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Abstract

This work presents a hybrid model of high performance com-
putations. The model is based on membrane system (P sys-
tem) where some membranes may contain quantum device that
is triggered by the data entering the membrane. This model is
supposed to take advantages of both biomolecular and quantum
paradigms and to overcome some of their inherent limitations.
The proposed approach is demonstrated through two selected
problems: SAT, and image retrieving.

1 Introduction

The present paper concerns definition and investigation of new com-
putational models based on combination of biomolecular and quantum
approaches. This new approach springs from practical needs of sev-
eral disciplines delivering the hard tasks. Both existing quantum- and
bio- models of calculation are widely used to solve hard tasks being
not always satisfactory. Each paradigm has its own advantages and
disadvantages. The proposed hybrid model supposes to compensate
restrictions of existing models and to expose their benefits.

We will use membrane computing, or P systems [1] that was mo-
tivated by the structure and functioning of a living cell. The model is
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based on a cell-like hierarchical arrangement of membranes. (There is a
variation named the tissue model that uses a non-hierarchical arrange-
ment.) Membranes delimit compartments where objects presented by
multisets, numbers, or strings evolve according to the given evolution
rules. Many variants dependent on permitted rules and operations ex-
ist; we will not restrict ourselves by a particular type.

Quantum computing uses quantum properties to represent data
and perform operations over them [2]. Each quantum computation
inevitably includes non-quantum steps. Quantum algorithms always
begin with the (non-quantum) preparation of the initial observable
(classical) state. Then a sequence of quantum operations is applied
to the system whose states are unobservable during the process. At
the end, a (non-quantum) measurement is performed, and the quan-
tum system collapses to its final observable state.

One of the first hybrid computational models was proposed by
A. Leporati [3]. His hybrid of membrane and quantum systems de-
velops previously introduced UREM (Unit Rules and Energy assigned
to Membranes) P systems. The former adds “energy” to the objects
in a membrane system, and rules can be applied to objects inside a
membrane only if there is enough energy to do so. Quantum UREM
P system changes objects and rules: objects are represented as pure
states of a quantum system, and rules are quantum operators. The re-
sult is a hybrid computation device, a membrane system with quantum
operations.

We propose a different variant of hybrid model that keeps the entire
power of P systems. Our hybrid model is the classical P system frame-
work in which two types of membranes coexist: classical membranes,
and quantum membranes, the latter containing a quantum device in-
side. Entrance of an object into a quantum membrane triggers the
quantum computation, while the entered object is available as data in
the initial state of the quantum device.

The process of hybrid calculation is illustrated by solutions of two
problems. These problems represent the opposite sides of problems
range: from theoretical computing (SAT problem) to everyday practi-
cal application (medical image retrieval). Presentation of such different
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problems intends to demonstrate general potential of the proposed hy-
brid model.

This is an introductory paper dedicated to the proposed hybrid
model of calculations. The article demonstrates the applicability and
operability of the model on two selected examples. More applications
and other aspects like estimations of efficiency and consumed resources,
synchronization, hybrid simulator, etc., are subjects of further works.

2 P Systems and Hybrid Model

The first problem we selected to illustrate our construction is the SAT
problem. The second selected problem is the image retrieval problem.

Transitional P systems with inhibitors. For SAT problem, we
use non-cooperative transitional P systems with atomic inhibitors [4].
Although this class of systems is not even computationally complete [5],
it fits well to illustrate the power of the hybrid model. We introduce
here only the necessary definitions.

A non-cooperative transitional P system with atomic inhibitors
with input is defined as a tuple

Π = (O, Σ, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where: O is a finite alphabet; Σ ⊆ O is the input subalphabet; µ
is a membrane structure (a rooted tree, traditionally represented by
bracketed expression, e.g., [ [ ]2 ]1 denotes membrane 2 in membrane
1, and the set of labels of membranes from µ is H = 1, . . . , m); wi,
i ∈ H, are the initial multisets associated to regions i (directly inside
the corresponding membrane), traditionally represented by strings over
O (only the multiplicities of symbols being relevant, not their order);
Ri, i ∈ H, are the sets of rules associated to regions i; and i0 is the
label of input membrane (an input multiset over Σ is added to the
initial multiset in region i0 into the starting configuration). In this
paper, multisets wi and sets Ri are omitted if i is a label of a quantum
membrane.

