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Abstract
Software metrics are used as indicators of the quality of the

developed software. Metrics can be collected from any software
part such as: code, design, or requirements. In this paper, we
evaluated several examples of design coupling metrics. Analy-
sis and experiments follow hereinafter to demonstrate the use
and value of those metrics. This is the second part for a paper
we published in Computer Science Journal of Moldova (CSJM),
V.21, N.2(62), 2013 [19]. We proposed and evaluated several de-
sign and code coupling metrics. In this part, we collected source
code from Scarab open source project. This open source is se-
lected due to the availability of bug reports. We used bug reports
for further analysis and association where bugs are used to form a
class for classification and prediction purposes. Metrics are col-
lected and analyzed automatically through the developed tool.
Statistical and data mining methods are then used to generalize
some findings related to the collected metrics. In addition classi-
fication and prediction algorithms are used to correlate collected
metrics with high level quality attributes such as maintainability
and defects prediction.

Keywords: Design metrics, Object-Oriented Designs, Coupling met-
rics, software faults.

1 Introduction

Design activity should consider the dependency between classes so that
changing in one class should not be propagated to several classes. Qual-
ity attributes such as: dependency and modularity can be measured or
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evaluated through coupling metrics. Coupling describes how classes are
related and dependent on each other. Coupling is considered as one of
the fundamental design metrics that aims to minimize coupling among
different modules facilitating understanding, maintaining, reusability,
modularity and testing tasks of the software and design. In addition,
they provide information to the designers regarding the capability of
their design to change or to be reused. Low coupling results in compo-
nents’ self-containment, which in turn increases class understandability
in isolation. Furthermore, it improves maintainability and increases po-
tentials for reuse. On the other side, high coupling between two classes
or components makes it more difficult to understand one of them in
separation from the other. Thus, ripple changes are increased due to
high dependency among classes. Myers et al., (1974) [18] defined six
coupling metrics between pairs of modules. Those are: content, com-
mon, external, control, stamp, and data coupling. Eder et al. (1994)
[7], Hitz et al. (1995) [10], and Briand et al. (1997) [3] defined OO
coupling frameworks. These three frameworks were unified by Briand
et al. (1999) to a more formalized framework.

A software product can hardly be free from errors. Maintenance and
testing stages involve looking for bugs and fixing them. However, the
allocation of potential regions where errors are or can be located plays
important role in budget and effort reduction in software projects. In
this study, we have used fault proneness as a quality predictor. On the
other hand, we have investigated several coupling metrics as possible
predictors for fault proneness.

In this paper several design coupling metrics proposed by Briand et
al (1999) [4] are assessed using a large set of open source code projects.
One of the major design goals is to minimize coupling. Therefore, it
is important to be able to develop tools for coupling assessment before
or after code development.

2 Coupling Metrics

Coupling is a measure of interconnection among modules. One of ma-
jor goals in software design is that classes should be loosely coupled.
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Therefore, Simple connection between modules will produce more un-
derstandable and maintainable software. Loosely coupled software will
be less subjective to ripple effect in case of code changes. Myers et al.
(1974) [18] defined six procedural coupling types, which are explained
in Table 1.

Table 1. Procedural coupling levels
Coupling type Description
DATA
COUPLING

Data coupling occurs when passing pure simple
data between two modules by parameters using
a simple elementary piece of argument list and
every item in the list is used.

STAMP
COUPLING

Stamp coupling occurs between modules when
passing composite data through parameters us-
ing a data structure containing fields, which may
or may not be used.

CONTROL
COUPLING

Control coupling occurs between modules when
data are passed that influence the internal logic
of a module (e.g. flags )

COMMON
COUPLING

Common coupling occurs when modules commu-
nicate sharing global data areas so common cou-
pling is also known as global coupling.

CONTENT
COUPLING

Content coupling occurs between two modules if
one modifies the internals of other module. In
practice, only assembler language allows content
coupling. Most object-oriented programming lan-
guages do not allow implementing content cou-
pling.

These metrics were realized into object oriented design resulting
in many metrics. This research is interested in investigating coupling
metrics unified by Briand et al. (1999) [4] framework. Here is a brief
preview of coupling metrics that will be measured in this research:
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Coupling between object (CBO) (Chidamber & Kemerer,
1994 [6])

Two classes are coupled when methods declared in one class use
methods or instance variables defined by the other class. Multiple
accesses to the same class are counted as one access. Only method
calls and variable references are counted as the original definition: “two
classes are coupled when methods of one class use methods or instance
variables defined by the other class”.

