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Abstract

Artificial Bee Colony (ABC) is a swarm-based metaheuristic
for continuous optimization. Recent work hybridized this algo-
rithm with other metaheuristics in order to improve performance.
The work in this paper, experimentally evaluates the use of differ-
ent mutation operators with the ABC algorithm. The introduced
operator is activated according to a determined probability called
mutation rate (MR). The results on standard benchmark func-
tion suggest that the use of this operator improves performance
in terms of convergence speed and quality of final obtained solu-
tion. It shows that Power and Polynomial mutations give best
results. The fastest convergence was for the mutation rate value
(MR=0.2).
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Mutation, Meta-heuristic algorithm, Polynomial mutation.

1 Introduction

Meta-heuristic and evolutionary algorithms are computational meth-
ods that solve a problem by iteratively trying to improve a candidate
solution with regard to a given fitness function. While meta-heuristics
do not guarantee reaching an optimal solution if one is available, they
are useful for solving combinatorial optimization problems in both sci-
ence and engineering. Many algorithms that mimic natural phenomena
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such as genetic algorithms [21], simulated annealing [5], ant colony opti-
mization [8], and particle swarm optimization [8] have shown significant
efficiency in solving many real-world problems.

The Artificial Bee Colony (ABC) is an optimization algorithm based
on the intelligent behavior of honey bees [1, 16]. In ABC, the position of
a food source represents a possible solution to the optimization problem
and the nectar amount of a food source corresponds to the quality
(fitness) of the associated solution. In the ABC algorithm, the goal of
the bees (employed bees, onlookers and scouts) is to discover the places
of food sources with high nectar amount and finally the one with the
highest nectar. The algorithm basically works as follows: employed
bees go to their food source and return to hive. The employed bee
whose food source has been abandoned becomes a scout and starts
searching a new food source. Onlookers choose food sources depending
on dances. Later on, the abandoned food sources are replaced with the
new food sources discovered by scouts and the best food source found
so far is registered. These steps are repeated until reaching the stop
condition.

The ABC has been used to solve several optimization problems
(e.g., forecasting stock markets [3, 18, 12], capacitated vehicle routing
problem [29, 3, 9], multiproduct manufacturing system [2], and combat
air vehicle path planning [13, 22, 30] ). Other researchers work on
modifiying the original ABC (e.g., [4, 17]).

In ABC, some scouts choose the food sources randomly based upon
a randomized mutation function. In this paper, we explore the use
of different mutation functions as a replacement for the original ran-
dom mutation used in the ABC algorithm, specifically in the scout
bees’ phase, to enhance the convergence speed. In particular we used
five mutation schemes (non-uniform mutation, Makinen, Periaux and
Toivanen (MPT) mutation, power mutation, polynomial mutation and
best-based mutation). The effectiveness of the updated ABC algo-
rithms are evaluated by using eight benchmark functions with differ-
ent characteristics (Sphere function, Step function, Schwefel’s problem
2.26, Six-Hump Camel-Back, Shifted Sphere, Shifted Schwefel’s prob-
lem, Shifted Rosenbrock and Shifted Rastrigin).
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The remainder of this paper is organized as follows: Section 2 intro-
duces the Artificial Bee Colony (ABC) Algorithm. Section 3 presents
the different mutation methods. The experimental environment is pre-
sented in Section 4. Finally, we conclude in Section 5.

2 The Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm was first proposed by
Karaboga in [14, 16]. In a real bees colony, there are different types of
specialized bees performing different tasks. The main goal of the bees
is to maximize the amount of nectar stored in the hive.

According to the ABC algorithm, the bees’ colony involves three
different types of bees. Employed bees, onlooker bees and scouts. Half
of the colony are employed bees and the reset are onlookers. Employed
bees exploit food sources visited previously and provide the onlooker
bees with information regarding the quality of the food sources they
are exploiting. The onlooker bees use the information shared with em-
ployed bees to decide where to go. Scout bees explore the environment
randomly looking for new sources of food. When a food source ex-
hausted, the corresponding employed bee becomes a scout. The main
steps of the ABC algorithm are described below.

Step1: Initialize the food source positions.
In the ABC algorithm the position of a food source represents a pos-

sible solution of the optimization problem and the amount of nectar at
each food source represents the fitness of the corresponding solution.
In this step of the algorithm, solutions xi (where i = 1 . . . n) are ran-
domly generated within the ranges of the problem’s parameters, where
n is the number of food sources (one source for each employed bee).
Each solution is a vector of d dimensions, where d is the number of the
problem’s parameters.

Step 2: Each employed bee generates a new food source and exploits
the better one.
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The new food source (solution) is generated according to the fol-
lowing formula:

yij = xij + ϕij(xij − xkj),

where ϕij is a random number in the range [-1,1], k is the index of the
solution chosen randomly and j = 1, . . . , d.