The rules of the corresponding model are of the forms a → u or
a → u|¬b, where a, b ∈ O, u ∈ (O×Tar)∗, Tar = {here, out}∪{inj | j},
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and in this case j denotes a label of immediately inner membrane. The
effect of a rule is replacing object a with a multiset of objects specified
in the right side, in the regions specified by target indications (here
may be omitted). A rule with inhibitor b is applicable whenever b
absent. A transition step consists in parallel application of applicable
rules to all possible objects (non-deterministically if there is a choice).
The computation stops when no rules are applicable.

Symport/antiport tissue P systems. For the image retrieval
problem, we use tissue P systems with symport/antiport rules. A tissue
P system with symport/antiport rules with input is defined by a tuple

Π = (O, Σ, E, d, w1, · · · , wd, R, i0, o0),

where: O is the alphabet; Σ is the input subalphabet; E is the set
of objects occurring in the environment in infinitely many copies; d is
the degree of the system (H = {1, . . . , d} is the set of labels of regions
called cells, and the environment region is labeled by 0), wi, i ∈ H,
is the initial content of cell i; R is the set of rules; i0 is the label of
the input region (where a multiset over Σ is additionally placed in the
beginning of the computation); o0 is the label of the output region.

The rules have the form (i, u/v, j), meaning that a multiset u may
move from region i to region j, coupled with moving of a multiset v
from region j to region i. The rules are applied non-deterministically,
in the maximally parallel mode (i.e., no further rules can be applicable
to the idle objects).

The structure of the tissue is deduced from rules. A rule (i, u/v, j)
means that the i-th and the j-th cells are neighboring.

Hybrid model. We now present the formal description of hybrid
model

β = (Π,HQ, NQ, Inp, Outp, Q1, . . . , Qm).

A hybrid system β is defined by a membrane system Π (let us de-
note its membrane/cell label set as H and assume in the membrane
case that membranes with labels in HE ⊆ H are elementary), where
quantum devices Qj are associated to the elements j of a subset of
elementary membranes/cells HQ ⊆ HE . No membrane rules are as-
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sociated to the objects inside the quantum membranes. NQ is the
maximum number of qubits in the quantum part of the model.

Special objects are used to transfer data in the quantum membrane
and to obtain result of quantum calculation. They are collected in
alphabets Inp and Outp. See Sec. 3 for details of this interaction.

3 Quantum Membranes for the Hybrid Com-
putational Model

Our model is characterized by the existence of quantum membranes.
We describe below their internal construction.

Notations. Our quantum device explores function y = f(x). Sup-
pose that x is an integer, 0 ≤ x < 2N , that is, the argument of the
function takes N qubits.

M is the size of the result: y is an integer, 0 ≤ y < 2M .
We are provided with the initial data. Suppose that the membrane

is entered by a K-bit integer z0 (0 ≤ z0 < 2K). The quantum device
begins to work as z0 enters the membrane.

Suppose that intermediate data takes R qubits.
Quantum registers. Quantum calculation is to be reversible

while function f is not always bijective. Therefore, we need quan-
tum registers both for argument and for result, and we demand that
the argument was restored by quantum implementation F of function
f . The standard demand is

F |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 , (1)

where |x〉N is the argument register (the index denotes the size of N
qubits), |y〉M is the result, ⊕ is the modulo 2 bitwise addition (bitwise
xor).

Condition (1) implies the reversibility of transformation F. More-
over, F is its own inverse because:

FF |x〉 |y〉 = |x〉 |y ⊕ f(x)⊕ f(x)〉 = |x〉 |y〉 . (2)
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The quantum register |z〉K keeps initial data, and |w〉R keeps ancil-
lary (intermediate) data. Because of inevitable entanglement, we can
regard the quantum memory as one register of N +M +K +R qubits.

