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A New Full-Newton Step O(n) Infeasible

Interior-Point Algorithm for P∗(κ)-horizontal

Linear Complementarity Problems

Soodabeh Asadi, Hossein Mansouri∗

Abstract

In this paper, we first present a brief review about the fea-
sible interior-point algorithm for P∗(κ)-horizontal linear comple-
mentarity problems (HLCPs) based on new directions. Then we
present a new infeasible interior-point algorithm for these prob-
lems. The algorithm uses two types of full-Newton steps which
are called feasibility steps and centering steps. The algorithm
starts from strictly feasible iterations of a perturbed problem,
and feasibility steps find strictly feasible iterations for the next
perturbed problem. By accomplishing a few centering steps for
the new perturbed problem, we obtain strictly feasible iterations
close enough to the central path of the new perturbed problem
and prove that the same result on the order of iteration complex-
ity can be obtained.

Keywords: Horizontal linear complementarity problem, in-
feasible interior-point method, central path.

1 Introduction

Interior-point methods (IPMs) have been studied for decades by many
researchers. After Karmarkar’s pioneer work on interior-point polyno-
mial algorithm for linear programming (LP) [1], interior-point poly-
nomial algorithms have been investigated by many researchers. For
example, Ye and Tse [2] extended Karmarkar’s algorithm for convex
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quadratic programming (CQP) and proved that it has polynomial com-
plexity bound O

(
n log

(
1
ε

))
. IPMs also are the powerful tools to solve

some widely used mathematical problems such as, semidefinite op-
timization (SDO) [3, 4] and linear complementarity problem (LCP)
[5, 6, 7, 8]. These methods are so-called feasible IPMs. Feasible IPMs
start with a strictly feasible interior point and keep feasibility during
the solution process. Infeasible IPMs (IIPMs) start with an arbitrary
positive point and feasibility is reached as optimality is approached.
The choice of the starting point in IIPMs is crucial for the perfor-
mance. Very recently, in [9, 10], Mansouri et al. presented the first
full-Newton step IIPM for LCPs, which is an extension of the work for
LP [11, 12, 13]. These algorithms use an intermediate problem which
is a suitable perturbation of the given original problem so that at any
stage the iterations are strictly feasible for the current perturbed prob-
lem. In each iteration the size of the perturbation decreases at the
same speed as the barrier parameter µ. When µ changes to a smaller
value, the perturbed problem also changes, and hence also the current
central path. The iterations are kept feasible for the new perturbed
problem and close to its central path. To achieve this, the algorithm
uses a so-called feasibility step. This step serves to get iterations that
are strictly feasible for the new perturbed problem and belong to the
region of quadratic convergence of its µ+-center, where µ+ is the bar-
rier parameter after updating. Now the algorithm can start from the
point obtained in the feasibility step and perform few centering steps
to obtain iterations that are close enough to the µ+-center of the new
perturbed problem. This process continues until the algorithm finds
an ε-solution or detects that the problem has no optimal solution with
zero duality gap. In this paper, we discuss an extension to HLCP of the
just described algorithm, using Darvay’s method [14]. We show that
whose complexity is at least as good as the best known complexity of
IIPMs. We use the results of analysis of the centering full Newton steps
in [15].

The paper is organized as follows: in Section 2 we first recall some
tools in the analysis of a feasible IPM that we use also in the analysis
of IIPMs proposed in this paper. In Section 3 we describe an IIPM
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for HLCP. The analysis of the feasibility step of our method, the most
tedious part of the analysis, is carried out in Section 4. In Section
5 we will derive a complexity bound for our algorithm. In section 6
some numerical results are presented. Finally, some concluding remarks
follow in Section 7.

Some notations used throughout the paper are as follows. Vectors
are denoted by lower-case Latin letters and matrices by capital Latin
letters. Rn

+(Rn
++) is the nonnegative (positive) orthant of Rn. Further,

X is the diagonal matrix whose diagonal elements are the coordinates
of the vector x, i.e., X = diag (x), and I denotes the identity matrix
of appropriate dimension. The vector xs = Xs is the componentwise
product (Hadamard product) of the vectors x and s, and for α ∈ R the
vector xα denotes the vector whose i-th component is xα

i . We denote
the vector of ones by e. As usual, ‖·‖ denotes the 2-norm for vectors and
matrices. min(x) (or max(x)) denotes the smallest (or largest) value
of the components of x. C1 is the set of all continuously differentiable
functions in R. Finally, if z ∈ Rn

+ and f : R+ → R+, then f(z) denotes
the vector in Rn

+ whose i-th component is f(zi) , with 1 ≤ i ≤ n. We
write f(x) = O(g(x)) if f(x) ≤ cg(x) for some positive constant c.