After generating the new solution yi, the employed bee compares
between it and the original solution xi and exploits the better one.

Step 3: Each onlooker bee chooses a food source based on its quality,
generates a new food source and then exploits the best one.

An onlooker bee selects a food source based on the probability value
associated with it. The probability value is calculated as follows:

pi =
Fitnessi∑n

k=1 Fitnessk
,

where Fitnessi is the fitness of solution i, and n is the number of food
sources which is equal to the number of employed bees.

Step 4: Stop the exploitation of the food sources exhausted and con-
vert its employed bees into scouts.

A solution (represented by a food source) is said to be exhausted
if it has not been improved after a predetermined number of execution
cycles. The employed bee of each exhausted food source is converted
into a scout that performs a random search for another solution (food
source) based on the following formula:

xij = xmin
j + (xmax

j − xmin
j ) ∗ rand,

where xmax
j and xmin

j are the upper and the lower bounds of parameter
(decision variable) j.

Step 5: Keep the best solution (food source) found so far.

Step 6: Repeat steps 2 to 5 until the termination condition is satisfied.
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3 Mutation Methods

The mutation method is an essential operator in EAs [7]. It normally
provides a mechanism to explore unvisited regions in the search space.
It operates with less consideration to the natural principle of the ‘sur-
vival of the fittest’. Any successful EA should have a mutation mech-
anism to ensure the diversification of the search space while makes use
of the accumulative search.

Genetic Algorithm can be seen as the most popular EA algorithm
that is widely used for optimization problems [25, 26]. It begins with
population of individuals generated randomly. Evolutionary, it selects,
recombines and mutates the current population to come up with a new
population hopefully better. It exploits the current population using
selection and recombination operators. It also explores the search space
using mutation. This is necessary to prevent getting stuck in the local
optima and increasing the chance of finding the global optima.

The way of diversifying the individuals in the population have been
widely studied [11, 10, 7]. The mutation operator in GA randomly and
structurally changes some genes in the individual without considering
the characteristics of their parents. In order to implement a mutation
operator, two issues should be watched: i) the probability of using
mutation over population and ii) the power of mutation represented by
the perturbation obtained in an individual.

Similarly to GA, other population-based method have a mutation
operator to diversify the search, e.g., the Random consideration in
Harmony Search Algorithm, the scout bee in Artificial Bee Colony
(ABC). Particularly in ABC, the scout bee provides a mechanism to
diversify the individuals and therefore to prevent the search to fault
down in a local optima trap.

Figure 1 flowcharts the scout bee process. At each iteration, all
individuals, x i, ∀i ∈ 1 . . . SN , in the population will be examined using
Scout[.] vector. Note that the Scout[.] vector contains an accumulative
counter information about each individual regarding if they improved.
In case the individual (say xi = (xi,1, xi,2 . . . , xi,N ), where N is the
number of genes) is improved in such iteration, the Scout[i] will be
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initialized by 0, otherwise it will be incremented by 1 until a certain
limit exceeded, then a Do mutation() operator will be applied.

In general, the continuous optimization problem is formulated as
follows

min{f(x) |x ∈ X},
where f(x) is the objective function; x = {xi | i = 1, . . . , N} is the set
of decision variables (or genes). X = {Xi | i = 1, . . . , N} is the possible
value range for each gene, where Xi ∈ [Lxi , Uxi ], where Lxi and Uxi are
the lower and upper bounds for the gene xi respectively and N is the
number of genes.

In this paper, five mutation operators have been investigated in
the scout bee operator. These mutation operators are controlled by
a Mutation Rate (MR). The purpose of mutation is to diversify the
search direction and to prevent the convergence into local optimum.
Algorithm 1 shows that each gene in the selected individual will be
examined for whether or not it will be changed randomly. In each
mutation type, the change process is different as we will discuss below.

Algorithm 1 Scout Bee Procedure
1: for i = 1, · · · , SN do
2: if Scout[i] < limit then
3: for j = 1, · · · , N do
4: if U(0, 1) < MR then
5: DO Mutation()
6: end if
7: end for
8: end if
9: end for

3.1 Original mutation

The original mutation is proposed by [15], which is called random mu-
tation. In this type of mutation, the gene (xi,j) that met the probability
of MR is changed as follows
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Figure 1. The flowchart Scout Bee Operation
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x′i,j = Lxj + U(−1, 1)(Uxj − Lxi).

In this type of mutation, the value of the gene is replaced randomly
with a value within the range of decision variable [21] in the abandoned
solution i. Note that U(−1, 1) generates a random number between −1
and 1.