The linearity and the reversibility of quantum transformations per-
mit to organize the calculation in such a manner that we can ignore
ancillary data |w〉 in our deductions, as we will see below.

Initialization. Before the quantum calculation starts, each qubit
is to be set in one of basis states |0〉1, or |1〉1. The measurement
operation is already embedded to be used after calculation, so we can
apply it to our qubits.

As we use the measurement before the calculation, the qubits col-
lapse in the basis states. Measurement is irreversible, therefore it is a
classical operation.

Now we are to set qubits in the initial states. For example, if we
want to set them in the state |0〉, we are to check the state of each
qubit and invert |1〉. This is not a quantum transformation because
it glues two orthogonal vectors together. (In other words: because of
linearity, α |0〉+ β |1〉 would be transformed to (α + β) |0〉 that implies
|α + β|2 = 1, and αβ = 0. The operation is not linear, or it cannot be
applied to non-basis states.)

Usually, all qubits are initially set to |0〉1. (Several quantum
algorithms use different initial values though.) In our case, we
will use non-quantum tools to prepare the state |x〉 |y〉 |z〉 |w〉 =
|0〉N |0〉M |z0〉K |0〉R. Here z0 is the number that entered the quantum
membrane and initiated the process.

As the last step of the initialization, all qubits from register |x〉 are
at once transformed by one-qubit Hadamard transformation

H =
1√
2

(
1 1
1 −1

)
. (3)

As the result, register |x〉 gets the state

|x〉 =
1

2N/2

∑

0≤x<2N

|x〉 , (4)
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that corresponds to the equal probability of all possible values of argu-
ment x. This ends the initialization.

Interaction with membrane environment. The quantum
membrane needs a binary number to be initialized. P systems are
mostly supposed to work over multisets of objects. If this is the case
we can use in the membrane part objects Zi,b ∈ Inp, where 0 ≤ i < K
and b = 0, 1, where K is the size of the initial data |z〉K for the quan-
tum device. If the quantum membrane is entered by Zi,0 (Zi,1), then
the i-th qubit ot the quantum register |zi〉 should be initialized to |0〉
(|1〉). We have several possible techniques:

1. We can demand that exactly K objects Zi,b with all 0 ≤ i < K
enter the quantum membrane simultaneously as we do it in this
paper.

2. We can use |0〉 as the default initialization of |z〉 in the quan-
tum device and require only Zi,1 for selected values of i to enter
simultaneously the quantum membrane.

3. We can use an additional object Qtrigger whose only mission is
to start quantum calculation. In this case the simultaneous input
of all Zi,b into the quantum membrane becomes not necessary.

4. We should not demand that Zi,0 and Zi,1 were mutually exclusive.
For example, if the quantum membrane was entered by three
instances of Z2,0 and one instance of Z2,1, then the second qubit
of |z〉 is to be initialized as |z2〉 =

√
3

2 |0〉+ 1
2 |1〉.

5. We can introduce even more objects to represent initial values of
all qubits in the quantum device. For example, standard initial-
ization of |x〉 would correspond to the entrance of both Xi,0 and
Xi,1 for all 0 ≤ i < N , with obvious notations.

The output of quantum result y outside the quantum membrane
is performed classically producing objects from Outp after the final
measurement.

Quantum calculation and result. Applying F, we get into |y〉
superposition of values of function f(x) at all possible values of the
argument:

F |x〉 |0〉 =
1

2N/2

∑

0≤x<2N

|x〉 |f(x)〉 . (5)
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This is the quantum parallelism.
If this finishes the calculation, the following measurement reduces

qubit states to basis and we get the result |x1〉 |f(x1)〉. Here x1 is a
random integer between 0 and 2N − 1.

Nobody would mess with quantum calculations were they to pro-
duce only a value of the function at a random point. However,
we could not stop after transformation F. Let us use simultane-
ously available values of function f at all values of its argument, and
perform over |f(x)〉 another transformation G that produces some
important information on all these values at once: G |x〉 |f(x)〉 =
|x〉 |something important〉.

