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Abstract

Image Registration (IR) is an optimization problem comput-
ing optimal parameters of a geometric transform used to overlay
one or more source images to a given model by maximizing a simi-
larity measure. In this paper the use of bio-inspired optimization
algorithms in image registration is analyzed. Results obtained
by means of three different algorithms are compared: Bacterial
Foraging Optimization Algorithm (BFOA), Genetic Algorithm
(GA) and Clonal Selection Algorithm (CSA). Depending on the
images type, the registration may be: area based, which is slow
but more precise, and features based, which is faster. In this pa-
per a feature based approach based on the Scale Invariant Feature
Transform (SIFT) is proposed. Finally, results obtained using se-
quential and parallel implementations on multi-core systems for
area based and features based image registration are compared.

Keywords: image registration, clonal selection algorithm,
bacterial foraging algorithm, genetic algorithm, parallel comput-
ing.

1 Introduction

Image registration is the process of geometric overlaying or alignment
of two or more images of the same scene taken at different times, from
different viewpoints, and/or by different sensors [1]. Image registration
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(IR) is the first step in image fusion procedures, which combine relevant
information from one or more images to create a single image with more
informational content. Image registration and fusion methods are used
in remote sensing applications, geographic information systems, mul-
tispectral image analysis, medical image analysis and other domains.
Image fusion may be applied at pixel, feature or decision levels. In the
first case, when pixel level image fusion have to be applied, the input
images must be registered, because they may differ by the view angle,
subject position and also some geometric distortions may be added by
the capture device.

There are two different approaches in IR: area (pixel intensity)
based methods and feature-based methods [1]. The geometric trans-
form that must be computed may be global (for the entire image) or
local in case the images are locally deformed. The most frequently
used transforms are the shape preserving mappings (rotation, transla-
tion, scaling and the affine transform).

In this paper three different optimization methods are used for the
geometric transform parameters estimation: Bacterial Foraging Opti-
mization Algorithm (BFOA), Genetic Algorithm (GA) and Clonal Se-
lection Algorithm (CSA). The foraging model is suitable for optimiza-
tion problems because animals search for nutrients and try to avoid
noxious substances in a way that maximize their energy intake per
unit time spent foraging [2]. Computational methods can provide deci-
sion models for optimal foraging. The Bacterial Foraging Optimization
Algorithm (BFOA) proposed by Passino uses the Escherichia coli bac-
teria model because it is the most understood microorganism [2], [3],
[4]. BFOA is used in image processing to solve also other optimization
problems: edge detection in combination with a probabilistic derivative
technique [5]; fuzzy entropy based image segmentation [6]. A modified
version of BFOA used for multilevel thresholding segmentation was
compared to genetic algorithms and particle swarm optimization algo-
rithm [7]. Image registration BFOA based methods were proposed in
[8], [9] and [10] Parallel implementations of BFOA were proposed in [11]
and [12]. Genetic Algorithms are search techniques that emulate evo-
lutionary processes to solve optimization problems [13]. Like BFOA,
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GAs start with a population of individuals (points) in the problem do-
main and use these points to approximate the optimal solution. The
difference is that instead moving in the problem domain, GAs use the
recombination of two or more parents to produce offspring [14]. GAs
are often used in biomedical or remote sensing image registration [13].
The Clonal Selection Algorithm (CSA) belongs to the field of Artificial
Immune Systems that include computational methods inspired by the
mechanisms of the biological immune system [15]. Like GAs, CSA may
use binary solution coding and real coding. In [16] a real coded clonal
selection algorithm is used in electromagnetic design optimization. It
is also suitable for high dimensional optimization problems. CSA is
effective, in terms of accuracy, capable of solving large-scale problems
[17] and is comparable to other optimization algorithms. A perfor-
mance comparison of CSA and GA is presented in [18] and conclusion
is that each one has better performance depending on the function to
optimize.

The paper is organized as follows. In the second section the mea-
sures used for area based and features based IR methods are described.
In case of features based IR, a short description of SIFT transform
and procedure to find the SIFT key points correspondences are also
included. In the third section, the optimization algorithms – BFOA,
GA and CSA – are shortly presented. In the fourth section the pro-
posed parallel versions of BFOA and GA are presented. In the fifth
section the results obtained by applying the optimization procedures
for biomedical image registration are shown in both sequential and
parallel versions. The last section concludes the paper.