Definition 1
CBO = number of classes to which a class is coupled

Response for a Class (RFC) (Chidamber & Kemerer, 1994
[6]) The response set of a class is a set of methods that can potentially
be executed in response to a message received by an object of that class
It counts only the first level of calls outside of the class. RFC is simply
the number of methods in the set. It regards all methods and properties
declared. Calls to properties: Set and Get are all counted separately.

Definition 2

RFC = M + R (First-step measure) where M = number of methods
in the class, R = number of remote methods directly called by methods
of the class

Message passing coupling (MPC) (Li & Henry, 1993) [13]
The message passing is the number of call statements defined in

a class or the number of messages between objects in local method
of a class. Thus, this includes only counting method invocations to
other classes, and these classes with inheritance relationship have been
excluded from counting.

Data Abstraction Coupling (DAC) (Li & Henry, 1993) [13]
Data Abstraction Coupling is the total number of other class types

in attribute declarations. It is also referred to as aggregation coupling.
DAC does not count primitive types, system types, and inherited types
from the base classes. DAC has two variants, which are:
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Definition 3

DAC: The number of attributes in a class that have another class as
their type (count the repetition of class type)
DAC1: The number of different classes that are used as types of
attributes in a class

Information-flow-based coupling (ICP) (Lee et al., 1995)
[11]

Information-flow-based coupling is the number of implemented
method m of one class plus the number of polymorphically invoked
methods of other classes, weighted by the number of parameters of the
invoked method.

Definition 4

ICP c(m) =
∑

m′∈PIM(m)−(MNEW (c)∪MOV R(c))

(1+|Par(m′)|)·NPI(m,m′)

Where:
MOV R(c): is the set of overriding methods of class c.
MNEW (c): is the set of non-inherited, non-overriding methods of class c.
Par(m): is the set of parameters of method m.
PIM(m): is the set of Polymorphically Invoked Methods of m.
NPI(m,m′): is the Number of Polymorphic Invocations of m′ by m.

Briand et al. (1999) [4] redefined ICP as the number of method
invocations in one class weighted by the number of parameters of the
methods invoked by class methods (the weight is number of parame-
ters +1 but for empirical consideration they refined it to number of
parameters only).

Definition 5

Total Number of Method Invocations

Total Number of Method Invocations +
∑all methods

i=0 parmOf(mi)
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ICP has two variations, which are:

• H-ICP of just inheritance invocation are considered invocation to
method of ancestors classes only

• NIH-ICP non inheritance invocation

ICP is the sum of IH-ICP and NIH-ICP

Definition 6

ICP = IH − ICP + NIH − ICP

Coupling factor (COF) (Abreu et al., 1995)

COF is defined as: the ratio of the maximum possible number of
couplings in the system to the actual number of couplings not im-
putable to inheritance.

Definition 7

Coupling Factor

COF =

∑TC
i=1

[∑TC
j=1 is client(Ci, Cj)

]

TC2 − TC − 2×∑TC
i=1 DC(Ci)

is client(Cc, Cs) =

∣∣∣∣∣∣
1 iff

Cc ⇒ Cs ∧ Cc 6= Cs

∧¬(Cc → Cs)
0 otherwise

• is client(x, y) = 1 iff a dependency exists between the client and
the server classes. 0 otherwise;

• (TC2− TC) is the total number of possible dependencies.

Briand suite [3-5]
Briand et al. suggested suite of coupling metrics. The abbreviations

used in Briand measurements:
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A: Coupling to ancestor classes.
D: Coupling to Descendents.
IC: import coupling, the measure counts for a class C all interac-

tions where C is using another class;
EC – export coupling, counts interactions where class D is the used

class.
CA – Class-attribute interaction
CM – Class-method interaction
MM – Method-method interaction
The definitions for CA, CM , and MM are as follows:

Class-attribute interaction (CA) (Briand et al., 1997 [3])
Class-attribute interaction occurs if a class contains an attribute of

type another class. It is the number of class-attribute interactions from
one class C to another class D.

Definition 8

CA(c, d) =
∣∣a|a ∈ AI(c′) ∧ T (a) = d

∣∣ .

A: is the set of attributes in class c.
T (a): is the type of attribute where the attribute type will be a

class.

Class-method interaction (CM) (Briand et al., 1997 [3])
Class-method interaction occurs if a newly defined method of one

class has a parameter of type another class.