The quantum programmer should elaborately select unitary linear
transformations F and G. They are applied using entanglement and
quantum parallelism.

During the quantum calculation we got all values of function f but
they are unobservable. We can then stop and get no more than one
value f(x1), or we can continue losing the information on particular
values of function f but obtaining some data on its more general prop-
erties. This is the uncertainty principle in quantum calculations.

Independence of ancillary qubits. Register |z〉 of initial data
and the ancillary register |w〉 could be ignored as speaking on result
of the calculation. This was done, for example, in equation (5). The
necessary conditions are:

• after the calculation the qubits of |z〉 and |w〉 were not entangled
with qubits of |x〉 and |y〉;

• resulting values of |z〉 and |w〉 do not depend on the initial values
of |x〉 and |y〉.

The entanglement of all qubits during the calculation should take
place because in the opposite case the unused qubits could be deleted
from the construction.

The construction of a quantum computer shown in Fig. 1 guarantees
this.

V†f = V−1
f is the inverse transformation to Vf . CM are M standard

“controlled NOT” gates, where qubits from |f(x)〉M are control qubits.
An additional transformation is introduced as follows: Vf is re-
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|y〉M

|x〉N

|w〉R

|z〉K

Vf

|f(x)〉M

CM

|ψx,z〉N+R+K−M

|f(x)〉M

V
†

f

|y ⊕ f(x)〉M

|x〉N

|w〉R

|z〉K

Figure 1. Quantum calculation into a membrane; initialization is not
shown

placed by VgVf . The inverse transformations are applied in the reverse
order: V†f V†g (Fig. 2).

|y〉M

|x〉N

|w〉R

|z〉K

Vf Vg

|g(f(x))〉M

CM

|ηx,z〉N+R+K−M

|g(f(x))〉M

V
†

g V
†

f

|y ⊕ g(f(x))〉M

|x〉N

|w〉R

|z〉K

Figure 2. Quantum calculation with an additional transformation

Let us note that, in Fig. 2, transformation Vg can access only entan-
gled qubits |ψ〉 and |f(x)〉 while the original |x〉 and |z〉 are unavailable.
To correct this, we are to apply Vg exactly alike Vf after the termination
of all calculations as in Fig. 1, so to speak, “as the second cascade”.
We need another ancillary register made from M qubits initialized by
|0〉 (Fig. 3; the gray color emphasizes the part corresponding to Fig. 1).
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|0〉M

|x〉N

|w〉R

|z〉K

|ψ〉

Vf

CM

V
†

f

|f(x)〉M

|x〉N

|w〉R

|z〉K

|y〉P

Vg

CP

V
†

g

|g(f(x))〉P

|η〉

|y ⊕ g(f(x))〉P

|f(x)〉M

|x〉N

|w〉R

|z〉K

Figure 3. Additional transformation with access to the initial data

The size R of an ancillary register may grow at necessity. The size P
of the result should not be equal to M . We get as the result not only
|g(f(x))〉, but |f(x)〉 either. We can construct a chain of more than
two transformations in this manner.

4 Satisfiability

SAT problem. A boolean formula in conjunctive normal form is
an expression γ =

∨
1≤j≤m Cj , where Cj =

∧
1≤l≤kj

zl,j , and zl,j ∈
{xi,¬xi | 1 ≤ i ≤ n}, 1 ≤ j ≤ m, 1 ≤ l ≤ kj . We assume the input is
given by a set of objects from Σ = {xi,j , xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
each object representing appearance of variable xi in clause Cj without
negation in case of xi,j and with negation in case of xi,j .

Remark: if xi does not appear in clause Cj in either form, this fact
also needs to be explicitly present as an input to the quantum system
we consider. However, it will be the job of membrane subsystem to
detect this case and produce the corresponding object.

