
Computer Science Journal of Moldova, vol.22, no.2(65), 2014

Detection of Blood Vessels in

Retinal Fundus Images∗

Invited Article

Faraz Oloumi, Ashis K. Dhara,
Rangaraj M. Rangayyan@, Sudipta Mukhopadhyay

Abstract

Detection of blood vessels in retinal fundus images is an im-
portant initial step in the development of systems for computer-
aided diagnosis of pathologies of the eye. In this study, we per-
form multifeature analysis for the detection of blood vessels in
retinal fundus images. The vessel detection techniques imple-
mented include multiscale vesselness measures, Gabor filters, line
operators, and matched filters. The selection of an appropriate
threshold is crucial for accurate detection of retinal blood vessels.
We evaluate an adaptive threshold selection method along with
several others for this purpose. We also propose a postprocess-
ing technique for removal of false-positive pixels around the optic
nerve head. Values of the area under the receiver operating char-
acteristic curve of up to 0.961 were obtained using the 20 test
images of the DRIVE database.
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1 Introduction

Retinal fundus images are used by ophthalmologists for the diagnosis
of several disorders, such as diabetic retinopathy (DR), retinopathy of
prematurity, and maculopathy [2–4]. Detection of blood vessels is an
important initial step in the development of computer-aided diagnostic
(CAD) systems and analysis of retinal fundus images. It is possible to
detect other anatomical landmarks such as the optic nerve head (ONH)
and the macula in the retina with respect to the vascular architecture.
The location and certain characteristics of such landmarks can help in
the derivation of features for the detection of abnormalities. A variety
of methods have been proposed for the detection of blood vessels; some
of these methods are reviewed in the following paragraphs.

Chaudhuri et al. [5] proposed an algorithm based on two-dimensional
(2D) matched filters for vessel detection. Their method is based on
three assumptions: (i) the intensity profile of a vessel can be approx-
imated by a Gaussian function, (ii) vessels can be approximated by
piecewise linear segments, and (iii) the width of vessels is relatively
constant. Detection of blood vessels was performed by convolving the
given image with the matched filter rotated in several orientations.
The maximum filter response over all orientations was assigned to each
pixel.

Staal et al. [6] extracted the ridges in the images which roughly
coincide with the vessel centerlines. In the next step, image primitives
were obtained by grouping image ridges into sets that model straight-
line elements, which were used to partition the image by assigning each
pixel to the closest primitive set. Feature vectors were then computed
for every pixel using the characteristics of the partitions and their line
elements. The features were used for classification using a k-nearest-
neighbor classifier. Staal et al. achieved an area under the receiver
operating operating characteristic (ROC) curve of Az = 0.9520 with
20 images of the test set of the DRIVE database [7].

Soares et al. [8] applied complex Gabor filters for feature extraction
and supervised classification for the detection of blood vessels in retinal
fundus images. In this method, the magnitude outputs at several scales

156



Detection of Blood Vessels in Retinal Fundus Images

obtained from 2D complex Gabor filters were assigned to each pixel as a
feature vector. Then, a Bayesian classifier was applied for classification
of the results into vessel or nonvessel pixels. Soares et al. reported
Az = 0.9614 for the 20 test images of the DRIVE database.

Blood vessels can be considered as dark elongated curvilinear struc-
tures of different width and orientation on a brighter background. Sev-
eral types of vesselness measures have been developed for the detection
of blood vessels based on the properties of the eigenvalues of the Hessian
matrix computed at each pixel. Because blood vessels are of varying
width, different scales are used to calculate the eigenvalues and the
maximum response at each pixel over all scales is used for further ana-
lysis. Frangi et al. [9] and Salem et al. [10] proposed different vesselness
measures to highlight vessel-like structures. Wu et al. [11] applied the
vesselness measure of Frangi et al. to the 40 training and testing images
of the DRIVE database and reported Az = 0.9485. Salem et al. [10]
reported Az = 0.9450 using 20 images of the STARE database [12].