2 Preliminaries

2.1 The HLCP problem

In the HLCP, we seek a vector pair (x, s) ∈ R2n that satisfies the
conditions

Qx + Rs = b, (x, s) ≥ 0, xT s = 0, (P )

where b ∈ Rn, and Q,R ∈ Rn×n. The standard (monotone) linear
complementarity problem (SLCP) is obtained by taking R = −I, and
Q positive semidefinite matrix. The class P∗ matrices are introduced
by Kojima et al. [16]. The matrix pair (Q, R) belongs to P∗ if there
exists a constant κ ≥ 0 such that

Qu + Rv = 0 ⇒ (1 + 4κ)
∑

i∈I+

uivi +
∑

i∈I−
uivi ≥ 0 ∀u, v ∈ Rn,
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where I+ = {i : uivi > 0} and I−={i : uivi <0}. Then we say that
the pair (Q,R) is a P∗(κ)-pair or equivalently the HLCP is called a
P∗(κ)-HLCP. For κ = 0, P∗(0)−HLCP is called the monotone HLCP.

2.2 Central path for the P∗(κ)-HLCP

Because of nonnegativity of x and s in (P ), solving HLCP is equivalent
to finding a solution of the following system of equations:

Qx + Rs = b, x ≥ 0,
xs = 0, s ≥ 0.

(1)

The classical path-following IPMs consist in introducing a positive
parameter µ. One considers the nonlinear system parameterized by µ:

Qx + Rs = b, x ≥ 0,
xs = µe, s ≥ 0,

(2)

where e denotes the all-one vector. It is shown in [17] that un-
der interior-point condition (IPC), i.e., the existence of a vector pair
(x, s) > 0 with Qx + Rs = b, there exists one unique solution
(x(µ), (s(µ)). The path µ → (x(µ), (s(µ)) is called the central path. It
is known that when µ → 0, (x(µ), (s(µ)) goes to a solution of (P ).

2.3 Feasible full-Newton step

In this section we briefly present the feasible IPM in [15]. Consider the
function

ϕ ∈ C1, ϕ : R+ → R+,

and suppose that the inverse function ϕ−1 exists. The system of equa-
tions in (2) can be written equivalently in the following form:

Qx + Rs = b, x ≥ 0,

ϕ
(

xs
µ

)
= ϕ(e), s ≥ 0.

(3)
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If we use Newton’s method for linearizing the system (3), we get
the following system for the search directions ∆x and ∆s:

Q∆x + R∆s = 0, x ≥ 0,
s
µϕ′

(
xs
µ

)
∆x + x

µϕ′
(

xs
µ

)
∆s =ϕ(e)− ϕ

(
xs
µ

)
, s ≥ 0,

which is equivalent to the following system:

Q∆x + R∆s = 0, x ≥ 0,

s∆x + x∆s = µ
(
ϕ′

(
xs
µ

))−1 (
ϕ(e)− ϕ

(
xs
µ

))
, s ≥ 0.

(4)

We define the following notations:

v =
√

xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (5)

Then we have

µv (dx + ds) = x∆s + s∆x, (6)

and

dxds =
∆s∆x

µ
. (7)

Consequently we have the scaled Newton-system as follows:

Q̄dx + R̄ds = 0,

dx + ds = pv, (8)

where

Q̄ = QXV −1, R̄ = RSV −1, pv =
ϕ(e)− ϕ

(
v2

)

vϕ′ (v2)
.

If ϕ(t) = t, then pv = v−v−1, and we obtain the standard algorithm.
Now we take ϕ(t) =

√
t based on Darvay’s technique for LP [14]. So

we have

pv = 2(e− v). (9)
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Then the systems (4) and (8) are equivalent to the following sys-
tems, respectively:

Q∆x + R∆s = 0, x ≥ 0,
s∆x + x∆s = 2µv(e− v), s ≥ 0,

(10)

and

Q̄dx + R̄ds = 0,

dx + ds = 2 (e− v) . (11)

We derive the new search directions dx and ds by solving (11) and
then we compute ∆x and ∆s via (5). The new iterations are given by

x+ = x + ∆x,

s+ = s + ∆s. (12)

In the analysis of the algorithm we use the norm-based proximity
measure to the central path as follows:

δ(v) := δ(x, s; µ) =
‖pv‖

2
= ‖e− v‖ . (13)

The algorithm starts with (x0, s0) such that δ(x0, s0; µ0) < τ :=
1

2(1+4κ) . In each iteration the search directions at the current iterations
with respect to the current value of µ be computed and then (12) be
applied to get new iterations. The algorithm terminates with a point in
τ -neighborhood of the central path that satisfies nµ ≤ ε. The following
lemmas are crucial in the analysis of the algorithm. We recall them
without proof.