Membrane system. For the construction we need a bijection l
from pairs (i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m onto numbers {k | 1 ≤ k ≤
mn}. We define it by l(i, j) = (j−1)m+ i. We construct the following
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P system (where membrane 2 is a quantum membrane):

Π = (O,Σ, µ = [ [ ]2 ]1, w1 = s,R1, i0 = 1),
O = Σ ∪ {Ik,b, I

′
k,b | 1 ≤ k ≤ 2mn, 0 ≤ b ≤ 1}

∪ {s, s′, yes, no} ∪ {yi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
R1 = {xi,j → I ′2l(i,j)−1,1I

′
2l(i,j),0}

∪ {xi,j → I ′2l(i,j)−1,1I
′
2l(i,j),1}

∪ {s → y1,1 · · · yn,ms′}
∪ {yi,j → I ′2l(i,j)−1,0I

′
2l(i,j),0|¬I′

2l(i,j)−1,1

| 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {s′ → λ}
∪ {yi,j → λ|¬s′ | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {I ′k,b → (Ik,b, in2)|¬s′ | 1 ≤ k ≤ 2mn, 0 ≤ b ≤ 1}.

The P system above takes three steps to prepare the input for the
quantum system. The first step generates the input symbols corre-
sponding to variables appearing in some clauses. The second step gen-
erates the input symbols corresponding to variables not appearing in
some clauses. The third step erases intermediate objects and sends the
input into the quantum membrane. The input z0 consists of K = 2mn
bits, that are grouped in m groups of 2n bits each. Each of m groups
corresponds to a clause, and each two bytes in these groups correspond
to a variable. From these bytes, the first one is 0 if the variable is
absent in the clause, and it is 1 if the variable is present in the clause.
The second byte is 0 for variable xi and 1 for its negation x̄i. It is obvi-
ous that combination 01 is impossible for these bytes. We will denote
these bytes by zp (presence) and zg (negation).

Quantum system. The quantum calculation is quite straightfor-
ward and implements formula:

C = C ∨ (zp ∧ (zg ⊕ x))

to calculate clause C of the propositional form γ. Here C means any
of Cj , x means any of xi, and zp and zg mean the corresponding pairs
of bits from z0. γ is calculated as γ = γ ∧ C for each clause C.
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The necessary quantum circuits are shown in Fig. 4. They use stan-
dard cNOT and Toffoli gates, and inversion (not). We need ancillary
qubits to make and and or reversible.

a a

b a⊕ b

xor

a a

b b

0 a ∧ b

and

a ¬a

b ¬b

1 a ∨ b

or

Figure 4. Quantum implementation of Boolean operations

Then Grover’s algorithm is applied to search for 1 between possible
values of γ. See a detailed step-by-step description in [7].

5 Image Retrieval

Many tasks of medical imaging are affected by image database size.
Retrieval of images, similar to a given one, can be considered the most
important one among these tasks. During the retrieval, extraction by
attributes can be implemented mostly in parallel. The attribute vectors
comparison can be also made in parallel for each image as we check
the similarity over the whole database. Therefore, images retrieval
problem is favorable for massive parallelism provided by unconventional
computation, and its binary outputs are suitable for being given by
quantum oracle. Basing on this, we chose image retrieval problem as
relevant test example for hybrid computational model. It is obvious,
however, that in general image retrieval problem is the monstrous task.
In current work we only demonstrate how hybrid model can solve the
essence subtask of retrieval – estimation of two images similarity.
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Definitions. Let Imgdb is one image from database of grayscale
images. Imgu is the pattern image supplied by user. Both images have
the size Nw ×Nh pixels. The problem is to learn range of similarity of
two images according to given similarity criterion Csim. Let us assume
for test purpose that Csim = Nsim/Nucont, where Nsim is the number
of matching contour points, Nucont is the total number of points in the
contour of the user image.

Basing on general definition of hybrid model given in Sec. 2, the
solution of images retrieval problem is represented by the following
hybrid model:

β = (Π,HQ, NQ, Inp, Outp, Q1, . . . , Qm),

where m is the database size as we will need m identical quantum
devices for m database images.