3.2 Non-uniform random mutation

The non-uniform random mutation is one of popular mutation types
that is widely used in GA [21, 20]. In non-uniform mutation, as the
generations increase, the step size decreases, therefore making a uni-
form search in the initial stage of search and very little at later stages.
In this type of mutation, the gene (xi,j) that met the probability of
MR is changed as follows:

x′i,j = xi,j × (1− U(0, 1)(
1−t

MSN
)b

),

where b is a system parameter determining the degree of dependency
of iteration number (in this study, the value of b is fixed to 5 as rec-
ommended by a previous study [21]), t is the generation (or iteration)
number. And MSN refers to the maximum number of iterations in
ABC. Note that the gene x′i,j is assigned with a value in a range [0, xi,j ].

3.3 Makinen, Periaux and Toivanen (MPT) Mutation

Makinen, Periaux and Toivanen mutation, proposed by [19], is a rel-
atively new mutation and has been applied to solve multidisciplinary
shape optimization problem in addition to a large set of optimization
problems with constrained nature. In this type of mutation, the gene
(xi,j) that met the probability of MR is changed as follows:

x′i,j = (1− t̂j)× Lxj + t̂j × Uxj ,
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where

t̂j ←





tj − (tj)× ( tj−rj

tj
)b rj < tj

tj rj = tj ,

tj + (1− tj)× ( rj−tj

1−tj
)b rj > tj

and

tj =
xi,j − Lxj

Uxj − xi,j
.

Normally, the value of b = 1.

3.4 Power Mutation

This type of mutation operator is based on power distribution, and
proposed by [7]. It is an extended version of MPT mutation. In this
type of mutation, the gene (xi,j) that met the probability of MR is
changed as follows:

x′i,j ←
{

xi,j − s× (xi,j − Lxj ) t < r
xi,j − s× (Uxj − xi,j) otherwise,

where

t =
xi,j − Lxj

Uxj − xi,j
,

and s is a random number generated according to the final distribution,
and r is a uniform random number generated in the range 0 and 1,
r ∈ [0, 1].

3.5 Polynomial mutation

Polynomial mutation was first introduced by Deb and Agrawal in [6]
which has been successfully applied for single and multi-objective op-
timization problems. In this type of mutation, the gene (xi,j) that met
the probability of MR is changed as follows:

x′i,j = xi,j + δq × (Uxj − Lxj ),
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where

δq ←
{

[(2r) + (1− 2r) + (1− δ1)ηm+1]
1

ηm+1−1 r < 0.5
1− [(2(1− r)) + (2(r − 0.5)) + (1− δ2)ηm+1]

1
ηm+1 otherwise,

δ1 =
xi,j − Lxj

Uxj − Lxj

,

δ2 =
Uxj − xi,j

Uxj − Lxj

.

Note that r is a uniform random number generated in the range 0
and 1, r ∈ [0, 1].

3.6 Best-based Mutation

This type of mutation is initially proposed by [27]. It is effective and
powerful mutation type for unconstrained large scaled optimization
problems. In this type of mutation, four individuals are randomly
selected (i.e., (xr1,xr2,xr3,xr4) from the entire population. After that,
the gene (xi,j) that met the probability of MR is changed as follows:

x′i,j = xbest,j + F × (xr1,j − xr2,j) + F × (xr3,j − xr4,j),

where xbest,j is the gene in the best individual from the entire popula-
tion. F is an important parameter that ensures the balance between
exploration and exploitation which normally is experimentally deter-
mined, and takes a value range between 0 and 1.

4 Experimental results

We used 8 global minimization benchmark functions (Table 2) to eval-
uate different mutation methods used in ABC (see Table 1). These
benchmark functions have been selected as one function for each set of
unique characteristics (e.g, unimodal, multi-modal, and separable), as
it is shown in the last column of Table 2. The benchmark functions
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were implemented with a multi-dimension (N=100), with the exception
to Six-Hump Camel-Back function which is two-dimensional.

We conducted four different experiements, each one with different
mutation rate (MR = 0, 0.2, 0.5, and 0.8). In each experiment we
tested six different mutation methods: ABC original, Non-uniform,
MPT, Power, Polynomial, and Best mutation. Each experiment was
repeated 30 times with different random seeds. The average of the best
values obtained by the algorithms is calculated. The obtained results
of the mean best values and standard deviation are shown in tables 3,
4, 5, and 6.

The experiments were executed on a P4 machines with 1 GB of
RAM using C++ under Microsoft Visual Studio environment. In all
the experiments the values for common parameters are as follows: the
population size (NP) was 100, the food sources was 50, the stopping
criteria = 10,000, and the algorithm ran for 30 times. The limit is
defined using the formula D* NP*0.5 which uses the dimension of the
problem and the colony size to determine the limit value. These values
are similar to what has been suggested in the state of the art methods.

