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Abstract

Nondeterministic metaheuristic optimization and digital im-
age processing are two very different research fields, both ex-
tremely active and applicable. They touch in a very limited area,
but that narrow interaction opens new very promising applica-
tions for digital image processing and new and different deploy-
ment of metaheuristic optimization. Multilevel image threshold-
ing is very important for image segmentation, which in turn is
crucial for higher level image analysis. The problem includes
exponential combinatorial optimization with complex objective
functions which are solvable only by nondeterministic methods.
This short review presents successful applications of the nature-
inspired metaheuristics to multilevel image thresholding.

Keywords: Digital image processing, multilevel threshold-
ing, swarm intelligence, metaheuristic optimization.

1 Introduction

Digital image processing is one of the most applicable research areas
used in many practical applications in different fields like medicine,
security, quality control, astronomy etc. It consists of very different
techniques belonging to low level signal processing, medium level mor-
phological processing and segmentation for feature detection and high
level artificial intelligence algorithms for object recognition, informa-
tion extraction, representation and understanding. At different stages
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of image processing some hard optimization problems occur. For ex-
ample, multilevel image thresholding is a step in segmentation, but
even though this problem at first sight seems to be simple, to deter-
mine optimal » numbers in the range [0-255] is NP-hard combinatorial
problem. JPEG quantization matrix optimization is also an exponen-
tial combinatorial problem since the number of coefficients, after DCT,
is 64 and each can be an integer between 0 and 255.

Such problems cannot be solved in reasonable time by standard
mathematical deterministic methods. Nature inspired metaheuristic
algorithms have recently been successfully used for this type of hard
optimization problems. They try to guide random Monte-Carlo search
by simulating some successful systems from the nature. Swarm in-
telligence is an important branch of nature inspired algorithms where
collective intelligence of different species like ants, bees, cuckoos, fire-
flies, bats, fish, birds, krill etc. is simulated.

This short review presents the problem, history and state-of-the-art
for multilevel image thresholding by nature-inspired nondeterministic
metaheuristics, particularly swarm intelligence algorithms.

2 Multilevel thresholding

The goal of image segmentation is to divide an image into homogeneous
and disjoint sets of pixels sharing similar properties such as intensity,
color or contours. Image segmentation usually represents the first step
in image understanding. The results obtained by segmentation are used
for further higher-level methods such as feature extraction, semantic
interpretation, image recognition, and classification of objects.

Image thresholding is one of the most widely used segmentation
techniques that performs image segmentation based on the information
contained in the image histogram. Selection of the multiple thresholds
is crucial in image segmentation since proper segmentation depends on
adequately computed thresholds. Figure 1 shows two standard bench-
mark images with corresponding histograms. We can notice that the
first image has four prominent peaks in the histogram, while the sec-
ond one has three. Reasonable segmentation of the first image thus
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would require three thresholds between four peaks. More careful ex-
amination can show that the first image has six peaks, two of them not
so emphasized. It shows that the problem of determining how many
thresholding levels are required, as well as where they should be placed,
is not trivial and does not have unique best answer.
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Figure 1. Two often used benchmark images with corresponding his-
tograms: (a) and (c) Barbara, (b) and (d) Lake.

3 Ciriteria for selecting thresholds

The criteria for selecting thresholds can be different. In the previous
example we tried to use our insight for that purpose, however for au-
tomatic processing of large number of images that is impossible. Most
often some objective criteria are used. Two most successful criteria
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or objective functions are Kapur’s entropy and between-class variance
Otsu’s criterion.

3.1 Kapur’s thresholding method

The Kapur’s method [1] based on the entropy is used to perform multi-
level thresholding. For this method the threshold criteria is formulated
as follows. Let an image I contain n pixels with gray levels belonging to
the set {0,1,...,L —1}. Let h(i) present the number of pixels at gray
level i, and p; = h(i)/n be the probability of occurrences of gray level
7 in the image I. The subdivision of an image into k + 1 classes can be
considered as a k-dimensional optimization problem for the calculation
of k optimal thresholds (¢g,t1,...,tx—1). The optimal thresholds are
obtained by maximizing the objective function

f(to,tla---ytkq):ZHi, (1)
i=0

where the entropies H; are defined by
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3.2 Otsu’s thresholding method