For this task P system based calculation implements algorithm of
grayscale image region-based segmentation proposed by the Spanish
P system research group [6]. Thus, Π is a tissue-like P system. On
account of calculation details do not concern the hybrid model func-
tioning, let us give only brief scheme of algorithm. Each pixel is coded
by integer representation of its associated grayscale value and mapped
to the corresponding multiset object aij (bij – for the second image).
Graphical-related basis of algorithm is the edge-based segmentation
using the cross-like 4-adjacency.

We need two membranes to perform algorithm for each of two im-
ages and one HQ membrane to proceed to retrieval, one more membrane
is added to keep the answer.

Π(n,m) = (µ,Σ, ε, w1u, w2u, w1db, w2db, q1,R, iΠ , oΠ),

where set of membranes is µ = [ ]1[ ]2[ ]3[ ]4[ ]5[ ]collect; input alphabet
is Σ = {aij : a ∈ C, 1 ≤ i ≤ n; 1 ≤ j ≤ m} ∪{bij : a ∈ C, 1 ≤ i ≤ n;
1 ≤ j ≤ m}; environment alphabet is ε = {āij : a ∈ C, 1 ≤ i ≤ n,
1 ≤ j ≤ m, a ∈ C} ∪ {Aij : a ∈ C, 1 ≤ i ≤ n; 1 ≤ j ≤ ma ∈ C} ∪ {b̄ij :
a ∈ C, 1 ≤ i ≤ n, 1 ≤ j ≤ m, b ∈ C} ∪ {Bij : b ∈ C, 1 ≤ i ≤ n;
1 ≤ j ≤ mb ∈ C}; w1u, w2u, w1db, w2db = ∅; iΠ = 1; oΠ = collect.
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The only quantum system for one database picture is Q1 that will
be described below.

Now let us present set R of communication rules.
Firstly, the segmentation is implemented by P system based cal-

culation using subset Rpsyst of R. The Rpsyst is presented only for
one image, because rules are identical, excepting replacement a by b.
Communication rules of Rpsyst are divided into types according seg-
mentation steps.

Rules of type 1 look like (1, aijbkl/āijAijbkl, 0), where a, b ∈ C, 1 ≤
i, k ≤ n; 1 ≤ j, l ≤ m}. These rules identify the contour pixels by
adjacency of different colors and produce the marks of the edge pixels.

After these marks appear, the rules of type 2 start to be applied in
parallel with type 1 rules. Rules of type 2 are as follows:
(1, āijaij+1āi+1j+1bi+1j/āij āij+1Aij+1āi+1j+1bi+1j , 0) a, b ∈ C, a < b, 1 ≤
i ≤ n− 1, 1 ≤ j ≤ m− 1
(1, āijai−1j+1āij+1bij+1/āij āi−1jAi−1j āi−1j+1bij+1, 0) a, b ∈ C, a < b, 1 ≤
i ≤ n; 1 ≤ j ≤ m− 1
(1, āijaij+1āi−1j+1bi−1j/āij āij+1Aij+1āi−1j+1bi−1j , 0) a, b ∈ C, 1 ≤ i, k ≤
n; 1 ≤ j, l ≤ m− 1
(1, āijai+1j āi+1j+1bij+1/āij āi+1jAi+1j āi+1j+1bij+1, 0) a, b ∈ C, 1 ≤ i, k ≤
n− 1; 1 ≤ j, l ≤ m− 1

These rules mark with the pixels that are adjacent to two pixels
of the same color, which were marked by rules of type 1 but with the
condition that the marked objects are adjacent to another pixel with a
different color. Together with these operations the object representing
the final border pixel is brought from the environment.

Finally, the rules of type 3 (1, Aij/λ, 2), for 1 ≤ i ≤ n, 1 ≤ j ≤ m
are applied putting all the edge pixels Aij in the output cells.