2 Image Registration

There are two different approaches in IR: area (pixel intensity) based
methods and feature-based methods [1]. Almost all methods consist of
four steps: feature detection, feature matching, transform estimation
and image resampling. The feature detection step is specific to feature
based registration methods and distinctive and stable features (points,
lines, contours, regions) have to be detected. Because the transform es-
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timation is performed while looking for the correspondent features, the
second and third steps are usually combined. In the image resampling
step, different interpolation methods are used: the nearest neighbor
function, the bilinear and bicubic functions, quadratic splines, cubic
and higher-order B-splines [1].

2.1 Area Based IR

In case of area based IR methods, to evaluate the similarity between
images the normalized correlation (NCC), the Fourier representation
or normalized mutual information (NMI) are used. In this study, the
Mutual Information is used to evaluate the similarity in case of area
based registration.

Mutual information is a robust measure used in image registration
[1], [10]. It evaluates the relative independence of two images and does
not depend on the specific dynamic range or intensity scaling of the
images. High values of mutual information indicate high dependence
between images. It is defined as

MI(A,B) = H(A) + H(B)−H(A,B), (1)

where H(.) is the image entropy and H(A,B) is the joint entropy of the
two images. Because mutual information based registration methods
are sensitive to changes that occur in the distributions as a result of
difference in overlapping regions, normalized mutual information can
be used:

NMI(A,B) =
H(A) + H(B)

H(A,B)
. (2)

Registration of two images A and B requires maximization of mutual
information, thus maximization of the entropies H(A) and H(B), and
minimization of the joint entropy H(A,B).

Usually, optimization in image registration means to maximize sim-
ilarity. If the optimization algorithm is oriented on cost function min-
imization, then the value of (−1) ∗MI is used to evaluate the cost of
the transform for a certain solution.
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2.2 Feature based IR

In case of feature based IR methods, spatial relations, invariant descrip-
tors, relaxation methods and multiresolution transforms (pyramids and
wavelets) are used. In this paper, the features based IR will use key
points determined using the Scale Invariant Feature Transform (SIFT)
[19], [20]. SIFT is used to select distinctive features, used in pattern
recognition, localization, 3D mapping, tracking and image registration.
It allows scale and rotation invariant features detection, with good re-
sults for affine distortions. The SIFT algorithm has 4 distinctive stages:
extrema detection in the scale space of the image, key points selection
and localization, key points orientation assignment and description gen-
eration. The identified features have to be distinctive.

a. Scale-space extrema detection. Key point candidates selection is
performed by finding the extrema of the Difference of Gaussians (DOG)
function computed as the difference of two scaled images separated by
a multiplicative factor k.

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) =
= (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (3)

where L(x, y, σ) is the scale space of the image I(x, y) obtained by con-
volving it with the Gaussian kernel G(x, y, σ). Extrema points depend
on the frequency sampling in the scaled space and the initial value of σ.

b. Key points localization. Key points are selected from the most
stable and accurately localized candidates. Key point candidates hav-
ing low contrast or strong edge response in one direction only are re-
moved. Because the candidates obtained in higher scales correspond
to several pixels in the original image, for an exact localization is per-
formed by computing the extrema points of the Taylor expansion up
to quadratic terms of the scale space function D(x, y, σ) [19].

c. Orientation assignment. To make key point descriptions invari-
ant to rotation, their orientations are computed using the orientation
histogram of local gradients of the closest smoothed image L(x, y, σ).
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The gradient magnitude and orientation are computed using pixel dif-
ferences:

m(x, y) =

=
√

(L(x− 1, y)− L(x + 1, y))2 + (L(x, y − 1)− L(x, y + 1))2, (4)

θ(x, y) = arctg
L(x, y + 1)− L(x, y − 1)
L(x + 1, y)− L(x− 1, y)

. (5)

Each point is added to the histogram weighted by the gradient mag-
nitude m(x, y) and by a circular Gaussian. To obtain a more accurate
orientation, the dominant peaks in the histogram are interpolated with
their neighbors.

d. Key point descriptor computing. The key point descriptor con-
tains 128 = 4× 4 × 8 values obtained using 16 orientation histograms
computed in a 4× 4 grid. Each histogram contains 8 orientation bins.
The descriptor is computed in a support window of 16 × 16 pixels
around the key point [19].