Lupaşcu et al. [13] performed multifeature analysis using previously
proposed features [6,8,9,14,17], combined with new features that rep-
resent information about the local intensity, the structure of vessels,
spatial properties, and the geometry of the vessels at different scales
of length. They used a feature vector containing a total of 41 features
obtained at different scales to train a classifier, which was then applied
to the test set. They reported Az = 0.9561 using the 20 test images of
the DRIVE database.

Rangayyan et al. [15] performed multiscale analysis for the detec-
tion of blood vessels using Gabor filters and classified pixels using mul-
tilayer perceptron (MLP) neural networks and reported Az of 0.9597
with the test set of the DRIVE database. Oloumi [16] used multi-
scale Gabor filter magnitude responses, coherence, and the inverted
green channel as features to train an MLP and achieved an Az value
of 0.9611 using the test set of the DRIVE database.

Other available methods in the literature that do not employ a
filtering technique for the detection of the blood vessels include, but are
not limited to, segmentation using multiconcavity modeling [18]; fractal
analysis [19]; mathematical morphology and curvature evaluation [20];
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and geometrical models and analysis of topological properties of the
blood vessels [21].

In the present work, we perform vessel segmentation by multifea-
ture analysis, using multiscale Gabor filters as proposed by Rangayyan
et al. [15], multiscale vesselness measures as proposed by Frangi et
al. [9] and Salem et al. [10], matched filters as proposed by Chaudhuri
et al. [5], line operators [22], and a gamma-corrected version of the
inverted green channel. Thresholding and binarization of the result
of vessel detection is a crucial step for further analysis of the char-
acteristics of blood vessels such as thickness and tortuosity [23]; we
propose an adaptive thresholding technique by analyzing the intensity
values of the boundary pixels of retinal blood vessels and compare the
results against several automated thresholding methods. Most of the
reported methods for the detection of blood vessels cause false-positive
(FP) pixels associated with the boundary of the ONH. We propose a
postprocessing technique for removal of FP pixels around the ONH.

2 Database of Retinal Images

In this work, retinal fundus images from the DRIVE database were
used to assess the performance of the methods. The images of the
DRIVE database [6, 7] were acquired during a screening program for
DR in the Netherlands and show signs of mild DR. The images have
a size 565× 584 pixels and a field of view (FOV) of 45◦. The DRIVE
images are considered to be low-resolution retinal images; the images
have an approximate spatial resolution of 20 µm per pixel. The DRIVE
database consists of 40 images, which are labeled in two sets of 20
images for training and testing. A manually segmented image (ground-
truth) of the vasculature is available for each image in the DRIVE
database. Figure 1 shows the original color image 12 of the DRIVE
database and its ground-truth image.
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(a) (b)

Figure 1. (a) Original color image 12 of the DRIVE database.
(b) Ground-truth of the image in part (a), as provided in the database.

3 Detection of Retinal Blood Vessels

In the present study, we review and implement several methods for the
detection of blood vessels and investigate their combined application
for multifeature analysis.

3.1 Vesselness Measures

Frangi et al. [9] defined a vesselness measure to detect pixels having
vessel-like structures based on the properties of the eigenvalues of the
Hessian matrix. A numerical estimate of the Hessian matrix, H, at
each pixel of the given image, L(x, y), is obtained as

H =




∂2L
∂x2

∂2L
∂x∂y

∂2L
∂y∂x

∂2L
∂y2


 . (1)

The entries of H can be obtained at multiple scales by convolving the
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image L(x, y) with the Gaussian kernel G(x, y; σ) of different scales σ,
defined as

G(x, y; σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
. (2)

The width of retinal blood vessels varies from 50 µm to 200 µm
in retinal fundus images, which translates to the range of about 2 to
10 pixels, given a spatial resolution of 20 µm for the DRIVE images.
Gaussian kernels can be used to generate a suitable scale space with an
amplitude range of σ related to the range of vessel width. Multiscale
derivatives of the image L(x, y) can be obtained by linear convolution of
the image with the scale-normalized derivatives of the Gaussian kernel
as ∂2L

∂x2 = L(x, y) ∗ σ2Gxx = Lxx , ∂2L
∂x∂y = ∂2L

∂y∂x = L(x, y) ∗ σ2Gxy =

Lxy = Lyx, and ∂2L
∂y2 = L(x, y) ∗ σ2Gyy = Lyy. Here Gxx, Gxy, and Gyy

are the second derivatives of the Gaussian kernel G, and the symbol
‘∗’ represents the 2D convolution operation.