Otsu’s method [2] is based on the maximization of the between-class
variance and represents another very popular method proposed for im-
age thresholding. The algorithm for this method can be described as
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follows. Assume that an image I can be represented by L gray lev-
els. The probabilities of pixels at level 7 are denoted by p;, so p; > 0
and pg +p1 + -+ pr—1 = 1. Cumulative probabilities for classes
A;, 1=0,1, ...,k can be defined as

to—1 t;—1

L—-1
wo = Zpi, wy = sz', ey Wg = Z Di, (3)
=0

i=tg i=tr_1

where ¢; are the thresholds separating these classes. For k + 1 classes
A;, (1=0,1,...,k) the goal is to maximize the objective function

f(thtly"'vtk—l):Zaia (4)
=0

where the sigma functions are defined by:
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Kapur’s and Otsu’s objective functions may not be appropriate for
all applications, but they are the starting point and for any additional
particular requirements further refinement is possible. Four more stan-
dard bencmark images often used for testing thresholding algorithms
are in Figure 2.
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Figure 2. Four other often used benchmark images with corresponding
histograms: (a) and (c) Living room, (b) and (d) Boats, (e) and (g)
GoldHill, (f) and (h) Aerial.
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4 Exact results

Best possible thresholds (global optimum) can always be found by ex-
haustive search. All possibilities can be examined and the best one
selected. However, the number of possible values for one threshold is
255 (the number of gray levels) and for k thresholds is 255%. This expo-
nential growth prevents exhaustive search to be used for larger number
of desired thresholds. Table 1 shows for the six mentioned bencmark

Table 1. Thresholds, Objective function values and processing time for
the exhaustive search for Kapur’s method

Threshold Objective Time

Images | K .
values function (ms)
2 | 96, 168 12.668336540 25
Barbara 3 | 76,127, 178 15.747087798 341
4 | 60,99, 141, 185 18.556786861 | 11103
5 | 98, 95, 133, 172, 210 21.245645310 | 666869
2 | 94,175 12.405985592 31
Living 3 | 47,103, 175 15.552622213 339
room 4 | 47,98, 149, 197 18.471055578 12612
5 | 42, 85, 124, 162, 197 | 21.150302316 | 478114
2 | 107, 176 12.574798244 25
Boats 3 | 64,119, 176 15.820902860 342
4 | 48, 88, 128, 181 18.655733570 11461
5 | 48, 88, 128, 174, 202 | 21.401608305 | 469862
2 190, 157 12.546393623 24
Goldhill 3 | 78,131, 177 15.607747002 329
4 | 65, 105, 147, 189 18.414213765 | 11958
5 | 59, 95, 131, 165, 199 | 21.099138996 | 399458
2 |91, 163 12.520359742 24
Lake 3 | 72,119, 169 15.566286745 336
4 170,111, 155, 194 18.365636309 12658
5 | 64,99, 133, 167, 199 | 21.024982760 | 410753
2 | 68, 159 12.538208248 29
Aerial 3 | 68, 130, 186 15.751881495 347
4 | 68,117, 159, 200 18.615899102 | 11390
5 | 68, 108, 141, 174, 207 | 21.210455499 | 599570
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images optimal threshold values, optimal objective function value for
Kapur’s method and running time in milliseconds. The same data for
Otsu’s objective function are presented in Table 2.

Table 2. Thresholds, objective function values and processing time for
the exhaustive search for Otsu’s method

Threshold Objective Time

Images | K .
values function (ms)
2 | 82,147 2608.610778507 39
Barbara 3 | 75,127,176 2785.163280467 89
4 | 66, 106, 142, 182 2856.262131671 3014
5 | 57,88, 118, 148, 184 | 2890.976609405 | 100079
2 | 87,145 1627.909172752 39
Living 3 | 76, 123, 163 1760.103018395 88
room 4 | 56,97, 132, 168 1828.864376614 2945
5 | 49, 88, 120, 146, 178 1871.990616316 | 130397
2 | 93,155 1863.346730649 38
Boats 3 | 73,126, 167 1994.536306242 89
4 | 65, 114, 147, 179 2059.866280428 2931
5 | 91, 90, 126, 152, 183 2092.775965336 75879
2 | 94, 161 2069.510202452 38
Goldhill 3 | 83,126, 179 2220.372641501 88
4 169,102, 138, 186 2295.380469158 2775
5 | 63, 1, 117, 147, 191 | 2331.156597921 | 74674
2 | 85, 154 3974.738214185 39
Lake 3 | 78,140,194 4112.631097687 89
4 | 67,110, 158, 198 4180.886161109 2613
5 | 57, 88,127, 166, 200 | 4216.943583790 73019
2 | 125,178 1808.171050536 46
Aerial 3 | 109, 147, 190 1905.410606582 103
4 | 104, 134, 167, 202 1957.017965982 2670
5 |99, 123, 148, 175, 205 | 1980.656737348 99880