Lemma 2.1 (Lemma 7 in [15]). Let δ := δ(x, s; µ) ≤ 1√
1+4κ

and µ+ =
(1− θ)µ, where 0 < θ < 1. Then

δ(x, s; µ+) ≤ θ
√

n + (1 + 4κ) δ2

1− θ +
√

(1− θ) (1− (1 + 4κ) δ2)
.
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Algorithm 1. Feasible IPM for P∗(κ)-HLCPs

Input:
Accuracy parameter ε > 0;
threshold parameter τ < 1;
barrier update parameter θ, 0 < θ < 1;
feasible pair

(
x0, s0

)
with (x0)T s0 = nµ0 and µ0 > 0 such

that δ(x0, s0;µ0) ≤ τ .
begin

x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin

(x, s) := (x, s) + (∆x, ∆s);
µ := (1− θ)µ;

end
end

Lemma 2.2 (Lemma 6 in [15]). After a full Newton-step, one has

(x+)T s+ ≤ nµ.

Lemma 2.3 (Lemma 5 in [15]). Let δ := δ(x, s;µ) ≤ 1√
1+4κ

. Then

δ(x+, s+; µ) <
(1 + 4κ)δ2

1 +
√

1− (1 + 4κ)δ2
.

Thus δ(x+, s+; µ) ≤ (√
1 + 4κ δ

)2, which shows the quadratic conver-
gence of the algorithm.

The following result establishes a polynomial iteration bound of the
above described algorithm; it easily follows from the above lemmas.
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Theorem 1 (Theorem 1 in [15]). If θ = 1
2(1+4κ)

√
n
, then the algorithm

requires at most

4(1 + 4κ)
√

n log
nµ0

ε

iterations.

3 Infeasible full-Newton step IPM

In this section we present an infeasible interior-point algorithm that
generates an ε-solution of P∗(κ)-HLCPs.

3.1 The perturbed problem and its central path

We use a triple
(
x0, s0, µ0

)
> 0 with x0s0 = µ0e for some (positive)

number µ0 to start our IIPM. We denote the value of the residual at
these initial points as r0, as

r0 = b−Qx0 −Rs0. (14)

Now for any ν with 0 < ν ≤ 1, we consider the perturbed problem
(Pν), defined by

b−Qx−Rs = νr0, (x, s) ≥ 0. (Pν)

Note that if ν = 1, then (x, s) =
(
x0, s0

)
yields a strictly feasible

solution of (Pν). We conclude that if ν = 1 then (Pν) satisfies the IPC.

Lemma 3.1. Let the original problem (P ) be feasible, then the per-
turbed problem (Pν) satisfies IPC.

Proof. The proof is similar to the proof of Lemma 4.1 in [9].

We assume that (P ) is feasible. Letting 0 < ν ≤ 1, Lemma 3.1
implies that the problem (Pν) satisfies the IPC, and hence its central
path exists. This means that the system

b−Qx−Rs = νr0, x ≥ 0, s ≥ 0,
xs = µe,

(15)
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has a unique solution, for every µ > 0. In the sequel this unique solu-
tion is denoted by (x(µ, ν), s(µ, ν)). It is the µ-center of the perturbed
problem (Pν). Note that since x0s0 = µ0e, (x0, s0) is the µ0-center of
the perturbed problem (P1). In other words,

(
x

(
µ0, 1

)
, s

(
µ0, 1

))
=(

x0, s0
)
. In the sequel the parameters µ and ν always satisfy the rela-

tion µ = νµ0.

3.2 New feasibility search directions

For the search directions in the feasibility step we use the pair(
∆fx,∆fs

)
such that the new iterations

xf = x + ∆fx,
sf = s + ∆fs.

(16)

be feasible for (Pν+), where ν+ = (1− θ)ν. According to the definition
of (Pν), we have

b−Q(x + ∆fx)−R(s + ∆fs) = ν+r0,
(
x + ∆fx, s + ∆fs

)
> 0.