The results in tables 3, 4, 5, and 6 show that for the sphere function
the mutation rate (MR=0.2) gives the best result, and the power mu-
tation (M4) gives the best result. The best result for sphere function
using other mutation rate values (MR= 0.5 and 0.8) was given by the
polynomial mutation (M5).

On the other hand, for the Schwefel problem function the muta-
tion rate (MR=0.2) gives the best result with MPT mutation (M3).
The shifted rosenbrock gives the best result using the mutation rate
(MR=0.5) with MPT mutation (M3). The best result for shifted rosen-
brock function using other mutation rate values (MR= 0.2 and 0.8) was
given by the Non-uniform mutation (M2).

For the rest of the functions (i.e., step, camel-back, shifted sphere,
shifted schwefel, and shifted rastrigin) all the mutation methods (M1-
M6) with all mutation rates reached the global optimal solution.

Figure 3 shows the effect of using the mutation rate value (MR=0.8)
on the convergence speed of the six different mutation methods. The
compared benchmark functions are: sphere and shifted rosenbrock.

87



I. Abu Doush et al.

For the two functions polynomial mutation (M5) has the fastest con-
vergence speed. The slowest convergence speed for the sphere function
was for Power mutation (M4). On the other hand, for the shifted
rosenbrock, Best mutation (M6) has the slowest convergence speed.

Figure 2 compares the effect of using different mutation rate val-
ues on the convergence speed of the mutation method used (i.e., M1
to M6 in Table 1). Generally speaking the mutation rate (MR=0.2)
has the fastest convergence speed for the mutation methods M1, M4,
and M6 (Original ABC, Power, and Best). For the mutation meth-
ods M3 and M5 (MPT and Polynomial), the mutation rate (MR=0.8)
has the fastest convergence speed. These observations confirm the
mean best results obtained, which are usually using mutation rate
value (MR=0.2). This value allows diversifying the population without
changing the population to be far from optimal solution.

Table 1. The different mutation schemes used in the experiments.
Original ABC Non-uniform Makinen, Periaux and

Toivanen (MPT)
Power Polynomial Best

M1 M2 M3 M4 M5 M6

5 Conclusion and Further Work

It is common in swarm-based algorithms to hybridize with operators
from evolutionary algorithms such as mutation. Normally, the hy-
bridization comes by adding a common to an existing algorithm. This
paper investigated the performance of ABC using different mutation
schemes. The mutation happened in the ABC algorithm after reaching
the limit and calling the scout bees. We updated the original ABC
algorithm with six different mutation schemes. The application of the
mutation is performed according to a defined parameter called muta-
tion rate (MR). We evaluated the updated algorithms of ABC with
8 global benchmark functions used in the literature. We investigated
the mean best value and studied the convergence speed using the six
different mutation methods parametrized with four different mutation
rates.
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Generally speaking the results show that Power and Polynomial
mutations give best results. The mutation rate value (MR=0 and 0.8)
gives the slowest convergence. On the other hand, the fastest conver-
gence was for the mutation rate value (MR=0.2).

The future work can be experimenting different mutation schemes
after modifying the original ABC algorithm to apply mutation on early
stages of the algorithm. Currently, the algorithm uses mutation after
exceeding the limit of reaching constant optimal solution. We could
benefit more from the different mutation methods presented in this
paper by applying them early in the ABC algorithm.

It might be interesting to adaptively select the mutation operator
based on algorithm performance. But the algorithm needs to use a sin-
gle best mutation rate, and mutation operator should be recommended,
as it is not allowed to change this operator for each benchmark. For
example, if the ABC algorithm is stuck in local optima, then use an-
other operator in the hope to improve search capabilities and reach the
global optima.

Table 3. Average and standard deviation (±SD) of the benchmark
function results (N = 100), mr=0

Sphere Step Schwefel’s
2.26

Camel-
Back

Shifted
Sphere

Shifted
Schwe-
fel’s

Shifted
Rosen-
brock

Shifted
Rast-
rigin

2.15E-15 0 -
4.199724E+04

-
1.03163E+00

-450 -450 3.90054E+02 -330

(1.60935E-16) (0) (0.25795393) (0) (0) (0) (0.102094052) (0)
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(a) M1 (b) M2

(c) M3 (d) M4

(e) M5 (f) M6

Figure 2. The convergence speed for the sphere function using different
mutation rates (10,000 iterations). The figures show the portions with
noticable difference, here it is within the range 0 – 600.
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Table 4. Average and standard deviation (±SD) of the benchmark
function results (N = 100), mr=0.2

M1 M2 M3 M4 M5 M6
Sphere 1.60E-15 1.63E-15 1.60E-15 1.56E-15 1.93E-15 1.66E-15

(2.4049E-
16)

(2.50432E-
16)

(2.95416E-
16)

(2.32707E-
16)

(2.07427E-
16)

(2.41625E-
16)

Step 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0)

Schwefel’s -
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