To evaluate the similarity between two images the key points cor-
respondences have to be established. The Euclidian distances between
SIFT descriptors of each key point from source image and those of the
model image are computed. By sorting the computed values for source
images key points, a match is established when the minimum computed
distance is less than a certain percentage from the second distance. In
our experiment a percent of 30% is used [20].

For IR, in the similarity evaluation step, the coordinates of the key
points in the source image are transformed accordingly to the values
of transform parameters and the sum of Euclidean distances between
positions of key points in the model and transformed source image is
used as similarity value [12].

3 Bio-inspired computing in IR

In this paper three different bio-inspired optimization methods are used
in order to compute the optimal geometric transform that allows the
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source image to overlay the model image: Clonal Selection Algorithm,
Bacterial Foraging Optimization Algorithm and Genetic Algorithm.

3.1 Clonal Selection Algorithm

The Clonal Selection Algorithm (CSA) belongs to the field of Artificial
Immune Systems which includes computational methods inspired by
the mechanisms of the biological immune system. A simplified descrip-
tion of the immune system is an organ system intended to protect the
host organism from the threats posed to it from pathogens and toxic
substances.

CSA is inspired by the Clonal Selection theory of acquired immu-
nity. It is a population based stochastic method with binary representa-
tion of variables [16] which may be used for multimodal optimization.
In some cases, also real encoding of variables may be used to solve
numerical problems.

Clonal Selection Algorithm can be listed as follows [18]:

1. Randomly generate a set of solution candidates: antibodies.

2. Compute the affinity values of each candidate solutions.

3. While the minimum error criterion is not met

3.1 Sort the antibodies starting from the lowest affinity. The
lowest affinity means better matching between antibody
and antigen.

3.2 Clone the better matching antibodies more with some
predefined ratio.

3.3 Mutate the antibodies with some predefined ratio. This
ratio is obtained in a way that better matching clones
mutated less and weakly matching clones mutated much
more in order to reach the optimal solution.

3.4 Compute affinity values of each antibody.
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It starts with an initial set of adaptive units: the general immune
cells. Each cell represents a possible solution of the problem and par-
ticipates in a competitive selection process. The algorithm involves the
selection of antibodies based on affinity against a pattern, computed by
a cost function. Selected antibodies are cloned and resulted clones are
subject of hypermutation. The hypermutation is inverse proportional
to computed clone affinity. The resulted set competes with the already
existing antibodies in the next generation of the evolution process. The
low-affinity population members are replaced by new randomly gener-
ated antibodies.

3.2 Bacterial Foraging Optimization Algorithm

The Bacterial Foraging Optimization Algorithm belongs to the field
of Bacteria Optimization Algorithms and Swarm Optimization. There
have been many extensions of the approach that attempt to hybridize
the algorithm with other Computational Intelligence algorithms and
Metaheuristics such as Particle Swarm Optimization, Genetic Algo-
rithm.

The bacterial foraging paradigm [2], [3], [4] is suitable as model
for optimization algorithms because animals / bacteria behavior is to
search for nutrients and avoid noxious substances to maximize their
energy. BFOA is based on a colony of evolving bacteria which are
replicated if have a good strategy to find nutrients or die in the other
case. Each bacterium is characterized by its position and quantity of
accumulated nutrients or healthy status.

In optimization problems, the possible solutions are encoded in the
bacteria position and the movement of the colony members tends to
approximate the optimal solution. The final solution is specified by
the position in which a bacterium is in the best healthy state or the
nutrients amount is the highest.

According to BFOA approach, the bacteria colony moves in the
n-dimensional space, where n is the optimization problem dimen-
sion and the quantity of nutrients / healthy status is described by
a cost function defined according to the optimization problem. Dur-
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ing its evolution, the bacteria colony proceeds through four foraging
steps: chemotaxis, swarming, reproduction and elimination-dispersal.
In the following paragraphs, the colony consists of S individuals;
P (j, k, l) = {θi(j, k, l), i = 1...S} is the position of colony members in
the jth chemotactic step, kth – reproduction step and lth – elimination-
dispersal step; J(i, j, k, l) – the cost of the ith bacterium in position
θi(j, k, l).