Since processing time for 5 thresholds is for Otsu’s method almost
2 minutes (on Intel i7-4770K CPU) and it increases 255 times for each
additional threshold, expected processing time for 6 thresholds would
be around 8 hours, for 7 thresholds around 2 months, for 8 thresholds
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around 40 years, for 9 thresholds around 10,000 years etc.

5 Algorithms for thresholding

Since computational time for finding multiple thresholds grows expo-
nentially with the number of desired thresholds, the exhaustive search
is not an option, as it was shown in the previous tables. Before swarm
intelligence nondeterministic metaheuristics became popular, other al-
gorithms were attempted in effort to tackle that hard optimization
problem. Papamarkos and Gatos in 1994 proposed three-stage al-
gorithm that included hill-clustering technique applied to the image
histogram in order to approximately determine the peak locations of
the histogram, approximation by rational functions of the histogram
segments between the peaks and finally the application of the one-
dimensional Golden search minimization algorithm [3]. Different ap-
proach was proposed by Yin and Chen in 1997. They proposed an
iterative scheme that starts with a bi-level thresholding and uses the
initial results to obtain higher-order thresholds [4].

5.1 Nature-inspired algorithms

These early attempts were soon overtaken by number of nature inspired
algorithms well suited for such hard problems. Swarm intelligence was
still in its infancy, so other older nature inspired algorithm dominated
at first. Genetic algorithms are among the oldest nature inspired al-
gorithms. Yang et al. in 2003 developed a relative entropy multilevel
thresholding method based on genetic algorithm where the relative en-
tropy was treated as the fitness function for the genetic algorithm [5].
The use of genetic algorithms for the multilevel thresholding continues,
so Hammouche et al. proposed the method that combines a genetic al-
gorithm with a wavelet transform [6]. It uses lower resolution version
of the histogram and corresponding thresholds are later projected onto
the original space. Manikandan et al. in 2014 used real coded genetic
algorithm with simulated binary crossover based multilevel threshold-
ing for the segmentation of medical brain images [7].
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Other interesting nature inspired algorithms were used for the dig-
ital image multilevel thresholding. Oliva et al. introduced multi-
level thresholding algorithm based on the harmony search evolution-
ary method which is inspired by musicians improvising new harmonies
while playing [8]. Sun and Zhang used the improved variant of the
gravitational search algorithm strengthened with genetic algorithm for
ability to achieve generation jumping when getting stuck at local op-
tima [9]. Oliva et al. proposed a version of electromagnetism-like evo-
lutionary method which mimics the attraction-repulsion mechanism
among charges to evolve the members of a population. This approach
obtained good results on both objective funtions, Kapur’s and Otsu’s
[10].

Differential evolution is a very successful, also rather old, nondeter-
ministic mataheuristic widely applied to many different optimization
problems. It was also successfully applied to multilevel image thresh-
olding. Sarkar and Das used differential evolution algorithm with 2D
histogram based approach and obtained superior results compared to
genetic algorithm, particle swarm optimization, artificial bee colony,
and simulated annealing. Berkley segmentation data set (BSDS300)
with 300 distinct images was used for testing [11]. Charansiriphaisan
et al. showed that ordinary differential evolution fails when the num-
ber of thresholds is greater than 12. They introduced an improved
differential evolution using a new mutation strategy to overcome this
problem. Their tests were conducted on 20 real images and the number
of thresholds varied from 2 to 16 [12]. Ouadfel and Meshoul conducted
a comprehensive comparative study by investigating the potential of
the differential evolution algorithm compared to two other bio-inspired
algorithms: artificial bees colony and particle swarm optimisation [13].

5.2 Older swarm intelligence algorithms

Ant colony optimization is the oldest swarm intelligence algorithm. It
was used for multilevel thresholding in a number of papers by Liang,
Yin et al. They proposed a hybrid optimization scheme based on an
ant colony optimization algorithm with the Otsu and Kittler’'s meth-
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ods, where Otsu’s method was more successful [14]. In another article
they combined parametric and non-parametric approaches. An ant
colony optimization algorithm considered the non-parametric objec-
tive between-class variance while the expectation-maximization (EM)
algorithm focused on the parametric objective overall fitting error of
probability distributions [15].

