For any p ∈ D, p is unsigned in π;

(ii) H sorts π |H∪U to an orthodox order;

(iii) D sorts ||π||;
(iv) The subgraph of Γπ,H,D induced by H ∪D is acyclic.

The Theorems 8 and 9 require one to “guess” correctly sets D and U
in order to decide the sortability for a permutation. However, in [11, 14]
we have established an efficient method to decide ed sortability for a
permutation without sorting it and also indicated the form of successful
sorting strategies for an unsigned permutation in case it can be sorted.

The following two definitions and Theorem 10 consider integers in
permutations that cannot be moved in a strategy applicable to π.

Definition 3. [11] Let π be a signed permutation. An integer i ∈
dom(π) is called forbidden if there is no strategy applicable to π that
uses edi.

Definition 4. [14] Let π be a signed permutation. An integer i ∈
dom(π) is called fixed if either (i−1)i(i+1) ≤s π or (i+1)(i−1) ≤s π
or i ≤ π.

Theorem 10. [11] For a permutation π over Πn and p ∈ Πn, p is
forbidden in π if and only if the subgraph Γπ,p = (Tπ,p, Eπ,p) is cyclic
or q−1, q ∈ Tπ,p for some q. Here Tπ,p is set of nodes in Γπ from which
there is a path to node p and Eπ,p is a subset of edges from Γπ induced
by Tπ,p.

We note here that set of fixed integers is also a set of forbidden
integers, but not viceversa.
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When knowing the set of forbidden integers that can be computed
in cubic time for a signed permutation π, we can decide in linear time
the sortability for π (Theorem 11).

Theorem 11. [11]
Permutation π is sortable if and only if π|F (π) is sorted.

The following definition splits Πn into disjoint subsets called blocks
that will help to identify successful sorting strategies.

Definition 5. [14]

• A block in a signed permutation π is such set Np,q where p and
q are fixed integers, while integers p < i < q are not fixed. Set of
all the blocks in π we denote as Bπ;

• A block Np,q is even if q − p divides by 2, otherwise we say that
Np,q is odd. Set of all even blocks in π we denote by Be

π and set
of all odd blocks we denote by Bo

π;

• Set of all integers in even blocks we denote as Be
π and set of all

integers in odd blocks we denote as Bo
π;

• Set of all even integers in all blocks we denote as N e
π and set of

all odd integers in all blocks we denote as No
π.

Example 5. [14]
Let π = 1 3 5 11 7 9 6 2 4 8 10 12. Then

• Bπ = [{1, 2, 3, 4, 5}, {5, 6, 7, 8, 9, 10}, {10, 11, 12}];
• Be

π = [{1, 2, 3, 4, 5}, {10, 11, 12}];
• Bo

π = [{5, 6, 7, 8, 9, 10}];
• Be

π = {1, 2, 3, 4, 5, 10, 11, 12};
• Bo

π = {5, 6, 7, 8, 9, 10};
• N e

π = {3, 7, 9};
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• No
π = {2, 4, 6, 8, 11}.

Definition 6. [14] Let π be a permutation and let Bo
π = {Np1,q1 , Np2,q2 ,

. . . , Npk,qk
}. We define a set of subsets of dom(π) Sπ = {S ∈

2dom(π)|S = (Be
π ∩ No

π) ∪ (
⋃

1≤i≤k(N
o
pi,ti ∪ N e

ti,qi
)), where ti ∈ N e

pi−2,qi

for all i, 1 ≤ i ≤ k}.
Example 6. Let us consider permutation π = 1 3 5 11 7 9 6 2 4 8 10 12
from Example 5. Here Be

π ∩ No
π = {2, 4, 11}, Bo

π = [{5, 6, 7, 8, 9, 10}].
Then Sπ = [{2, 4, 7, 9, 11}, {2, 4, 6, 9, 11}, {2, 4, 6, 8}].

The following theorem shows that any set from Sπ is the domain of
a sorting strategy for permutation π, and viceversa, any strategy with
the domain from Sπ is a sorting strategy for π.

Theorem 12. [14]
Let π be a ed-sortable permutation. Then a strategy Φ sorts π if and

only if dom(Φ) ⊆ Sπ and for any i ∈ dom(Φ) for any j ∈ Tπ,i∩dom(Φ)
operation edj is used earlier than edi in Φ.

Theorems 11 and 12 state main results for deciding efficiently ed
sortability for unsigned permutations. However, situation with signed
permutations is more difficult because having an edge (j, i) ∈ Eh−h,π

implies choosing either ehi−1 or ehi+1 before applying ehi. In general
case this means having multiple alternatives when deciding if an op-
eration or a set of operations can be used in a strategy applicable to
π. Currently the search for an efficient decision method for eh, ed-
sortability is in progress [10, 15].
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