Since (x, s) is feasible for (Pν), it follows that ∆fx and ∆fs should
satisfy

Q∆fx + R∆fs = θνr0.

Now we propose new feasibility search directions for HLCPs based
on Darvay’s method in LP [14]. Consider the function

ϕ ∈ C1 , ϕ : R+ → R+,

and suppose that the inverse function ϕ−1 exists. The system of equa-
tions in (15) can be rewritten equivalently in the following form:

b−Qx−Rs = νr0, x ≥ 0,

ϕ
(

xs
µ

)
= ϕ(e), s ≥ 0.

(17)

We define:

df
x =

v∆fx

x
, df

s =
v∆fs

s
, (18)
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where v is defined in (5). Let ϕ(t) =
√

t, so after using Newton’s
method and linearizing the system (17), we get the following system
for the feasibility search directions ∆fx and ∆fs:

Q∆fx + R∆fs = θνr0, x ≥ 0,
s∆fx + x∆fs = 2µv(e− v), s ≥ 0,

(19)

and the following system for scaled feasibility search directions df
x and

df
s :

Q̄df
x + R̄df

s = θνr0,

df
x + df

s = 2 (e− v) , (20)

where

Q̄ = QXV −1, R̄ = RSV −1, X = diag (x), S = diag (s).

We derive the new search directions df
x and df

s by solving (20) and
then we compute ∆fx and ∆fs via (18).

3.3 Description of the algorithm

Suppose that ν = 1 and µ = µ0. Then (x, s) =
(
x0, s0

)
is the µ-center

of the perturbed problem (Pν). The algorithm is started by these
iterations. We measure proximity to the µ-center of the perturbed
problem (Pν) by the quantity δ(v) as defined in (13). We assume that
at the start of each iteration, just before the µ-update, δ(v) is smaller
than or equal to a (small) threshold value τ > 0. So this is certainly
true at the start of the first iteration.

One (main) iteration of the algorithm works as follows. Suppose
that for some µ ∈ (

0, µ0
)

we have (x, s) satisfying the feasibility condi-
tion (15) for ν = µ

µ0 , and δ(x, s, µ) ≤ τ . We reduce ν to ν+ = (1− θ) ν

and µ to µ+ = (1− θ) µ, with θ ∈ (0, 1), and find new iterations
(x+, s+) that satisfy (15), with µ replaced by µ+ and ν by ν+, and
such that xT s ≤ nµ+ and δ(x+, s+; µ+) ≤ τ . In each main itera-
tion first we accomplish one feasibility step to get iterations

(
xf , sf

)
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that are strictly feasible for (Pν+) and close enough to its central path,
and then we perform a few centering steps to improve the closeness
of

(
xf , sf

)
to the central path of (Pν+) and obtain a pair (x, s) that

satisfies the condition δ (x, s; µ) ≤ τ . Since during the centering steps
the iterations stay feasible for Pν+ , it follows that for the analysis of the
centering steps we can use the analysis for the feasible IPM, presented
in Section 2.

Algorithm 2. Infeasible IPM for P∗(κ)-HLCP

Input:
Accuracy parameter ε > 0;
threshold parameter τ < 1;
barrier update parameter θ, 0 < θ < 1;
feasible pair

(
x0, s0

)
with (x0)T s0 = nµ0 and µ0 > 0 such

that δ
(
x0, s0, µ0

) ≤ τ .

begin
x := x0; s := s0; µ := µ0;
while max(nµ, ||r||) ≥ ε do
begin

feasibility step:
(x, s) := (x, s) + (∆fx, ∆fs);

µ-update:
µ := (1− θ)µ;

centering steps:
while δ(v) ≥ τ do
begin

(x, s) := (x, s) + (∆x, ∆s) ;
end

end
end
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3.4 Some useful tools

In this subsection we present some technical lemmas which we need in
the rest of the paper.

Lemma 3.2. One has

min(v) ≥ 1− δ(v).

Proof. Using (13), one has

δ(v) = ‖e− v‖ ≥ |1−min(v)| ≥ 1−min(v).

which results the lemma.

Lemma 3.3. One has

‖v‖ ≤ √
n + δ(v).

Proof. Due to Cauchy-Schwartz inequality, one has

eT v ≤ |eT v| ≤ ‖e‖ ‖v‖ .