The only change, made in the algorithm from [6] to adopt it for
retrieval, is the absence of final stage in which segmented image is
restored from tissue P system. To prepare the enter in membrane of
HQ we only need the points of contours that divide segmented areas.
They are stored in the resulting multiset Aij (Bij). Actually we have
the set of contour points that are now independent from color. To solve
retrieval problem, points Bij obtained from Imgu have to be checked
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(in fully parallel mode) only on existence of contour point (points) Aij

in correspondent neighborhood for Imgdb. The question of similarity is
mapped to matching of criterion Csim to threshold. This fact makes the
problem similar to graph isomorphism one (for case of reduced graph),
that has a number of quantum-based solutions in majority applying
the adaptation of classical Grover search [7].

To manage HQ calculation of this problem, we have to apply two
extensions of classical Grover search algorithm. Firstly, we need the
possibility of starting from an arbitrary state. The convergence of
Grover search in this case is proved in [8] and iterations number is
π
√

N
4 . The second extension is a well known one: existence of several

solutions. It is proved that Grover search algorithm converges with
the same number of iterations even when the number of solutions is
unknown, but only if any arbitrary solution is suited [9]. This is our
case because presence of any contour point in the given neighborhood
is enough for a positive answer.

The next subsetRq ofR prepares the input for the quantum system.
Rq = (2, Aij/λ, )5, (4, Bij/λ, )5, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Inp contains
Aij ∪ Bij , Outp is {yes, no} i.e. similar or not. The activation of HQ

membrane has to wait until segmentation of both images finishes.
The calculation inside HQ membrane is implemented by the follow-

ing way. Both user and database images contours are coded by integers
i, 0 < i < Ncntr that represent index number of the corresponding pixel
in the image left-right and top-down. The |x〉 and |y〉 registers of HQ

membranes are activated by these tuples of integer. The search is pro-
vided for each integer in |x〉 having |y〉 as work register. Starting from
description in work [7] where the close task is solved, the following
Grover oracle is build:

f(x) =

{
1, if ileftnbh < i < irightnbh;
0, otherwise.

In general the algorithm is:
1. Obtain the integer |xi〉 from register |x〉
2. Use Grover Algorithm with oracle described above on the ele-

ments of |y〉 to search the contour point in given neighborhood.
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3. if Grover search gives the positive answers, then Nsim + +
4. if i + + < Nucont, then return to step 1, else
5. the criterion Csim = Nsim/Nucont is evaluated, then the answer

yes/no is generated and passed into membrane µcollect.
This calculation can be repeated in parallel for all database images,

collecting the answers in µcollect.

6 Conclusions

This work introduces our version of computational paradigm that com-
bines both quantum and biological approaches. In the field of uncon-
ventional computing, quantum and biological paradigms were devel-
oped mostly in parallel but both are considered as the tools for hard
tasks solutions. Solutions of some, mostly practical, hard tasks by
pure quantum or pure bio-inspired methods could be inefficient. The
idea of hybrid model springs from necessity of efficient computational
models for such problems. We use P systems as the starting point at
the hybrid model development. The proposed computational model
applies the classical P system framework in which the quantum-style
algorithms are interned.

We concentrated in this paper on demonstration of functioning of
the proposed hybrid model. In our following works we will provide
more detailed basis as well as the quantitative characteristics of the
effectiveness of hybrid calculations. Simulation of the hybrid model
will be also discussed. Here and now we just intend to show viability of
membrane-quantum hybrid model. For this, we choose two problems of
different patterns: the first problem belongs to theoretical computing,
while the second is strongly practical one. Both problems show good
applicability of the proposed hybrid model.

We presented here the hybrid model where the P system (macro)
level is the main frame while quantum (micro) level is represented by
membrane with quantum computation. The mutual accepting of in-
put/output by computation models consists, on the current stage, in
mapping of P system multisets to quantum basis states. Quantum com-
putation is reduced in these problems to quantum oracle that answers
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yes or no.
We would provide in our further research mutually-inspired devel-

opment of formal hybrid model description and practical solutions for
more emerging and complicated tasks that can demonstrate the advan-
tages of hybrid model.
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