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Chromatic Polynomials Of Some

(m, l)−Hyperwheels

Julian A. Allagan

Abstract

In this paper, using a standard method of computing the chro-
matic polynomial of hypergraphs, we introduce a new reduction
theorem which allows us to find explicit formulae for the chro-
matic polynomials of some (complete) non-uniform (m, l)−
hyperwheels and non-uniform (m, l)−hyperfans. These hyper-
graphs, constructed through a “join” graph operation, are some
generalizations of the well-known wheel and fan graphs, respec-
tively. Further, we revisit some results concerning these graphs
and present their chromatic polynomials in a standard form that
involves the Stirling numbers of the second kind.

Keywords: chromatic polynomial, hyperfan, hyperwheel,
Stirling numbers.

1 Basic definitions and notations

For basic definitions of graphs and hypergraphs we refer the reader
to [1, 4, 10, 17, 20]. A hypergraph H of order n is an ordered pair
H = (X, E), where |X| = n is a finite nonempty set of vertices and
E is a collection of not necessarily distinct non empty subsets of X

called (hyper)edges. In this paper, all hypergraphs discussed are con-
sidered simple and Sperner, i.e., they have distinct hyperedges and no
hyperedge is a subset of another.

A hypergraph H is r−uniform, if |e| = r for each e ∈ E ; otherwise,
H is said to be non-uniform. In the case when r = 2, the resulting
hypergraph is called a graph which is often defined by H = (V,E). A
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hypergraph is said to be linear if each pair of hyperedges has at most
one vertex in common. The degree of a vertex v, denoted by d(v), is
the number of hyperedges that contain v. Hypergraphs in this paper
are assumed to be connected and linear unless stated otherwise.

Given a hypergraph H = (X, E), we define the deletion of e by
H− e, which is the hypergraph obtained from H by deleting some hy-
peredge e ∈ E . The contraction of e defined by H.e, is the hypergraph
obtained from H by identifying all the vertices in e by a single vertex
and removing e from E (clearing).

A hyperedge e1 ∈ E is called a hyperleaf if there exists e2 ∈ E − e1

such that e ∩ e2 ⊆ e1 ∩ e2 for every e ∈ E − e1. In the case of linear
hypergraphs, a hyperleaf is simply a hyperedge with exactly one vertex
of degree greater than 1. If P l := v1, e1, v2, e2, . . . , vl, el, vl+1 denotes an
alternating sequence of distinct hyperedges ei and distinct intersecting
vertices vi, then P l is called an l−hyperpath, for all l ≥ 1. In the
event v1 = vl+1 for all l ≥ 2, the resulting hypergraph is called an
l−hypercycle which we denote by Cl. It causes no confusion to say that
Cl is induced by the sequence of hyperedges (e1, e2, . . . , el), for all l ≥ 2.
We note that the term elementary hypercycle has also been used by
Tomescu [15] to describe l−hypercycle and yet, for simplicity, we choose
to use the former term. Moreover, we point out that a 2−hypercycle
induced by (e1, e2) when 2 < |e1| ≤ |e2|, is not linear, and in fact, is a
2−hyperpath with |e1 ∩ e2| = 2. For this paper, we do not make such
a distinction in name, since it does not affect the results.

Let H1 and H2 be two hypergraphs. The join of H1 and H2, de-
noted by H1 ∨ H2, is the hypergraph H whose vertex set is X(H) =
X(H1) ∪ X(H2), a disjoint union, and whose hyperedge set is E(H) =
E(H1) ∪ E(H2) ∪ {x1x2 | x1 ∈ X(H1), x2 ∈ X(H2)}. For example,
Kn1

∨Kn2
∨. . .∨Knk

= K(n1, n2, . . . , nk) is a complete k−partite graph
with part sizes n1, . . . , nk. We denote a wheel graph by W l = C l ∨ v,
where C l is a cycle on l = n vertices. C l is the rim of the wheel and
the edges not in the rim are called spokes. We will call a wheel on l

rim edges (or on n + 1 vertices), an l−wheel, for short. For instance,
when l = 2, a 2−wheel graph is a cycle C3 ' K3; for this reason, it is
customary to define a 3−wheel instead. Although a wheel and a cycle
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are both traditionally defined on n vertices (see [20] for instance), we
think it causes no confusion to substitute (where it is convenient) the
number of vertices n for l, the number of edges. Further, the notation
of W l and C l (instead of Wn and Cn, respectively) will be particularly
important for us when handling hypergraphs. In each of the formula
presented in this paper, one can easily replace l with the appropriate
number of vertices by a simple substitution. We also denote the falling
factorial λt = λ(λ − 1)(λ − 2) . . . (λ − t + 1) with λ0 = 1. Further, the
Stirling number of the second kind is denoted by

{

n
k

}

; it counts the
number of partitions of a set of n elements into k nonempty subsets.
Clearly

{

n
0

}

=
{0

n

}

= 0 and
{

n
1

}

=
{

n
n

}

=
{0

0

}

= 1. These notations
and other combinatorial identities can be found in [12].