Using the above inequality and (13), one has

δ2(v) =
n∑

i=1

(1− vi)
2 = ‖v‖2 − 2eT v + n ≥ (‖v‖ − ‖e‖)2 ,

which completes the proof.

4 Analysis of the feasibility step

In this section we present some conditions for strict feasibility of the
feasibility step and an upper bound for the proximity function after a
feasibility step.

Lemma 4.1. The new iterations
(
xf , sf

)
are strictly feasible if

∥∥∥df
xdf

s

∥∥∥
∞

< 1− δ2(v).
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Proof. The proof of this Lemma is similar to the proof of Lemma 10
in [18] and therefore is omitted.

To simplify the notation in the sequel we introduce

ω(v) :=
1
2

(∥∥∥df
x

∥∥∥
2
+

∥∥∥df
s

∥∥∥
2
)

.

Lemma 4.2. If ω(v) < 1 − δ2(v), then the iterations
(
xf , sf

)
are

strictly feasible.

Proof. The proof is similar to the proof of lemma 11 in [18].

Assuming ω(v) < 1 − δ2(v), which guarantees the strict feasibility
of the iterations

(
xf , sf

)
. The next lemma gives an upper bound for

δ
(
xf , sf ; µ

)
.

Theorem 4.3. If the new iterations
(
xf , sf

)
are strictly feasible, then

δ
(
xf , sf ;µ+

)
≤ θ

√
n + δ2(v) + ω(v)

√
1− θ

(√
1− θ +

√
1− δ2(v)− ω(v)

) . (21)

Proof. The proof is similar to the proof of Theorem 2 in [18] and there-
fore is omitted.

Note that in the algorithm for using the quadratically convergence
of the centering steps after doing the feasibility step we need that the
following condition is satisfied

δ
(
xf , sf ; µ+

)
<

1√
1 + 4κ

. (22)

Using Theorem 4.3, this is certainly true, if

θ
√

n + δ2(v) + ω(v)
√

1− θ
(√

1− θ +
√

1− δ2(v)− ω(v)
) <

1√
1 + 4κ

. (23)
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By some elementary calculations, we obtain that if

ω(v) <
1

4
√

1 + 4κ
, (24)

δ(v) < τ <
1

4
√

1 + 4κ
, (25)

0 ≤ θ <
1

2n(1 + 4κ)
, (26)

then the inequality (23) is satisfied. In other words, the inequalities
(24), (25) and (26) imply that the iterations

(
xf , sf

)
are strictly feasible

and lie in the quadratic convergence neighborhood with respect to the
µ+-center of (Pν+). We proceed by considering the value ω(v) in more
detail.

4.1 An upper bound for ω(v)

We start by finding some bounds for the solution of a linear system of
the form

su + xv = a,

Qu + Rv = b̃.
(27)

Lemma 4.4 (Lemma 3.3 in [19]). If HLCP be P∗(κ), then for any
z = (x, s) ∈ R2n

++ and any a, b̃ ∈ Rn the linear system (27) has a
unique solution w = (u, v) and the following inequality is satisfied:

‖w‖z ≤
√

1 + 2κ ‖ã‖+
(
1 +

√
2 + 4κ

)
ξ(z, b̃),

where

ã = (xs)−
1
2 a, ‖w‖2

z = ‖(u, v)‖2
z = ‖Du‖2 +

∥∥D−1v
∥∥2

,

D = X− 1
2 S

1
2 ,

and

ξ(z, b̃)2 = min{‖(ũ, ṽ)‖2
z : Qũ + Rṽ = b̃}.
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Comparing system (27) with (19) and considering w = (u, v) =
(∆fx,∆fs), a = 2µv(e − v), b̃ = θνr0, z = (x, s) in the system (27),
we have

∥∥∥D∆fx
∥∥∥

2
+

∥∥∥D−1∆fs
∥∥∥

2
≤ (28)

≤
(
2
√

1 + 2κ
∥∥∥(xs)−1/2 (µv(e− v))

∥∥∥ + (1 +
√

2 + 4κ)ξ(z, θνr0)
)2

.

Note that
∥∥∥(xs)−

1
2 (µv(e− v))

∥∥∥ =
√

µ ‖e− v‖ =
√

µδ(v).

Also by definition of ξ(z, b̃), we have

ξ(z, θνr0) = θνξ(z, r0).