The Hessian matrix is symmetrical with real eigenvalues. The signs
and ratios of the eigenvalues can be used as signatures of a local struc-
ture. Let λ1 and λ2 represent the eigenvalues of the Hessian matrix,
with the condition |λ2| ≥ |λ1|. The larger eigenvalue, λ2, corresponds to
the maximum principal curvature at the location (x, y). A larger value
of λ2 compared to λ1 represents a vessel-like structure. The eigenvalues
and eigenvectors of the Hessian matrix can be computed by solving the
following equation:

∣∣∣∣
Lxx − λ Lxy

Lyx Lyy − λ

∣∣∣∣ = 0, (3)

where λ represents the two eigenvalues λ1 and λ2. The eigenvalues λ1

and λ2 can be obtained as

λ1 =
Lxx + Lyy − α

2
, (4)

and

λ2 =
Lxx + Lyy + α

2
, (5)
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where α =
√

(Lxx − Lyy)
2 +4L2

xy. Based on the property of the eigen-
values of the Hessian matrix, Frangi et al. [9] defined a vesselness mea-
sure to highlight pixels belonging to vessel-like structures as

VF =





exp
(
− R2

β

2β2

)[
1− exp

(
− S2

2γ2

)]
if λ1, λ2 < 0,

0 otherwise,
(6)

where Rβ = λ1
λ2

, S =
√

λ1
2 + λ2

2 is the Frobenius norm of the Hessian
matrix, β = 0.5 (as used by Frangi et al. [9]), and γ is equal to one-half
of the maximum of all of the Frobenius norms computed for the whole
image. The Frobenius norm is expected to be low in background areas
where no vessels are present and the eigenvalues are low, because the
magnitude of the derivatives of the intensities will be small. On the
other hand, in regions with high contrast as compared to the back-
ground, the Frobenius norm will become larger, because at least one of
the eigenvalues will be large.

The vesselness measure proposed by Salem et al. [10] uses the eigen-
values of the Hessian matrix to detect the orientation of blood vessels.
Let ~e1 and ~e2 be the eigenvectors corresponding to the eigenvalues λ1

and λ2, respectively, and let θ1 and θ2 be the angles of the eigenvectors
with respect to the positive x-axis. The orientations of the eigenvec-
tors corresponding to the larger and smaller eigenvalues for every fifth
pixel are shown in Figure 2. It can be noted from Figure 2 that the
variation of the orientation of the eigenvectors corresponding to the
smaller eigenvalues is smaller inside the blood vessels as compared to
that outside the blood vessels. The eigenvectors corresponding to the
smaller eigenvalues are mainly oriented along the blood vessels; hence,
the angle θ1 is used to analyze the orientation of blood vessels. The
orientation of the eigenvector ~e1 can be represented as

θ1 = arctan
(
− 2Lxy

Lyy − Lxx + α

)
. (7)

Detection of blood vessels can be accomplished by assuming that
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(a) (b)

Figure 2. Orientation of the eigenvectors corresponding to (a) the
larger eigenvalue and (b) the smaller eigenvalue at each pixel for a part
of a retinal fundus image with parts of blood vessels. Straight lines
corresponding to the eigenvectors are shown for every fifth pixel. The
size of the image is 50× 50 pixels.

the maximum value of λ2 (λmax) over several scales of σ is at the center
of the vessel. Salem et al. [10] defined a vesselness measure as

VS =
λmax

θstd + 1
, (8)

where θstd is the standard deviation (STD) of θ1 over all scales used for
the pixel under consideration. The larger the value of VS for a pixel,
the higher the probability that the pixel belongs to a vessel.