Chemotaxis. In the chemotactic step, a bacterium can move in
two ways: tumble and swim. First, a tumble is executed in a random
direction. The new position of the ith bacterium is:

θi(j + 1, k, l) = θi(j, k, l) + C(i)ϕ(i), (6)

where C(i) is the size of the chemotactic step and ϕ(i) is a unit length
of randomly generated direction [4]. The movement continues in the
same direction while the value of the cost function decreases but not
more than a maximum number of steps.

Swarming. The bacteria tend to swarm together if they have the
possibility to signal to each other the presence of a favorable or poi-
sonous environment (social behavior). The cell to cell attraction or re-
jection is modeled by modifying the value of the cost function J(i, j, k, l)
by a value that depends on the status of all the other bacteria in the
colony.

Reproduction. After a number of chemotactic steps, all bacteria
accumulate a quantity of nutrients that is usually expressed as the cost
function computed in the current position. Those which accumulated
a greater quantity of nutrients are in a healthier state and split into
two bacteria. Those which accumulated a smaller amount of nutrients
die. In BFOA, to keep constant the size of the colony, the number of
bacteria which split is equal to the number of bacteria which die. The
new bacteria are created without mutation in the same position as the
parent bacteria [4].

Elimination and Dispersal. After a number of reproduction steps,
with a specified probability Ped, some bacteria are removed from colony
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(elimination) regardless their healthy state and new bacteria are cre-
ated in random positions (dispersal) [4].

The optimization algorithm starts with a colony of S bacteria placed
in randomly generated positions. The evolutionary process consists of
Ned elimination-dispersal steps, each of these consists of Nre reproduc-
tion steps and each reproduction step consists of NC chemotactic steps.
In each chemotactic step a bacterium may do at most NS swarming
steps while the cost function value decreases.

Bacterial Foraging Optimization Algorithm can be listed as follows:

Initialize bacteria colony
for l = 1 to Ned (elimination dispersal loop)

for k = 1 to Nre (reproduction loop)
for j = 1 to NC (chemotaxis loop)

for i = 1 to S (each bacterium)
perform tumble and change bacteria position to θi(j+1, k, l)
compute cost function in new position
m = 0
while cost function value decreases and m < NS

perform swarm and change bacteria position
compute cost function in new position

end while
end for

end for
end for

end for

The position in which a bacterium reaches the lowest value of the
cost function (greatest healthy status) is the solution of the optimiza-
tion problem. In case of image registration, the size of the search space
is equal to the number of parameters of the geometric transform.
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3.3 Genetic Algorithms

Genetic Algorithm is an adaptive strategy used for global optimization
problems. Inspired by population genetics, GA is based on a set of
individuals in which the possible solutions of the problem are encoded
as chromosome strings. The general structure of GAs is: (a) selection
of the appropriate encoding method and fitness function, (b) genera-
tion of a random initial population and (c) the evolution loop of the
algorithm: fitness function evaluations, application of genetic operators
and creation of the new generation. After a number a generations, the
population is expected to contain chromosomes that approximate the
global maximum value of the fitness function. In each generation chro-
mosomes with best fitness values are retained and generate offspring
that replaces chromosomes with the lowest values of the fitness func-
tion. Genetic operators used for new generation creation are: selection,
crossover and mutation.

1. Randomly generate a set of individuals.

2. Compute fitness for all individuals.

3. While the stop criterion and maximum generation number are
not met
(Evolution loop)

3.1 Apply reproduction
3.2 Mutation
3.3 Crossover.

In [13] it is proposed an IR procedure using the string encoding of
chromosomes. The parameters of the geometric transform are encoded
as bit fields in a 32 bit value. In the procedure described below, the real
encoding is used and each chromosome is characterized by a number
of real values equal to the number of geometric transform parameters.
Discrete, average and simplex crossover operators are used depending
on user defined probabilities (pd, pa and ps).
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4 Parallel approach for bio-inspired IR

Analyzing the optimization procedures execution, it must be noticed
that most of the processing time is spent in the cost function evalua-
tions. In case of BFOA based registration, about 99% of the execution
time is spent in the cost evaluation function and more detailed, about
83% for mutual information computing and 16% of total time is spent
in when the geometric transform is applied to source image. The same,
in case of GA optimization: 96% of the execution time is spent in the
cost evaluation (81% to compute mutual information and 15% to ap-
ply the geometric transform). Because both BFOA and GA procedures
were executed using the sequential implementation, only about 25% of
the computing power is used in case of a Core i5 processor.