By definitions of df
x and df

s , we obtain D∆fx =
√

µ df
x and

D−1∆fs =
√

µ df
s . Substituting the above equations in (28), we have

ω(v) ≤ 1
µ

(√
2µ(1 + 2κ)δ(v) +

1√
2

(
1 +

√
2 + 4κ

)
θνξ(z, r0)

)2

. (29)

To proceed, we have to specify our initial iterates
(
x0, s0

)
. We

assume that ρp and ρd are such that

‖x∗‖ ≤ ρp, ‖s∗‖ ≤ ρd, (30)

for some optimal solutions (x∗, s∗) of (P ), and as usual we start the
algorithm with

x0 = ρp e, s0 = ρd e, µ0 = ρp ρd. (31)

Note that for such starting points we have clearly

x∗ − x0 ≤ ρpe, (32)

s∗ − s0 ≤ ρde. (33)

Now we find an upper bound for ξ(z, r0).
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Lemma 4.5. Let ξ(·, ·) be as defined in Lemma 4.4. Then we have

ξ(z, r0) ≤
√

ρ2
p

µv2
min

‖s‖2
1 +

ρ2
d

µv2
min

‖x‖2
1 .

Proof. By definition of ξ(z, b̃), we have

ξ(z, r0)2 = min{‖(ũ, ṽ)‖2
z : Qũ + Rṽ = r0}

= min{‖Dũ‖2 +
∥∥(D)−1ṽ

∥∥2 : Qũ + Rṽ = r0}.
We also have

r0 =b−Qx0 −Rs0 = Qx∗ + Rs∗ −Qx0 −Rs0

= Q(x∗ − x0) + R(s∗ − s0),

thus by applying (32) and (33) the following inequalities are satisfied

ξ(z, r0)2 ≤ ∥∥D(x∗ − x0)
∥∥2+

∥∥D−1(s∗ − s0)
∥∥2 ≤

≤ ‖ρpDe‖2 +
∥∥ρdD

−1e
∥∥2 =

= ρ2
p

∥∥∥∥
√

s

x

∥∥∥∥
2

+ ρ2
d

∥∥∥∥
√

x

s

∥∥∥∥
2

≤ ρ2
p

∥∥∥∥
√

s

x

∥∥∥∥
2

1

+ ρ2
d

∥∥∥∥
√

x

s

∥∥∥∥
2

1

=

=
ρ2

p

µ

∥∥∥∥
√

µ

xs
s

∥∥∥∥
2

1

+
ρ2

d

µ

∥∥∥∥
√

µ

xs
x

∥∥∥∥
2

1

=
ρ2

p

µ

∥∥∥s

v

∥∥∥
2

1
+

ρ2
d

µ

∥∥∥x

v

∥∥∥
2

1
≤

≤ ρ2
p

µv2
min

‖s‖2
1 +

ρ2
d

µv2
min

‖x‖2
1 .

The proof is completed.

In what follows we obtain some upper bounds for ‖x‖1 and ‖s‖1.

Lemma 4.6. Let (x, s) be feasible for the perturbed problem (Pν) and(
x0, s0

)
as defined in (31). Then for any optimal solution (x∗, s∗), we

have

ν
(
xT s0 + sT x0

) ≤
≤ (1 + 4κ)

(
ν2nµ0+ ν(1− ν)

(
(x∗)T s0 + (x0)T s∗

)
+xT s

)
.
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Proof. Since r0 = b−Qx0 −Rs0 and b−Qx−Rs = νr0, by definition
of perturbed problem, we have

Q (νx0 + (1− ν)x∗ − x) + R(νs0 + (1− ν)s∗ − s) =
= ν(Qx0 + Rs0) + (1− ν)(Qx∗ + Rs∗)− (Qx + Rs) =
= ν(b− r0) + (1− ν)b− (b− νr0) = 0.

Thus if

I+ = {i :
(
νx0 + (1− ν)x∗ − x

)
i

(
νs0 + (1− ν)s∗ − s

)
i
> 0},

and

I− = {i :
(
νx0 + (1− ν)x∗ − x

)
i

(
νs0 + (1− ν)s∗ − s

)
i
< 0},

then the P∗(κ) property implies that

(1 + 4κ)
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i +

+
∑

I−
(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i ≥ 0.

So we have
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i +

+
∑

I−
(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i ≥

≥ −4κ
∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i.