In this work, the range of scales σ = [1, 6] with steps of 0.05 was
determined to be the most suitable range for the vesselness measures
of Frangi et al. and Salem et al. using the training set of the DRIVE
database, and was used for subsequent analysis. Note that the two ves-
selness measures implemented in this work perform multiscale analysis
by taking the maximum intensity value among all the available scales
of σ. The implementation of the method of Frangi et al. used in this
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work was provided by Dirk-Jan Kroon of University of Twente [36].
Figure 3 shows the magnitude response images of the result of ap-

plying the vesselness measures of Frangi et al. and Salem et al. to the
image in Figure 1 (a).

(a) (b)

Figure 3. Magnitude response images of the result of filtering the image
in Figure 1 (a) obtained using (a) vesselness measure of Frangi et al.
and (b) vesselness measure of Salem et al. Note that the result of the
method of Frangi et al. provides lower intensity values as compared to
the method of Salem et al. and the detected vessels may not be clearly
visible in the result.

3.2 Gabor Filters

Rangayyan et al. [15] applied multiscale Gabor filters for the detection
of blood vessels by considering the fact that blood vessels are elongated,
piecewise-linear, or curvilinear structures with a preferred orientation.
Gabor filters are sinusoidally modulated Gaussian functions that are
suitable for the analysis of oriented structures because they provide
optimal localization in both the frequency and space domains. The real
Gabor filter kernel oriented at the angle θ = −π/2 can be represented
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as [15]

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
cos(2πfox) . (9)

In this equation, the frequency of the modulating sinusoid is given
by fo, and σx and σy are the STD values in the x and y directions.
For simplicity of design, a variable τ is used to represent the average
thickness of the vessels to be detected. The value of σx is defined based
on τ as σx = τ

2
√

2 ln 2
and σy = lσx, where l represents the elongation of

blood vessels. A bank of K Gabor filters may be obtained by rotating
the main Gabor filter kernel given in Equation 9 over the range [−π/2,
π/2]. For a given pixel, the maximum output value over all K filters
is saved as the Gabor magnitude response at that particular pixel; the
corresponding angle is saved as the Gabor angle response.

Values of τ = 8 pixels, l = 2.9, and K = 180 were determined to
provide the best single-scale results, as determined using the training
set of the DRIVE database. Values of τ = 4, 8, and 12 were used
to perform multiscale and multifeature analysis as described in Sec-
tion 3.5. Figure 4 shows the magnitude and angle responses of Gabor
filters with τ = 8 pixels, l = 2.9, and K = 180 as obtained for the
image in Figure 1 (a). It is seen that the magnitude response is high
at pixels belonging to vessels and that the angle response agrees well
with the angle of the vessel at the corresponding pixel.

3.3 Line Operators

Line operators were proposed by Dixon and Taylor [24] and used by
Zwiggelaar et al. [25] for the detection of linear structures in mammo-
grams. The main line operator kernel detects horizontal lines. Assume
that N(x, y) is the average gray-level of M pixels along a horizontal
line centered at (x, y). Next, assume that S(x, y) is the average gray-
level of pixels in a square of width M pixels that is horizontally aligned
and centered at (x, y). The main line operator kernel is defined as
L(x, y) = N(x, y) − S(x, y). Detecting lines with various orientations
is achieved by rotating the main kernel. Let Lk(x, y) be the line opera-
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(a) (b)

Figure 4. (a) Gabor magnitude and (b) angle responses of the image
in Figure 1 (a). The Gabor angle information is shown for every fifth
pixel over a portion of the original color image.

tor kernel rotated to the angles αk = −π/2+πk/K, k = 0, 1, ..., K−1.
Given Wk(x, y) as the result of filtering the image, I(x, y), with
Lk(x, y), the orientation of the detected line is obtained as [22]

θ(x, y) = αkmax ,where kmax = arg{max[Wk(x, y)]}. (10)

The magnitude response of the result is obtained as Wkmax(x, y).
The line operator does not provide a specific parameter for scaling;
multiscale analysis is performed by applying the line operator to each
level of the Gaussian pyramid decomposition of the original image.

In the present work, values of M = 15 and K = 180 were de-
termined to provide the best results for detection of vessels using the
training set of the DRIVE database, and were employed for further
analysis. Figure 5 shows the magnitude response of line operators as
applied to the image in Figure 1 (a).
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Figure 5. Magnitude response of line operators for the image in Fig-
ure 1 (a), obtained using M = 15 and K = 180.