To optimize the IR procedure parallel implementations based on
the computing power of multi-core processors were proposed in [12].

A closer look at BFOA reveals that it contains 4 nested loops:
elimination/dispersal, reproduction and chemotaxis for each bacterium
in the colony. The body of the inner loop is executed Ned×Nre×NC×S
times, which may be a fairly large number. In fact, the cost function
evaluation is performed more than two times this number due to the
fact that each bacterium may perform more swim steps in a single
chemotactic step. While the calculations performed for each individual
bacterium in the inner loop are independent, the bacteria colony may
perform the chemotactic steps simultaneously.

In case of GA optimization, the cost function evaluation is called
from two different places. First, it is called from the main evolution
loop of the algorithm (about 41% of execution time) only for the new
created chromosomes evaluation, and second, in the simplex crossover
function (about 53% of execution time). In the first case, the cost
function is called for all not already evaluated chromosomes, so this
task is easily parallelized. In case of simplex crossover that involves
more than one chromosome, the crossover function will be executed in
parallel for each group of chromosomes [12].

The IR procedure that uses the Clonal Selection Algorithm was
not parallelized because there are few tasks completely independent,
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suitable for parallel execution.
The parallel implementation was evaluated on an Intel Core i5 3.10

GHz processor and is detailed in the next section.

5 Experiments

In this section a comparison of results obtained using image registra-
tion procedures based on Bacterial Foraging Optimization Algorithm,
Clonal Selection Algorithm and Genetic Algorithm is presented. The
optimization procedures were applied for area based registration and
features based registration. In the second case the SIFT features are
used.

The image registration procedure was tested on a large set of DI-
COM medical images from a database available at http://www.osirix-
viewer.com/datasets/ [21]. Below, only the results obtained using the
Brainix image as model are described. It is a gray level image (8 bits
per pixel) and size 256× 256 pixels. Brainix is a MR image of a brain
tumor.

The image registration procedure was applied also to the image
after it was modified by adding “salt & pepper” noise.

Figure 1. Original image BRAINIX (from [21])
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The source images were obtained by applying a rotation (angle
θ = 10◦) against the rotation center (cx = −20 and cy = 20) followed
by an isotropic scaling (scale = 1.2). While the transform is defined
by 4 parameters, the search space in the optimization problem is R4.
The actual value of the transform matrix is

T =

=




α β (1− α) cx − β cy

−β α β cx + (1− α) cy

0 0 1


=




1.1818 0.2084 −0.5322
−0.2084 1.1818 −7.8029
0 0 1


, (7)

where α = scale · cos θ and β = scale · sin θ.
The inverse transform matrix is

T−1 =




0.8207 −1.1447 −0.6924
1.1447 0.8207 6.4807
0 0 1




that corresponds to an affine transform with the following parameters:
θ′ = −10◦, c′x = −20, c′y = 20 and scale′ = 0.8333.

To evaluate the similarity between model image and registered
source image, the normalized mutual information is used.

The BFO parameters values used in the experiment are: bacteria
colony size S = 400; number of chemotactic steps Nc = 20; maximum
number of swim steps Ns = 10; number of reproduction steps Nre =
16; number of elimination / dispersal steps Ned = 2; probability of
dispersal Ped = 0.25; length of the move step Ci = 0.005.

In case of GA optimization, the real encoding is used, and each
chromosome is characterized by four real values representing the num-
ber of geometric transform parameters. Discrete, average and sim-
plex crossover operators are used depending on user defined probabil-
ities (pd, pa and ps). The GA parameters are: number of generations
nGen = 500 and number of chromosomes nCr = 1500. The crossover
probabilities are: pd = 0.05, pa = 0.15 and ps = 0.2.

Two different source images were used. The first one was obtained
by applying the transform described above to the model image. The
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second source image was obtained from the first one by applying “salt
& pepper” noise. The signal-to-noise ratio in these images is about
−1 dB.