2 Chromatic polynomial of some graphs

The notion of coloring the vertices of a graph has been widely studied
[10, 20]. A given graph G on n vertices can be properly colored in
many different ways using a sufficiently large number of colors. This
property of a graph is expressed elegantly by means of a polynomial.
This polynomial is called the chromatic polynomial of G. It is well-
known that Birkhoff [5] first introduced this polynomial in 1912 in an
attempt to prove the four color theorem. The value of the chromatic
polynomial P (G,λ) = P (G) of a graph with n vertices gives the number
of ways to properly color the graph G, using λ or fewer colors. For
instance, the chromatic polynomials of a complete graph on n vertices,
a tree, and a cycle with l edges are respectively given by P (Kn) = λn,
P (T l) = λ(λ − 1)l and P (C l) = (λ − 1)l + (−1)l(λ − 1).

The following theorem of Whitney [22], which gives the chromatic
polynomial of a graph in terms of ”broken circuits”, is often used as a
standard form; this form explicitly gives a basic property of the chro-
matic polynomial, namely, the powers of the chromatic polynomial are
consecutive and their coefficients alternate in sign.

Theorem 2.1. (Whitney’s ”Broken Circuits” Theorem). Let P (G,λ) =
λn − a1λ

n−1 + a2λ
n−2 − . . . + (−1)n−1an−1λ. The coefficient ai is equal
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to the number of i−subsets of edges of the graph G which contain no
broken cycles, for each i = 1, 2, . . . , n − 1.

Although any chromatic polynomial can be written in this form,
it is shown in [13] that chromatic polynomials written in terms of the
Stirling numbers of the second kind have many applications. Still, we
can always rewrite our results given in terms of Stirling numbers into
a more standard basis, using the combinatorial identity (see [12] for

instance) that

{

n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn.

F 3 = P 3 ∨ v
F 3 = T 3 ∨ v

(a) Gem graph (b) Θ(1, 2, 2, 2) graph

Figure1. Two non-isomorphic fan graphs

u1 u2 u3 u4

v

w1 w2 w3

w4

v

Theorem 2.2. Suppose H is a (hyper)graph. Then P (H ∨ Kn, λ) =
n
∑

i=0

{

λ

i

}

λiP (H, λ − i).

Proof. Recall that
{

λ
i

}

counts the number of ways of partioning n ver-
tices into i distinct classes of colors. Now, there are λi ways to color
the vertices of each class. Since a color used in a class cannot occur on
any vertex in H, the result follows.
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Using a similar argument, we derive an alternative version of the
previous theorem as:

Theorem 2.3. (Alternative Version) Suppose Hl is a hypergraph with
l hyperedges. Then P (Hl ∨ Kn, λ) = λnP (Hl, λ − n).

Corollary 2.3.1. Let G = T l ∨ Kn. The chromatic polynomial of G

is given by P (G) = λn(λ − n)(λ − n − 1)l.

It is easy to verify that when l = 1 and n = 2, P (G) = λ2(λ −
2)(λ − 3) = λ4 = P (K4).

Corollary 2.3.2. The chromatic polynomial of a complete k−partite

graph G = K(n, 1 . . . , 1) is P (G) =

n
∑

i=0

{

λ

i

}

λi(λ − i)k−1.

Proof. Clearly G ' Kn ∨ Kk−1 and P (Kk−1, λ) = λk−1. The result
follows from Theorem 2.2.

Observe that if we choose to count the proper colorings of the ver-
tices of Kk−1 first, we can easily establish an equivalent formula that
P (G) = λk−1(λ−k +1)n, a formula that is also supported by Theorem
2.3.

Corollary 2.3.3. Suppose G = K(n1, n2) is a complete bipartite graph.

Then P (G) =

n1
∑

i=0

{

λ

i

}

λi(λ − i)n2 .

Proof. This result also follows from Theorem 2.2, since G ' Kn1
∨Kn2

.