3.4 Matched Filters

The method of Chaudhuri et al. [5], as explained in Section 1, was
implemented in the present work for the detection of blood vessels.
The method assumes that blood vessels have a negative contrast with
respect to the background, so the Gaussian template will need to be
inverted. The main kernel of the matched filter is expressed as

M(x, y) = − exp
(−x2

/
2σ2

)
, for − L/2 ≤ y ≤ L/2, (11)

where L represents the length of the vessel segment that is assumed
to have a constant orientation and σ is the STD of the Gaussian. The
main kernel of the filter is oriented along the y-axis; in order to detect
blood vessels at different orientations, the main kernel is rotated at
multiple angles.

In this work, detection of blood vessels using matched filters is
performed by taking the maximum filter response of a bank of K = 180
filters over the range [−π/2, π/2] with L = 15 and σ = 1, as determined
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using the training set of the DRIVE database. Figure 6 represents
the magnitude response of matched filters obtained for the image in
Figure 1 (a).

Figure 6. Magnitude response of matched filters obtained using L = 15,
σ = 1, and K = 180 for the image in Figure 1 (a).

3.5 Multifeature Analysis

In the present work, various features are combined using pattern clas-
sification methods [multilayer neural networks (MNN)] in order to dis-
tinguish pixels belonging to blood vessels from the background. The
features used are:

• the vesselness measure of Frangi et al. [9],

• the vesselness measure of Salem et al. [10],

• the magnitude response of line operators [22],

• the magnitude response of matched filters [5],
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• the gamma-corrected [26] inverted green component, and

• the magnitude responses of Gabor filters for τ = {4, 8, 12} [15].

The inverted green (G) component of the RGB color space pro-
vides high contrast for blood vessels. Therefore, a gamma-corrected
version [26] of the inverted G-component image is also used as a fea-
ture in order to improve the result of classification of blood vessels.
The value of gamma used for gamma correction in this work is 2.4,
with the pixel values normalized to the range [0, 1].

All the MNNs used in this work for multifeature analysis contain
two hidden layers with 15 nodes per hidden layer. The number of
input layer nodes is equal to the number of features being used and
the output layer always contains one node. A tangent sigmoid (tansig)
function was used as the training function for each hidden layer and a
pure linear function was used at the output layer of the MNN. In each
case, the MNN was trained using 10% of the available training data.

Sequential feedforward feature selection was used to determine
which combination of the features listed above would provide the best
results for multifeature analysis; the feature selection method selected
all eight available features.

3.6 Thresholding for Segmentation of Vessels

The histogram of the intensity values of the result of vessel detection
is not bimodal with a clear separation of the pixels belonging to blood
vessels from the background pixels. Considering the ground-truth data
provided for the 20 training images of the DRIVE database within their
FOV, only 13% of an image is covered by vessel pixels. As a result,
thresholding the gray-scale output images of vessel detection methods
with high accuracy is a rather difficult task. Several automated thresh-
olding methods, including Otsu’s method [27], a moment-preserving
thresholding method [28], the Ridler-Calvard thresholding method [31],
the Rutherford-Appleton threshold selection (RATS) method [29], and
an entropy-based thresholding method [30] are explored in this work.
Additionally, it is possible to use a single fixed-value threshold for each
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single feature or the discriminant result of multifeature analysis, ob-
tained as the value of the point on the ROC curve that is closest to the
point [0, 1], with the ROC curve obtained by using the training set of
images.

Considering that the majority of the pixels in a retinal image are
background pixels and possess a low intensity value in the results of
vessel detection methods, it could be beneficial to select a binarization
threshold by analyzing only the pixels that belong to the boundaries
of the vessels. We propose an adaptive thresholding method in which
the boundaries of blood vessels are detected using Gabor filters with
a low value of τ = 3 pixels. The result is then thresholded at 0.2
of the normalized intensity to obtain the boundaries of blood vessels.
Morphological dilation is then applied to the binary image of the ves-
sel boundaries using a disk-shaped structuring element of radius two
pixels to identify the adjacent regions of boundaries of blood vessels.
The histogram of the pixels (with 25 bins) in the selected regions was
observed to have an abrupt change in the values for two adjacent bins.
The two adjacent bins with the largest probabilities of values are iden-
tified and their corresponding pixel intensity values are noted. An
adaptive threshold for each image is obtained as the average of the
intensity values corresponding to the two identified bins.