Particle swarm optimization is old and most used swarm intelli-
gence algorithm. Yin used recursive programming technique which
reduces computing time for minimum cross entropy thresholding objec-
tive function and then applied particle swarm optimization algorithm
for searching the near-optimal thresholds [16]. Convergence of the pro-
posed method was analyzed mathematically. Liu et al. proposed the
modified adaptive particle swarm optimization algorithm with dynamic
population strategy that enables the population size to vary at run
time. It can increase when the swarm converges and decrease when the
swarm disperses [17]. Kurban et al. presents a comparison of evolu-
tionary and swarm-based optimization algorithms for multilevel color
image thresholding problem. Evolution strategy, genetic algorithm,
differential evolution, adaptive differential evolution and swarm-based
algorithms such as particle swarm optimization, artificial bee colony,
cuckoo search and differential search algorithm have been tested and
compared using Kapur’s entropy as the fitness function to be maxi-
mized. Swarm algorithms gave better results but were slower [18]. Liu
et al. presented another version of modified particle swarm optimiza-
tion algorithm that employs two new strategies to improve the perfor-
mance of original particle swarm optimization: adaptive inertia and
adaptive population. Adaptive inertia allows inertia weight to change
with the searching state, which helps the algorithm to increase search
efficiency and convergence speed. Adaptive population strategy keeps
the population size also variable which mainly helps the algorithm to
jump out of local optima. The searching state is estimated as explo-
ration or exploitation according to whether the best so far solution
been updated in number of consecutive generations or not [19].

Artificial bee colony is one of the recent and very successful swarm
intelligence metaheuristics. Horng applied it to the maximum entropy
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thresholding and compared the results to the particle swarm optimiza-
tion, the hybrid cooperative-comprehensive learning based PSO algo-
rithm, the Fast Otsu’s method and the honey bee mating optimization.
Quality of results was similar, but speed of convergence was better for
the artificial bee colony algorithm [20]. Zhang and Wu used artificial
bee colony to prove that Tsallis entropy as a general information the-
ory entropy formalism may be better for thresholding than Shannon
entropy [21]. Akay compared two successful swarm-intelligence-based
global optimisation algorithms, particle swarm optimisation and arti-
ficial bee colony for finding the optimal multilevel thresholds. Kapur’s
entropy and between-class variance have been used as fitness functions
[22]. Charansiriphaisan et al. analyse and discuss a family of artificial
bee colony algorithms: the standard ABC, ABC/best/1, ABC/best/2,
IABC/best/1, IABC/rand/1, and CABC, and some particle swarm
optimization-based algorithms for searching multilevel thresholding.
The experimental results showed that IABC/best/1 outperformed the
other techniques [23]. Osuna-Enciso et al. used the method based on
the mixture of Gaussian functions to approximate the 1D histogram
of a gray level image and whose parameters are calculated using three
nature inspired algorithms: particle swarm optimization, artificial bee
colony optimization and differential evolution [24].

Honey bee mating is another swarm intelligence algorithm based on
bees. Horng applied it to the minimum cross entropy thresholding and
compared it to the exhaustive search, the particle swarm optimization
and the quantum particle swarm optimization [25]. Horng also applied
honey bee mating algorithm to the maximum entropy thresholding [26].

Bacterial foraging algorithm, glowworm swarm optimization, seeker
optimization alorithm and shuffled frog-leaping algorithm are examples
of not so widely used metaheuristics, nevertheless successful for some
applications. Sathya and Kayalvizhi used bacterial foraging algorithm
for multilevel thresholding. They applied Kapur’s and Otsu’s objective
functions and the feasibility of the proposed technique has been tested
on ten standard test images and compared with particle swarm opti-
mization algorithm and genetic algorithm [28]. Same authors improved
the global searching ability and convergence speed of the bacterial for-
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aging algorithm by allowing the best bacteria among all the chemotac-
tic steps to be passed to the subsequent generations [29]. Luo et al.
tested glowworm swarm optimization for the Otsu based thresholding
[30], while Tuba and Brajevic implemented the modified human seeker
optimization algorithm [27]. Horng applied the shuffled frog-leaping
algorithm to the minimum cross entropy thresholding [31], as well as
to the maximum entropy thresholding [32]. Compared to the honey
bee mating optimization, the firefly algorithm, the particle swarm op-
timization, the hybrid cooperative-comprehensive learning based PSO
algorithm and artificial bee colony algorithm they showed great poten-
tial.