Thus we obtain

[νx0 + (1− ν)x∗ − x]T [νs0 + (1− ν)s∗ − s] ≥
≥ −4κ

∑

I+

(νx0 + (1− ν)x∗ − x)i(νs0 + (1− ν)s∗ − s)i ≥

≥
∑

I+

(
ν2x0

i s
0
i + ν(1− ν)(x∗i s

0
i + x0

i s
∗
i ) + xisi

) ≥

≥ −4κ
(
ν2(x0)T (s0) + ν(1− ν)((x∗)T s0 + (x0)T s∗) + xT s

)
.
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Since (x∗)T s∗ = 0, sT x∗+xT s∗ ≥ 0 and sT x0+xT s0 ≥ 0, we deduce
that

−4κ
(
ν2(x0)T (s0) + ν(1− ν)((x∗)T s0 + (x0)T s∗) + xT s

) ≤
≤ [νx0 + (1− ν)x∗ − x]T [νs0 + (1− ν)s∗ − s] =
= ν2nµ0 + ν(1− ν)((x∗)T s0 + (x0)T s∗)− ν(sT x0 + xT s0) +
+xT s− (1− ν)(sT x∗ + xT s∗) + (1− ν)(x∗)T s∗ ≤
≤ ν2nµ0 + ν(1− ν)((x∗)T s0 + (x0)T s∗)− ν(sT x0 + xT s0) + xT s.

Therefore we have

ν(xT s0 + sT x0) ≤
≤ (1 + 4κ)

(
ν2nµ0+ ν(1− ν)

(
(x∗)T s0 + (x0)T s∗

)
+ xT s

)
.

The proof is completed.

Lemma 4.7. Let (x, s) be feasible for the perturbed problem (Pν) and(
x0, s0

)
as defined in (31). Then we have

‖x‖1 ≤ (1 + 4κ)
(
2n +

(√
n + δ(v)

)2
)

ρp, (34)

‖s‖1 ≤ (1 + 4κ)
(
2n +

(√
n + δ(v)

)2
)

ρd. (35)

Proof. Using Lemma 4.6 and Lemma 3.3, this lemma may be proved
in the same way as the proof of Lemma 16 in [18].

Substituting (34) and (35) in Lemma 4.5 and noting Lemma 3.2
gives

ξ(z, r0) ≤
√

2ρ2
pρ

2
d

µ (1− δ(v))2
(1 + 4κ)2

(
2n +

(√
n + δ(v)

)2
)2

=

=
√

2
µ

(1 + 4κ)ρpρd

(
2n + (

√
n + δ(v))2

)

(1− δ(v))
. (36)
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Now by substituting (36) in (29), we have

ω(v) ≤ 1
µ

(√
2µ(1 + 2κ)δ(v) +

+
θν

(
1 +

√
2 + 4κ

)
(1 + 4κ)ρpρd

(
2n + (

√
n + δ(v))2

)

√
µ (1− δ(v))

)2

=

=

(√
2(1 + 2κ)δ(v) +

+
θ
(
1 +

√
2 + 4κ

)
(1 + 4κ)

(
2n + (

√
n + δ(v))2

)

1− δ(v)

)2

. (37)

4.2 Value for θ

We have found that δ(v) < 1√
1+4κ

holds if the inequalities (24) and
(25) and (26) are satisfied. Then by (37), inequality (24) holds if

√
2(1 + 2κ)δ(v) +

θ
(
1 +

√
2 + 4κ

)
(1 + 4κ)

(
2n + (

√
n + δ(v))2

)

1− δ(v)
<

<
1

2 4
√

1 + 4κ
.

Obviously, the left-hand side of the above inequality is increasing
in δ(v). Using this, one may easily verify that the above inequality is
satisfied if

τ =
1

32(1 + 4κ)
, θ =

1
50n(1 + 4κ)2

, (38)

which is in agreement with (24) and (25).
Note that by Lemma 4.2, to keep the iterates (xf , sf ) be feasible,

the following condition must be satisfied

ω(v) < 1− δ2(v).
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It follows from (37) that the above inequality certainly holds if

√
2(1 + 2κ)δ(v) +

θ
(
1 +

√
2 + 4κ

)
(1 + 4κ)

(
2n + (

√
n + δ(v))2

)

1− δ(v)
<

<
√

1− δ2(v). (39)

It is easy to verify that, for the above inequality, the left side is
monotone increasing according to δ(v), while the right hand side is
monotone decreasing according to δ(v). Using (38), an upper bound
for the left hand side of inequality (39) is 0.1969, while a lower bound
for the right hand side of inequality (39) is 0.9995. In this case, we
conclude that the iterate (xf , sf ) is strictly feasible.