In Figure 2, source images and some samples of registered images
are presented.

In Tables 1 and 2 the results of both sequential and parallel area
based registration are presented. The column ‘# cost eval’ shows the
total number of cost function evaluations; the column ‘best cost eval’
shows the cost function evaluation in which the best value was obtained;
column ‘ex MI’ (expected MI) shows the expected cost value obtained
by measuring the similarity between model image and the source image
after the computed inverse transform was applied; column ‘c MI’ (com-
puted MI) shows the cost value obtained by measuring the similarity
between model image and source image after the approximated inverse
transform was applied. In both tables 1 and 2, ‘Brainix’ denotes the
source image and ‘Brainix+SP’ denotes the source image altered by
adding the “salt & pepper” noise.

Table 1. Results of area based image registration, sequential version

Mode Image Opt. Time
(sec)

# cost
eval

best
cost
eval

ex MI c MI

Seq Brainix BFOA 811.3 591686 469054 1.3218 1.3202
GA 135.8 99148 63176 1.3218 1.3215

Brainix+
SP

BFOA 820.9 563561 546678 1.1394 1.1382

GA 140.2 95371 60.348 1.1402 1.1387
Paral-
lel

Brainix BFOA 253.4 595365 249742 1.3218 1.3177

GA 46.6 98894 79889 1.3218 1.3191
Brainix+
SP

BFOA 254.9 566433 269008 1.1398 1.1390

GA 47.4 95042 86093 1.1398 1.1388
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a. Source image, no noise added b. Registered image

c. Source image, salt and pepper
noise added, SNR = 1.03 dB

d. Registered image

Figure 2. Results of image registration procedure
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As noted in Table 1, the GA optimization requires about 6 times
less cost function evaluations and this is the reason for which the IR
procedure is faster in this case. In case of area based IR, the Clonal
Selection Algorithm was not used for optimization because it requires
about 100 times more cost function evaluations, consequently the reg-
istration is not achieved within a reasonable time interval. In fact,
in case CSA is used as optimization method, the duration of features
based registration is comparable to duration of area based registration
using BFOA / GA as optimization algorithm.

On the Intel Core i5 processor which was used in experiments,
the parallel implementations of the optimization procedures are about
three times faster than the sequential versions, while the number of
cost evaluations in close.

The expected value of similarity measure in Table 2 has different
values due to the “salt & pepper” noise randomly added into images.
The best values were obtained using sequential GA optimization in
case of ‘Brainix’ image and parallel BFOA optimization in case of
‘Brainix+SP’ image.

In Table 2 the parameters of the approximated geometric transform
are presented for both sequential and parallel implementation. The
values determined by computing the inverse geometric transform are:
θ′ = −10◦, c′x = −20, c′y = 20 and scale′ = 0.8333.

In Table 3 the results of features based IR are presented. While
in this case the cost function evaluation requires applying the approx-
imated inverse transforms to a small number of pixel coordinates, the
registration process is faster. The last column of Table 2 contains the
number of correspondent key points between model and source images,
i.e. the number of key points for which the geometric transform must
be applied. If source image is not altered by noise, there are 188 cor-
respondent key points. In case the source image is randomly altered
by noise, the number of correspondences is between 11 and 16. But,
features based registration is not a solution for noisy images, by in-
creasing the noise in the source images, it is possible to don’t find any
correspondent key points pairs. This is the case for images obtained
using different types of sensors or acquisition methods.
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Table 2. Parameters of inverse affine transform computed using area
based registration

Mode Image Opt. c′x c′y θ′ scale′

Seq Brainix BFOA -19.69 20.17 -10.02 0.83
GA -20.10 20.12 -9.99 0.83

Brainix+SP BFOA -20.40 18.79 -9.98 0.83
GA -19.12 19.35 -10.07 0.83

Parallel Brainix BFOA -20.16 19.90 -9.98 0.83
GA -20.26 20.30 -9.98 0.83

Brainix+SP BFOA -19.85 19.41 -9.99 0.83
GA -19.10 20.13 -10.06 0.83

In Table 4 the values of the approximated transform parameters
are presented. It must be noticed that in two cases the results are not
so near to expected values: when the noisy image ‘Bainix+SP’ is used
as source and in case CSA is used as optimization method.