5.3 Recent swarm intelligence algorithms

Cuckoo search is one of the latest swarm intelligence algorithms, cre-
ated by Yang. Agrawal et al. implemented cuckoo search for multilevel
thresholding and the results were compared with that of bacteria forag-
ing optimization, artificial bee colony algorithm, particle swarm opti-
mization and genetic algorithm [33], while Panda et al. introduced new
theoretical formulation for objective functions based on edge magnitude
of an image. The gray level co-occurrence matrix (second order statis-
tics) of the image was used for obtaining multilevel thresholds by opti-
mizing the edge magnitude using cuckoo search technique [34]. Bhan-
dari et al. used cuckoo search algorithm and wind driven optimization
for multilevel thresholding using Kapur’s entropy. Experimental results
have been examined on standard set of satellite images using various
numbers of thresholds [35]. Brajevic and Tuba [36] provided compre-
hensive analysis of the cuckoo search and firefly algorithms for Kapur
and Otsu objective functions and compared results with a number of
other optimization algorithms that included differential evaluation and
particle swarm optimization. Roy et al. concentrated on the minimum
cross-entropy criterion for image segmentation and cuckoo search al-
gorithm has been compared against old genetic algorithms and PSO
[37].

Firefly is also one of the latest swarm intelligence algorithms created
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by Yang. Horng and Liou tested firefly algorithm for minimum cross
entropy thresholding and compared it to the exhaustive search, the
particle swarm optimization, the quantum particle swarm optimization
and honey bee mating optimization [38]. Brajevic and Tuba, as men-
tioned before, also improved results for this algortihm [36]. Raja Et al.
implemented histogram based multilevel thresholding using Brownian
distribution guided firefly algorithm. A bounded search technique was
also included to improve the optimization accuracy with fewer itera-
tions. Otsu’s between-class variance objective function was maximized
[39].

Bat algorithm is the latest swarm intelligence algorithm created by
Yang. Alihodzic and Tuba were the first to implement bat algorithm for
multilevel thresholding. Results were very good and they modified bat
algorithm to further improve its performance [40]. Both, Kapur’s and
Otsu’s criteria were used and exhaustive search was performed for 2,
3, 4, and 5 thresholds. The testing was done on the same 6 benchmark
images used in [36]. All these swarm intelligence algorithms required
less that 0.1 sec of computational time for 5 thresholds and could easily
be applied to any size problem, with result almost always equal to re-
sults of exhaustive search i.e. global optimum. The proposed improved
bat algorithm, by taking some features of the DE and ABC algorithms,
obtained the best results compared to the rest of algorithms. It actu-
ally achieved the best result for both, mean value and variance, for all
tested cases and can be considered the state-of-the-art for this area.

Table 3 shows computational times and average required iterations
for 6 tested images and 6 tested algorithms for Kapur’s method. Most
significant conclusions concerning the convergence speed of the tested
algorithms for Kapur’s method are shown in Table 4.
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Table 3. Mean of the CPU times (in milliseconds) and mean of the

iteration numbers for the PSO, DE, CS, FA, BA and IBA based on
Kapur’s entropy criterion for six test images over 50 runs