5 Complexity analysis

Let δ
(
xf , sf ; µ+

) ≤ 1
2(1+4κ) , which is in agreement with (22). Starting

at (xf , sf ) we repeatedly apply full Newton steps until the k−iterate,
denoted as (x+, s+) := (xk, sk), satisfies δ

(
xk, sk; µ+

) ≤ τ . We can
estimate the required number of (centering) Newton steps by using
Lemma 2.3. To simplify notations we define for the moment δ(vk) =
δ
(
xk, sk; µ+

)
, δ(v0) = δ

(
xf , sf ; µ+

)
and γ =

√
1 + 4κ. Note that

γ ≥ 1. It then follows that

δ
(
vk

)
≤

(
γδ

(
vk−1

))2
≤

(
γ

(
γδ

(
vk−2

))2
)2

≤

≤ . . . ≤ γ2+4+...+2k (
δ
(
v0

))2k

.

This gives

δ
(
vk

)
≤ γ2k+1−2

(
δ
(
v0

))2k

= γ−2
(
γ2δ

(
v0

))2k

≤ (
γ2δ

(
v0

))2k

.

Using the definition of γ and δ
(
v0

) ≤ 1
2(1+4κ) we obtain

γ2δ
(
v0

) ≤ (√
1 + 4κ

)2 1
2(1 + 4κ)

=
1
2
.
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Hence we certainly have δ (x+, s+;µ+) ≤ τ if
(

1
2

)2k ≤ τ . Taking
logarithms at both sides, this reduces to

2k log2

1
2
≤ log2 τ.

Thus we find that after no more than
⌈
log2

(
log2

1
τ

)⌉
(40)

centering steps we have iterations (x+, s+) that satisfy δ (x+, s+; µ+) ≤
≤ τ . Substituting the value of τ from (38) in (40) gives that in the
algorithm, at most log2 (log2 (32(1 + 4κ))) centering steps are needed.
Note that in each main iteration both the value of xT s and the norm of
the residual are reduced by the factor 1− θ. Hence, the total number
of main iterations is bounded above by

1
θ

log
max

{(
x0

)T
s0,

∥∥r0
∥∥
}

ε
.

Due to (38) we may take

θ =
1

50n(1 + 4κ)2
.

Hence the total number of inner iterations is bounded above by

50n (1 + 4κ)2 log2 (log2 (32(1 + 4κ))) log
max

{(
x0

)T
s0,

∥∥r0
∥∥
}

ε
.

Thus we may state without further proof the main result of the
paper.

Theorem 5.1. If (P ) has an optimal solution (x∗, s∗) such that
‖x∗‖∞ ≤ ρp and ‖s∗‖∞ ≤ ρd, then after at most

50n (1 + 4κ)2 log2 (log2 (32(1 + 4κ))) log
max

{(
x0

)T
s0,

∥∥r0
∥∥
}

ε

iterations, the algorithm finds an ε-solution of HLCP.
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Table 1. The number of iterations for the examples.

Examples The number of iterations
6.1 107

6.2 with n=10 111
6.2 with n=20 117
6.2 with n=30 121

6 Numerical results

The algorithm was tested on some P∗(0) (monotone) linear comple-
mentarity problems. So R = −I. For the algorithm, the initialization
parameters ρp and ρd are assumed as described in Subsection 4.1, and
τ = 0.031, ε = 10−4 and θ = 0.1. Table 1 shows the number of itera-
tions to obtain ε−solutions of the following examples with Algorithm 2.

Example 6.1.

Q =




1 0 −0.5 0 1 3 0
0 0.5 0 0 2 1 −1

−0.5 0 1 0.5 1 2 −4
0 0 0.5 0.5 1 −1 0
−1 −2 −1 −1 0 0 0
−3 −1 −2 1 0 0 0
0 1 4 0 0 0 0




, b =




1
3
−1
1
−5
−4
1.5




.

Example 6.2.

Q =




1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
... . . .

...
0 0 0 . . . 1




, b =




1
1
1
...
1




.
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7 Concluding remarks and further research

In this paper, an infeasible full-Newton step method for solving P∗(κ)-
HLCP is presented. Based on new search directions, we established
that the complexity of the algorithm is at least as good as the currently
best known iteration bound for infeasible methods. Future research
could be done on representing the other type of infeasible interior-point
algorithms by analyzing the algorithm with another function ϕ(t) ∈ C1.
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