We define an (m, l)−wheel and (m, l)−fan graphs respectively by
W m,l ' Km ∨ C l and Fm,l ' Km ∨ P l, where P l is an l−path, C l an
l−cycle, and Km is an empty graph on m vertices. We note that though
P l may not be isomorphic to T l for l ≥ 3, their chromatic polynomials
are the same for all l. For this reason, it even makes sense to define
an (m, l)−fan graph by Fm,l ' Km ∨ T l, where T l is an l−tree. When
m = 1, a (1, l)−wheel graph is simply the usual wheel graph and a
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(1, l)−fan graph is simply called a fan graph (also known as a 2−tree
graph in [20]); in which case, we let W 1,l = W l and F 1,l = F l. Thus,
(m, l)−wheel and (m, l)−fan graphs are some generalizations of the
ordinary wheel and fan graphs (Figure 1), for m ≥ 1. In section 4, we
provide further generalizations of these graphs to hypergraphs.

Corollary 2.3.4. The chromatic polynomial of an (m, l)−wheel graph

is given by P (W m,l) =
m
∑

i=0

{

λ

i

}

(

(λ − i − 1)l + (−1)l(λ − i − 1)
)

.

Corollary 2.3.5. The chromatic polynomial of an (m, l)−fan graph is

given by P (Fm,l) =
m
∑

i=0

{

λ

i

}

λi(λ − i)(λ − i − 1)l.

Corollary 2.3.6. The chromatic polynomial of an l−wheel graph is
given by P (W l) = λ((λ − 2)l + (−1)l(λ − 2)).

Corollary 2.3.7. The chromatic polynomial of a fan graph is P (F l) =
λ(λ − 1)(λ − 2)l.

3 Chromatic polynomial of some hypergraphs

In 1966 P. Erdös and A. Hajnal extended the notion of proper coloring
of a graph to the coloring of a hypergraph [11]. Thus, the chromatic
polynomial of a hypergraph H, first denoted in [16] by P (H, λ) = P (H),
is the function that counts the number of proper λ−colorings, which
are mappings, f : X → {1, 2, . . . , λ} with the condition that every hy-
peredge has at least two vertices with distinct colors. We encourage
the reader to refer to [1, 6, 13, 14, 17] for detailed information about
chromatic polynomials, research, and applications of hypergraph col-
orings.

This next theorem will be instrumental to streamline the arguments
we make in several upcoming proofs for the remaining of this paper.
Similar versions of this theorem can be found in [6, 19]. However, we
think this particular version (Reduction Theorem) is unknown as it
generalizes the Fundamental Reduction Theorem for graphs found in
[10, 20] for instance.

26



Chromatic Polynomials Of Some (m, l)−Hyperwheels

Theorem 3.1. (Reduction Theorem) Suppose H is a hypergraph with
l ≥ 2 hyperedges. Then P (H) = λ|e|−2P (H− e)−P (H.e), where e is a
hyperedge with exactly two vertices of degree 2 or greater.

Proof. Note that if |e| = 2, then the relation satisfies the reduction for
graphs.

Let u1 and u2 be the 2 vertices of degree 2 in e. In any proper
coloring of the hyperedge e using λ colors, the following is true:

Either (i) u1 and u2 have the same color, or (ii) u1 and u2 have
different colors. We therefore count the number of such colorings for
each case in turn.

Case (i) There are λ|e|−2−1 ways to color the vertices in e\{u1, u2}
so that not all receive the same color, and there are P (H.e) ways to
color the remaining vertices so that f(u1) = f(u2) (to see this, delete e

and identify u1 and u2). Hence, there are (λ|e|−2 − 1)P (H.e) colorings.

Case (ii) There are λ|e|−2 colorings of the vertices in e\{u1, u2}. For
each such coloring, the number of colorings of the remaining vertices is
P (H− e)−P (H.e), since the first term counts the number of colorings
where u1 and u2 may have the same or different colors, and the second
term counts the number of colors where u1 and u2 may have the same
color. So there are λ|e|−2(P (H − e) − P (H.e)) colorings altogether.

By combining (i) and (ii), we obtain the result for all |e| ≥ 2.

Dohmen [8] extended Whitney’s ”Broken Circuits” Theorem to hy-
pergraphs with the next proposition. It denotes by n(H), the number
of vertices of H, m(H), the number of hyperedges of H and by c(H),
the number of connected components of H.