The performance of the proposed and selected thresholding tech-
niques was analyzed in terms of the sensitivity (SE), specificity (SP),
and accuracy (Acc) of the segmentation of blood vessels with reference
to the ground-truth images provided in the DRIVE database.

3.7 Postprocessing for Removal of FP Pixels Around the
ONH

In the results obtained using various vessel detection techniques, the
boundary and edges of the ONH are also detected since they represent
an abrupt change in intensity, i.e., an edge, which can lead to artifacts
(FP pixels) when the gray-scale results are thresholded. In the present
work, the FP pixels associated with the boundary of the ONH are
identified using an angular difference index (ADI), defined as [1]
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ADI = cos
[
θ(i, j)− γ(i, j)

]
, (12)

where θ(i, j) is the Gabor angle response and γ(i, j) is the radial angle
with respect to the center of the ONH, as shown in Figures 7(a) and
(b), respectively. The ranges of θ and γ are limited to [−π/2, π/2].
The values of ADI are computed for each pixel within the annular re-
gion limited by two circles of radii 0.75r and 2r, where r = 0.8 mm
is the average radius of the ONH [16]. The center of the ONH was
automatically detected using phase portrait analysis of the Gabor an-
gle response [32]. The pixels for which ADI is less than 0.15, i.e., the
difference between the Gabor angle and the radial angle is greater than
81◦, are removed from the output of the classifier, because they rep-
resent artifacts related to the ONH. This step may cause the loss of a
few pixels belonging to vessels.

(a) (b)

Figure 7. (a) Gabor angle response and (b) radial angle with respect
to the center of the ONH for the selected annular region.

4 Results

In order to obtain each feature mentioned in Section 3.5, the luminance
component, Y , of the Y IQ color space, defined as
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Y = 0.299R + 0.587G + 0.114B, (13)

where R, G, and B represent the red, green, and blue color components
in the RGB color space, respectively, was used as the input to the vessel
detection methods.

The performance of the proposed methods was tested with the set
of 20 test images of the DRIVE database. The training set of 20 images
was used to determine the best values for the parameters of the filters
(Section 3), to perform the training of the MNNs (Section 3.5), and to
determine a suitable threshold for segmentation of vessels (Section 3.6).
The ground-truth images of blood vessels were used as reference to
perform ROC analysis.

The results of detection of blood vessels were evaluated in terms of
the area under the ROC curve (Az), which are provided in Table 1.
For comparative analysis, the result of another previously proposed
method [6], as discussed in Section 1, that was not implemented in this
work is also presented in Table 1.

Table 1. Comparison of the efficiency of detection of blood vessels
in the retina obtained by different methods, as implemented in this
work, and another method, for the test set (20 images) of the DRIVE
database [7].

Detection method Az

Vesselness measure of Salem et al. 0.892
Vesselness measure of Frangi et al. 0.896
Line operators 0.905
Matched filters 0.928
Single-scale Gabor filters 0.950
Ridge-based segmentation [6] 0.952

Table 2 presents the results of performing vessel classification with
MNN classifiers using various combinations of the proposed features,
as mentioned in Section 3.5. For comparative analysis, the results of
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the works of Soares et al. [8] and Lupaşcu et al. [13], who performed
multiscale and multifeature analysis, respectively, are also presented in
Table 2 (see Section 1 for the details of the methods).

Table 2. Results of detection of blood vessels in terms of Az with
the test set (20 images) of the DRIVE database. For all cases, MNN
classifiers were used. Multiscale Gabor filters include the magnitude
response images with scales of τ = {4, 8, 12} pixels. In order to keep
the table entries short, the following acronyms for different features
are used: Gabor filters (GF), vesselness measure of Frangi et al. (VF),
vesselness measure of Salem et al. (VS), gamma-corrected green com-
ponent (GC), matched filters (MF), and line operators (LO).