The charts presented in Figure 4 show compare the sequential and
parallel execution time for all the experiments presented before. It is
obvious that for long tasks, as area based IR, the gain obtained by
using the parallel versions is greater. For short tasks, as features based
IR, the speedup is lower. This happens because the processing time
becomes comparable to that of the synchronization tasks required by
the parallel implementation and also because shorter time intervals are
affected by all other processes and events that occur in the operating
system. The results obtained in case of CSA optimization are not
included in charts because in this case the duration was too long.

In Figure 4, the parallelization evaluation is presented. The most
common evaluation of parallel algorithms is performed using the par-
allel efficiency E = ts

tp×n , where ts is the time used by the sequential
version of the algorithm, tp is the processing time for the parallel ver-
sion and n is the number of used processors. As it was already said,
better efficiency (> 74%) is obtained for area based IR parallelization
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Table 3. Results of features based image registration, sequential version

Mode Image Opt. Time
(sec)

# cost
eval

best
cost
eval

ex MI c MI key-
points

Seq Brainix BFOA 1.9 660726 391414 1.3218 1.3145 188
GA 2.4 118359 17701 1.3218 1.3173 188
CSA 353.3 73240500 - 1.3218 1.2948 188

Brainix BFOA 0.7 662137 378711 1.1400 1.1365 15
+SP GA 2.2 111775 40274 1.1405 1.1240 11

CSA 191.5 65687973 - 1.1392 1.1187 12
Paral-
lel

Brainix BFOA 0.9 658684 636958 1.3218 1.3171 188

GA 2.2 115568 39971 1.3218 1.3168 188
CSA 139.9 71315426 - 1.3218 1.2916 188

Brainix BFOA 0.6 640345 528443 1.1398 1.1234 12
+SP GA 2.1 104900 26898 1.1389 1.1174 16

CSA 102.9 70095946 - 1.1405 1.1305 11

which has a longer execution time. In case of CSA optimization used
for features based IR, the efficiency is between 47% and 68% which
may lead to the conclusion that the procedure was not completely par-
allelized. In all other cases (BFOA and GA for features based IR), the
lower parallelization efficiency is not relevant, while the execution time
is too short.

The image registration procedures were implemented and tested in
an image processing framework developed by authors of this paper. It
is implemented in C++ as a Windows application and uses OpenCV
library [22] for images manipulation and the parallel programming sup-
port available in Microsoft Visual Studio 2010 [23].

6 Conclusions

This paper is focused on the use of some bio-inspired optimization
methods for medical images registration. Three different approaches
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Table 4. Parameters of inverse affine transform computed using fea-
tures based registration

Mode Image Opt. c′x c′y θ′ scale′

Seq Brainix BFOA -20.85 20.14 -9.93 0.83
GA -19.81 20.10 -9.99 0.83
CSA -20.35 19.15 -9.97 0.83

Brainix+SP BFOA -20.01 20.20 -9.97 0.83
GA -22.48 19.33 -9.96 0.84
CSA -17.99 16.93 -10.22 0.84

Parallel Brainix BFOA -19.88 19.54 -9.99 0.83
GA -19.82 20.01 -9.99 0.83
CSA -17.33 20.11 -10.16 0.83

Brainix+SP BFOA -25.43 21.66 -9.45 0.83
GA -11.73 19.72 -10.77 0.83
CSA -20.31 20.64 -9.85 0.83

are presented: Bacterial foraging optimization algorithm, genetic algo-
rithm and clonal selection algorithm. Since image registration may be
a time consuming task, different optimization strategies were applied:
the use of scale invariant features transform key points and full usage
of computing power of multi-core processors. The obtained results may
be summarized as follows:

• BFOA and GA allow to obtain comparable results in terms of
registration precision;

• GAs perform faster the image registration about three times
faster than BFOA;

• CSA is too slow for features based registration (comparable to
area based IR combined with BFOA and GA) and also with lower
precision, provided that algorithm’s parameters were not enough
tuned;
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Figure 4. Parallel efficiency obtained in all experiments

• Even the features based IR performs faster, it’s usage for multi-
modal images is limited by the procedure’s capability to find com-
mon and stable features in the images to be registered;

• Parallel implementations are suitable in image registration, while
cost function evaluations are independent and time consuming
tasks.
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