Alg. | K Barbara Living room Boats
M time (ms) | M iter | M time (ms) | M iter | M time (ms) | M iter
2 2.18 9.22 102.82 | 1165.14 3.08 11.84
PSO 3 3.30 | 14.28 21.96 | 218.56 16.23 | 136.58
4 49.00 | 495.36 77.23 | 853.62 123.62 | 1367.86
5 88.16 | 1050.8 153.53 | 1725.22 74.46 | 814.22
2 3.56 | 14.59 4.34 18.92 3.38 16.92
DE 3 6.3 30.0 8.02 70.60 8.84 43.32
4 24.46 | 240.68 33.62 | 32291 46.92 | 477.16
5 47.8 | 527.96 77.14 | 801.21 65.48 | 683.29
2 71.04 | 194.54 53.30 | 129.84 53.84 | 135.58
cs 3 150.71 | 420.42 125.48 | 322.42 128.92 | 330.22
4 189.31 | 518.58 222.48 570.6 170.28 | 436.02
5 301.65 | 786.64 499.42 | 1303.8 247.15 | 631.36
2 15.01 | 11.96 17.02 11.9 16.39 12.32
FA 3 34.07 | 29.82 37.24 29.7 36.24 29.24
4 43.30 38.6 50.25 77.9 54.68 117.8
5 50.15 | 44.04 104.74 | 515.06 76.22 | 241.94
2 1.78 2.04 96.82 | 722.92 24.17 | 142.96
BA 3 2.52 6.74 89.78 734.8 64.96 | 421.48
4 40.2 | 146.46 124.16 | 1098.72 115.34 | 969.66
5 60.9 | 412.92 175.32 | 1718.82 98.42 | 785.04
2 2.12 9.14 6.34 25.14 5.36 10.02
IBA 3 3.84 16.8 5.3 22.8 5.5 22.4
4 7.16 | 26.26 9.92 35.48 10.3 43.3
5 8.66 | 40.06 24.7 | 134.38 14.4 50.9
Ale. K | Goldhill Lake Aerial
M time (ms) | M iter | M time (ms) | M iter | M time (ms) | M iter
2 2.54 8.84 241 8.86 2.62 10.7
PSO 3 3.18 | 13.54 3.65 14.58 3.24 13.9
4 10.22 | 97.86 26.99 | 295.76 4.03 19.76
5 23.56 | 258.5 77.64 | 893.98 58.54 | 695.92
2 2.15 16.44 5.0 15.74 3.81 17.01
DE 3 7.94 | 69.30 6.24 30.04 6.51 30.96
4 48.36 | 125.48 22.12 | 165.08 14.12 | 124.56
5 22.2 | 116.28 55.9 | 603.01 56.38 | 624.16
2 82.29 | 209.48 70.48 | 183.36 56.32 | 150.88
s 3 149.68 | 441.64 138.23 | 375.66 104.75 | 292.22
4 180.31 | 500.11 220.44 | 604.58 174.84 | 482.26
5 280.55 | 720.34 336.29 | 915.92 193.21 | 532.76
2 13.66 | 10.08 15.92 12.32 13.86 11.0
FA 3 32.08 | 28.66 34.56 29.42 32.83 29.18
4 41.11 36.6 43.84 37.66 43.18 38.96
5 48.95 | 42.01 50.31 43.6 50.46 45.46
2 2 1.8 1.6 1.74 1.22 5.06
BA 3 2.84 6.94 2.32 8.82 3.6 14.4
4 6.76 | 37.18 56.88 397.8 32.6 | 134.52
5 30.92 | 157.92 39.24 | 238.12 64.48 | 463.78
2 2.88 8.92 2.28 9.18 2.7 11.18
IBA 3 3.84 | 16.62 5 17.5 5.96 19.88
4 6.28 | 28.82 7.14 26.98 7.48 30.98
5 7.88 | 38.62 9.5 42.7 9.5 44.98
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Table 4. The number of evaluations for all test images and all threshold
values for Kapur’s method

Alg. | Trsh. 2 | Trsh. 3 | Trsh. 4 | Trsh. 5 | Total
PSO 1214 411 3130 5439 | 10194
DE 96 186 1456 3356 | 5094
CS 1004 2183 3112 4891 | 11189
FA 70 176 347 932 | 1525
BA 876 1193 2784 3777 | 8631
IBA 74 116 192 352 734

In Table 4 (for Kapur’s criterion) in each column labeled by
Thrs. k (k = 2,3,4,5) for each of the tested algorithms the sum
of mean number of required iterations for each test image is reported.
In the case of the FA and especially the IBA method, the number of
iterations does not grow rapidly with the increase of the number of
thresholds as is the case with the rest of algorithms. From Table 4
it can also be observed that the IBA converges in considerably less
iterations compared to the rest of algorithms.

6 Conclusion

In this short review of swarm intelligence algorithms application to the
multilevel image thresholding this hard optimization problem was de-
fined, together with appropriate objective functions, namely Kapur’s
entropy method and Otsu’s between-class variance method. The lit-
erature review of nature-inspired and specifically swarm intelligence
algorithms with the current state is given. Testing is usually done on
standard benchmark images and some synthetic images. There are
very few results for larger number of thresholds for which the exact
solutions from exhaustive search are not known.
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