Detection method Az

VF, VS, GC, MF, and LO 0.948
Multiscale GF 0.960
Multiscale GF and LO 0.960
Multiscale GF and MF 0.960
Multiscale GF and VS 0.960
Multiscale GF and VF 0.960
Multiscale GF, VF, and GC 0.961
Multiscale GF, VF, VS, GC, MF, and LO 0.961
Multiscale complex GF [8] 0.961
Multifeature analysis (41 features) [13] 0.956

Figure 8 shows the result of multifeature and multiscale analysis
for the image in Figure 1 (a) using four of the combinations given in
Table 2.

Table 3 provides the performance of the three methods of entropy-
based [30] thresholing, adaptive thrsholding, and fixed-value thresh-
olding. The methods of Otsu [27], moment-preserving thresholding
method [28], Ridler-Calvard thresholding method [31], and the RATS
method [29] were also tested in this work; however, since they did not
provide better results than the three methods mentioned above, their
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(a) (b)

(c) (d)

Figure 8. Results of multifeature and multiscale analysis using MNNs:
(a) multiscale Gabor filters, (b) multiscale Gabor filters, vesselness
measure of Frangi et al., and gamma-corrected inverted G-component,
(c) vesselness measure of Frangi et al., vesselness measure of Salem et
al., gamma-corrected inverted G-component, matched filters, and line
operators, (d) multiscale Gabor filters, vesselness measure of Frangi
et al., vesselness measure of Salem et al., gamma-corrected inverted
G-component, matched filters, and line operators.
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results are not presented in this table.

Figure 9 shows the results of thresholding the magnitude responses
of single-scale Gabor filters (τ = 8) [Figure 4 (a)] and the vesselness
measure of Frangi et al. [Figure 3 (a)] using the fixed-value threshold,
as well as the entropy-based thresholding method. It can be seen that
the entropy-based method provides higher specificity [higher number
of true-negative (TN) pixels] at the expense of lower sensitivity [lower
number of true-positive (TP) pixels]. It can be seen that the boundary
of the ONH is not segmented when using the entropy-based method in
part (b) of the figure. However, the entropy-based method is incapable
of segmenting the majority of the vessel pixels in the case of the ves-
selness measure of Frangi et al., which is likely due to the low intensity
values provided by the method.

Figure 10 shows the results of thresholding the discriminant im-
ages in Figures 8 (b) and (d) obtained using multifeature analysis.
Both thresholding methods perform well with the results of multifea-
ture analysis, with the fixed-value threshold having a higher SE and the
entropy-based method a higher SP. It can be seen that the boundary
of the ONH is not segmented when using the entropy-based method.
Note that the thresholds for parts (a) and (c) of the figure are negative,
because the MNN is trained using a tansig function which maps the
discriminant values to the range [−1, 1].

The method for removing the FP pixels around the ONH was eval-
uated in combination with the methods for the detection of blood ves-
sels based on the vesselness measures and multiscale Gabor filters. For
removal of artifacts, the Gabor magnitude response image was thresh-
olded using the fixed threshold as explained in Section 3.6, and the
postprocessing technique was applied to the binarized image. The pro-
posed postprocessing technique was applied to the 20 test images of
the DRIVE database and was able to remove 224 FP pixels per image
on the average, at the cost of losing 22 TP pixels per image on the
average. Examples of removal of FP pixels around the ONH are shown
in Figure 11.
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(a) (b)

(c) (d)

Figure 9. Binarized versions of the image in Figure 4 (a) (single-scale
Gabor filter) using: (a) the fixed-value threshold t = 0.0024 of the max-
imum intensity value, with SE = 0.867, SP = 0.908, and Acc = 0.903;
and (b) the entropy-based method (t = 0.196 of the normalized inten-
sity value), with SE = 0.397, SP = 0.996, and Acc = 0.919. Binarized
versions of the image in Figure 3 (a) (vesselness measure of Frangi et
al.) using: (c) the fixed-value threshold t = 3.22×10−8 of the maximum
intensity value, with SE = 0.810, SP = 0.889, and Acc = 0.879; and
(d) the entropy-based method (t = 0.290 of the normalized intensity
value), with SE = 0.050, SP = 1.000, and Acc = 0.871.
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(a) (b)