Proposition 3.1. Let H be a hypergraph. Then

P (H) =
∑

S⊆H

(−1)m(S)λn(H)−n(S)+c(S). (1)

Later, Tomescu [15] also presented a similar result using an
inclusion-exclusion principle argument in
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Lemma 3.1. Let H = (X, E) be a connected hypergraph with |X| = n.
Denote by N(i, j) the number of spanning subhypergraphs of H with n

vertices, i components, and j hyperedges. Then

P (H) =

n
∑

i=1

aiλ
i, (2)

where ai =
∑

j≥0

(−1)jN(i, j).

We now present some known results (see [1, 6, 19] for instance),
although in different forms. Our results are more in line with the stan-
dard form (2) as they can have some added benefits for further analysis,
namely, finding generating functions. In addition, these results will not
only help to illustrate the Reduction Theorem but also later serve the
purpose of comparing the effect of a certain ”join” operation on the
chromatic polynomial of some hypergraphs.

The next theorem was first presented by Walter [19] as a general-
ization of Dohmen’s result for r−uniform hypertree [9]. Though the
proof can be obtained by a recursion using the Reduction Theorem, it
is quite simple by an induction on l ≥ 1.

Theorem 3.2. If T l = (X, E) is an l−hypertree, then P (T l) =

λ

l
∏

i=1

(λ|ei|−1 − 1), for all l ≥ 1.

Proof. When l = 1, it is clear that there are λ|e| − λ = λ(λ|e|−1 − 1)
ways to color the vertices of a hyperedge so that not all of them have
the same color. So, we assume l ≥ 2. Let el be a hyperleaf (there
is at least one since T l is acyclic). Then, for each proper coloring of
T l−el, there are exactly λ|el|−1−1 ways to properly color the remaining
(pendant) vertices of el, giving (λ|el|−1 −1)P (T l − el) proper colorings.
Since P (T l − el) = P (T l−1), the result follows from the inductive
hypothesis.

Theorem 3.3. The chromatic polynomial of an l−hypercycle is given
by
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P (Cl) =

l−1
∑

i=0

(−1)iλ|el−i|−2P (T l−i−1), with P (T 0) = λ(1 − λ2−|e1|).

Proof. When l = 2, we apply the Reduction Theorem on e2 to ob-
tain that P (C2) = λ|e2|−2P (T 1) − P (T 1

∗ ), where T 1
∗ is a (loop) hyper-

edge on |e1| − 1 vertices which chromatic polynomial is λ|e1|−1 − λ =
λ|e1|−2P (T 0).

Further, when l = 3, we have that P (C3) = λ|e3|−2P (T 2)−P (C2) =
λ|e3|−2P (T 2)− λ|e2|−2P (T 1) + P (T 1

∗ ). Using the previous result and a
simple recursion, we establish the formula for all l ≥ 2, with P (T 0) =
λ2−|e1|P (T 1

∗ ).

Corollary 3.3.1. The chromatic polynomial of an l−hypercycle is
given by

P (Cl) = λ
(

l−2
∑

i=0

(−1)iλ|el−i|−2
l−i−1
∏

j=1

(λ|ej |−1 − 1) + (−1)l−1(λ|e1|−2 −

1)
)

, for all l ≥ 2.

Proof. This follows directly from Theorems 3.2 and 3.3.

The following result follows when |e| = r, for each e ∈ E .

Corollary 3.3.2. The chromatic polynomial of any r−uniform l−
hypercycle is given by

P (Cl
r) = λ

(

l−2
∑

i=0

(−1)iλr−2(λr−1 − 1)l−i−1 + (−1)l−1(λr−2 − 1)
)

, for

all l ≥ 2, r ≥ 2.

The case when r = 2 follows as

Corollary 3.3.3. The chromatic polynomial of any l−cycle is given
by

P (C l) = λ

l−2
∑

i=0

(−1)i(λ − 1)l−i−1, for all l ≥ 2.
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We observe from this last result that we established the following:

P (C l) = (λ − 1)l + (−1)l(λ − 1) = λ

l−2
∑

i=0

(−1)i(λ − 1)l−i−1, for all

l ≥ 2.

We now present some results on some new families of hypergraphs.