(c) (d)

Figure 10. Binarized versions of the image in Figure 8 (b) using: (a) the
fixed-value threshold t = −0.743 of the maximum intensity value, with
SE = 0.893, SP = 0.909, and Acc = 0.907; and (b) the entropy-based
method (t = 0.263 of the normalized intensity value), with SE = 0.837,
SP = 0.950, and Acc = 0.936. Binarized versions of the image in
Figure 8 (d) using: (c) the fixed-value threshold t = −0.740 of the
maximum intensity value, with SE = 0.895, SP = 0.909, and Acc =
0.908; and (d) the entropy-based method (t = 0.302 of the normalized
intensity value), with SE = 0.870, SP = 0.933, and Acc = 0.925.
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(a) (b)

Figure 11. Example of removal of ONH artifacts: (a) thresholded Ga-
bor magnitude response image, and (b) the same region after the re-
moval of ONH artifacts.

5 Discussion

As evident from the results in Table 1, even the use of a combination of
large number of features (41) [13], does not lead to substantial increase
in the value of Az. The large number of FP pixels caused by over
segmentation of small blood vessels seems to be the limiting factor in
achieving higher Az values. The accuracy of detection of blood vessels
could be increased if thin, single-pixel-wide blood vessels are detected
accurately. However, thin blood vessels may not be important in the
analysis of retinal vasculature as only changes in the major vessels have
been observed to be clinically significant [23,33].

Based on the results obtained in this work, a single-scale Gabor
filter is capable of detecting blood vessels with accuracy (Az = 0.950)
not substantially different from the highest Az value obtained with the
result of multifeature analysis in this work (Az = 0.961). It would be
of interest to determine if the difference between the Az values given
above is statistically significant.

Using a Lenovo Thinkpad T510, equipped with an Intel Core i7
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(Hyper-threaded-dual-core) 2.67-GHz processor, 4 MB of level 2 cache,
8 GB of DDR3 RAM, running 64-bit Windows 7 Professional, and
using 64-bit Matlab software, the run time for single-scale Gabor filters
with K = 180, for a single color image from the DRIVE database is
approximately 13.5 seconds. The preprocessing step takes about 8.8
seconds to execute.

Although the reduction of FP pixels is visible in the example shown
in Figure 11, the result did not lead to a substantial increase in speci-
ficity. This is mainly because the total number of FP pixels removed
(224 pixels, on the average, per image) by the postprocessing step is
small compared to the total number of FP pixels (20, 038 pixels, on the
average, per image) and the total number of TP pixels (24, 888 pixels,
on the average, per image). Such a postprocessing step is most benefi-
cial when applied to a skeleton of the vasculature in applications where
it is important to process only pixels that belong to vessels, such as
tracking the major branches of vessels [34] and measurement of vessel
thickness [35].

The problem of segmentation of vessels via thresholding is crucial
to applications that deal with measurement and analysis of the statis-
tics of blood vessels. In this work, we have analyzed seven different
thresholding methods. Based on the results presented in Table 3, the
thresholding method using a fixed value obtained using the ROC curve
for the training set of images provides the most consistent results in
terms of SE, SP, and accuracy. The entropy-based thresholding method
provides a higher SP and similar SE in comparison to the fixed-value
method when applied to the results of multifeature analysis. However,
the entropy-based method has low sensitivity when applied to single
features. The proposed adaptive thresholding method does not per-
form better than the other two methods. Depending on the desired
application, either the fixed-value method, the entropy-based method,
or a combination of the two could be employed.
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6 Conclusion

In this study, we have analyzed multiscale and multifeature methods
for the detection of blood vessels in retinal fundus images, and achieved
a maximum Az value of 0.961 using the 20 test images of the DRIVE
database. The results of the present study indicate that the state-of-
the-art methods for the detection of blood vessels perform at high levels
of efficiency and that combining several features may not yield better
results. The result of the fixed-value thresholding or the entropy-based
method could be helpful in analyzing the thickness and tortuosity of
blood vessels.
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