4 Chromatic polynomial of some (m, l)−hyper-

wheels

Suppose Cl = (X, E) is an l−hypercycle induced by the set of hyper-
edges (e1, . . . , el) and let Km ' {v1, . . . , vm} be the empty graph on m

vertices. We shall call G1 = Km∨Cl, a complete (m, l)−hyperwheel and
G2 = Km ∨ P l, a complete (m, l)−hyperfan, where P l = Cl+1 − e for
some hyperedge e. We call G1 and G2 ”complete” in the sense of the
”join” operation. For this reason, their chromatic polynomials are eas-
ily obtained from Theorems 2.2, 3.2 and Corollary 3.3.1; these findings
are presented in the next two corollaries. Further, we found that remov-
ing some of the edges of G1 (and G2) yields more interesting families
that are less ”complete”. These families are better generalizations of
their graphs counterparts, namely the wheel and the fan graphs. They
will be called (m, l)−hyperwheels and (m, l)−hyperfans. The chro-
matic polynomials of (m, l)−hyperwheels and (m, l)−hyperfans remain
open for all m ≥ 2. However, we present the chromatic polynomials of
the particular case when m = 1, that we call l−hyperwheels (l ≥ 2)
and l−hyperfans (l ≥ 1).

Corollary 4.0.4. The chromatic polynomial of a complete (m, l)−hyper-

wheel is given by

P (G1, λ) =

m
∑

k=0

{

λ

k

}

λk(λ − k)

(

l−2
∑

i=0

(−1)i(λ − k)|el−i|−2
l−i−1
∏

j=1

(

(λ −

k)|ej |−1 − 1
)

+ (−1)l−1
(

(λ − k)|el|−2 − 1
)

)

, for all m ≥ 1, l ≥ 2.
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u1

u2

v2

e1 e3

e2

e1

e2

W 2,3 F 2,2

W 2,3 − e3

Figure 2. A (2, 3)−hyperwheel and a (2, 2)−hyperfan

u3

v1 u2

u1

u3

v1

v2

Corollary 4.0.5. The chromatic polynomial of a complete (m, l)−hyper-

fan is given by P (G2, λ) =

m
∑

k=0

{

λ

k

}

λk(λ − k)

l
∏

j=1

(

(λ − k)|ej |−1 − 1
)

,

for all m ≥ 1, l ≥ 2.

Suppose Cl = (X, E) is an l−hypercycle induced by the set of
hyperedges (e1, . . . , el) and let Km ' {v1, . . . , vm} be the empty
graph on m vertices. We define an (m, l)−hyperwheel by Wm,l '
(Km ∨ Cl) − {uv|deg(u) = 1} for each u ∈ X and v ∈ V (Km). Each
edge {u, v} is referred to as a spoke and its endpoints u and v are
called rim and apex vertices respectively. The hyperedges ei are re-
ferred to as rim hyperedges as well. Figure 2 contains an example of a
(2, 3)−hyperwheel with rim hyperedges of size |ei|, for i = 1, 2, 3.

An (m, l)−hyperfan is defined by Fm,l = Wm,l+1−e, where Wm,l+1

is an (m, l+1)−hyperwheel and e is a rim hyperedge. In the case when
m = 1, we write W l (and F l) and call it an l−hyperwheel (and an
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l−hyperfan). Figure 2 contains a representation of a (2, 2)−hyperfan
with rim hyperedges of size |ei|, for i = 1, 2.

When |e| = r for each rim hyperedge e, we denote an (m, l)−

hyperwheel and an (m, l)−hyperfan respectively by Wm,l
r and Fm,l

r . For
instance W l

2 = W l, an l−wheel (l ≥ 2) and F l
2 = F l, an l−fan (l ≥ 1).

A 1−hyperfan (with 2 spokes) is a 3−hypercycle (with one hyperedge
and 2 edges).

Theorem 4.1. The chromatic polynomial of an l−hyperfan is given
by

P (F l) = λ(λ − 1)

l
∏

i=1

(λ|ei|−1 − λ|ei|−2 − 1), for all l ≥ 1.

Proof. We proceed by induction on l, which is the number of rim hy-
peredges.

Note that when l = 1, F1 = C3
∗ , which is a 3−hypercycle with a

single hyperedge that we denote by e1. From Corollary 3.3.1, when
l = 3, we have that P (C3

∗) = (λ − 1)2(λ|e1|−1 − 1) + (−1)3(λ − 1) =
λ(λ − 1)(λ|e1|−1 − λ|e1|−2 − 1).

For l ≥ 2, let e1, . . . , el be the rim hyperedges. Let ul and ul+1 be
the two vertices of el that are incident to v, the apex vertex. We apply
the Reduction Theorem on el to get that P (F l) = λ|el|−2P (F l − el) −
P (F l.el). Now, P (F l − el) = P (F l−1 ∪{vul+1}) = (λ− 1)P (F l−1) and
P (F l.el) = P (F l−1). Thus, we obtain the relation that

P (F l) = λ|el|−2(λ − 1)P (F l−1) − P (F l−1) = P (F l−1)(λ|el|−1 −
λ|el|−2 − 1).

Further, using P (F1) as the basis of the recursion, we have that

P (F l) = P (F1)
l
∏

i=2

(λ|ei|−1 − λ|ei|−2 − 1).

The result follows, since P (F1) = P (C3
∗) = λ(λ − 1)(λ|e1|−1 −

λ|e1|−2 − 1).

The following corollary is derived when each rim hyperedge of a
hyperfan is of size r ≥ 2.
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Corollary 4.1.1. The chromatic polynomial of an l−hyperfan with
r−uniform rim hyperedges is P (F l

r) = λ(λ − 1)(λr−1 − λr−2 − 1)l,
l ≥ 1, r ≥ 2.

We note that when r = 2, the previous formula coincides with that
of Corollary 2.3.7.

Theorem 4.2. Suppose W l is a hyperwheel with rim hyperedges

e1, e2, . . . , el, l ≥ 2. Then P (W l) =

l−1
∑

i=0

(−1)iλ|el−i|−2P (F l−i−1) with

P (F0) = λ(λ − 1)(1 − λ2−|e1|).

Proof. Apply the Reduction Theorem on el, for l ≥ 2, to obtain that
P (W l) = λ|el|−2P (F l−1)−P (W l−1). From this relation, when l = 2, we
have that P (W2) = λ|e2|−2P (F1)−P (W1), where W1 is a 2−hyperpath
with one hyperedge e1 and one edge. Thus, P (W1) = (λ− 1)(λ|e1|−1 −
λ). Similarly, the result follows by a recursion with P (F0) = λ2−|e1|(λ−
1)(λ|e1|−1 − λ) = λ(λ − 1)(1 − λ2−|e1|).

Corollary 4.2.1. The chromatic polynomial of an l−hyperwheel is
given by

P (W l) = λ(λ − 1)

(

l−2
∑

i=0

(−1)iλ|el−i|−2
l−i−1
∏

j=1

(

λ|ej |−1 − λ|ej|−2 − 1
)

+

(−1)l−1(λ|e1|−2 − 1)

)

, for all l ≥ 2.

The following result follows when |e| = r, for each rim hyperedge e.

Corollary 4.2.2. The chromatic polynomial of any l−hyperwheel with
r−uniform rim hyperedges is given by

P (W l
r) =

= λ(λ− 1)
(

l−2
∑

i=0

(−1)iλr−2(λr−1 − λr−2 − 1)l−i−1 + (−1)l−1(λr−2 − 1)
)

,

for all l ≥ 2, r ≥ 2.
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The case when r = 2 follows as

Corollary 4.2.3. The chromatic polynomial of any l−wheel is given
by

P (W l) = λ(λ − 1)

l−2
∑

i=0

(−1)i(λ − 2)l−i−1, for all l ≥ 2.

We observe that from Corollary 2.3.6 and Corollary 4.2.3, together
we have

P (W l) = λ((λ−2)l +(−1)l(λ−2)) = λ(λ−1)

l−2
∑

i=0

(−1)i(λ−2)l−i−1,

for all l ≥ 2.

5 Conclusion

The purpose of this paper, as it has been for related research on the
topic of chromatic polynomials, is to derive the formulae for a number
of graphs and hypergraphs with the goal to further classify them. We,
once again, discovered that the process of finding these formulae is of a
great computational complexity. Further work is needed to determine
the efficiency of our proposed Reduction Theorem. Nonetheless, we
derived some nice recursive relationships which we hope can serve the
purpose of further analysis such as the finding of the roots and the
meaning of the coefficients of these polynomials. Our focus has been
primarily on graphs and hypergraphs which are obtained as a result
of a ”join” graph operation. This process and the resulting new class
of hypergraphs discussed in this paper are certainly worth extending
to other known multivariate polynomials such as the Tutte polynomial
[2, 21].

Another variation of hypergraph coloring, is the concept of mixed
hypergraph coloring, which has been studied extensively by Voloshin
[16, 18]. A mixed hypergraph H with vertex set X, is a triple
(X, C,D) such that C and D are subsets of X, called C−hyperedges
and D−hyperedges, respectively. Given the mixed hypergraph H =
(X, C,D), when C = ∅, we write H = (X,D) and call it a
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D−hypergraph. This is the classical hypergraph discussed in this pa-
per. It will be interesting to see these results extended to mixed hy-
pergraphs since the chromatic polynomial of mixed l−hypercyles has
recently been found [3].
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