Definition 9

CM(c, d) =
∑

m∈MNEW (c)

|a|a ∈ Par(m) ∧ T (a) = d| .

T (a): is the type of attribute where the attribute type will be a
class.

Par(m): is the set of parameters of method m.
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Method-method interaction (MM) (Briand et al., 1997 [3])
Method-method interaction occurs if a method implemented at

class c statically invokes a method of class d (newly defined or overrid-
ing), or receives a pointer to such a method. The number of method-
method interactions from class c to class d.

Definition 10

MM(c, d) =
∑

m∈MI(c)

∑

m′∈MNEW (d)∪MOV R(d)

(NSI(m,m′) + PP (m,m′)).

NSI(m,m′): is the number of static invocations of method m′ by
m.

M : is the set of methods in a class.
MOV R(c): is the set of overriding methods of class c.
MNEW (c): is the set of non-inherited, non-overriding methods of

class c.

Afferent and Efferent Coupling (Martin 2002) [14]
The OO Design package or system metrics of Martin (Afferent and

Efferent Coupling), based on fan-in and fan-out metrics, are largely
used in the industry and commonly referenced in the academy. Lots
of static analysis tools are able to extract them. They can help in
understanding how defects are likely to ripple among different classes
or components. They measure how much a particular class, method,
component etc. is coupled with other components as either calling them
or being called by them. The remainder of this paper is organized as
follows: Section 3 provides an overview of related work. Section 4
presents goals and approaches. Section 5 presents an experimental
section and paper is concluded in Section 6.

3 Related Work

In this section, we will list some examples of related papers of evaluating
software design or coupling metrics.
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Hitz and Montazeri (1995) [10] distinguished between coupling
among objects (CLO) and coupling among classes (CLC). CLC is prin-
cipally important in maintenance or change dependencies within pro-
gram. On the other hand, OLC is relevant for runtime-oriented activ-
ities like testing and debugging. In addition, they argued that various
levels of coupling depend on three attributes: Stability, Access Type
and Scope of Access, and each combination of these attributes would
have different strength of coupling. Coupling measures the strength
of connection between two classes as pairs. Although, coupling was
defined as characteristics of pairs of classes, but as a metric, it is the
total number of couples that one class has with other classes. There-
fore, implicitly all coupling connections are supposed to be of equal
strength among a class with others in the system level (Norman et al.,
1992). Therefore, in the proposed system coupling was computed using
previous definition.

Briand et al. (1999) [4] refined existing framework defined by (Eder
et al., 1994 [7]; Hitz and Montazeri, 1995 [10]; and Briand et al. 1997
[3]) into comprehensive and formalized framework for coupling mea-
surements. The framework for coupling consists of six criteria, which
are:

1. Type of connection

2. Direction of connection: Fan-in or Fan-out.

3. Granularity of the measure: Domain of the measure and how to
count coupling connections.

4. Stability of server: whether a class stable or changing frequently.

5. Direct or indirect coupling.

6. Inheritance: Inheritance-based or non inheritance-based cou-
pling.

Briand et al. (1999) [4] also distinguished two directions of coupling,
which are import and export. Export occurs when a class is used as
server class in the interaction. On the other hand, import occurs when
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a class is used as client class in the interaction. But Lee (2007) [12]
specified that Dependency between classes could be in one direction
or two directions. A high fan-out represents a class coupling to other
classes. High fan-in represents a good level of reuse.

Many object oriented metrics were proposed in the previous studies
to predict software quality attributes. One of these attributes is fault
proneness. Michael English et al. (2009) [9] summarized the results
from 23 papers that evaluated software metrics and their correlation
with software fault prone modules. Their evaluation showed that CK
and LOC metrics are the most used and evaluated metrics. Emam et
al. (2001) [8] used the CK metrics in addition to Briand’s coupling
metrics to predict faults on a commercial Java system [3-5]. Basili et
al. (1996) studied the correlation of fault-proneness with CK metrics
for eight student projects. The results showed that WMC, CBO, DIT,
NOC and RFC have a significant correlation with faults whereas LCOM
didn’t have same significant correlation with faults. Tang et al. (1999)
[16] found that higher WMC and RFC were found to be associated with
fault-proneness on three real time systems. Menzies et al. (2007) [15],
on the other hand, evaluated fault proneness for C and Java projects.

There are various types of methods to predict faulty classes such
as statistical methods, machine learning methods, etc. However, the
trend recently is moved from traditional statistical methods to machine
learning methods. Zhou et al. (2006) [17] used logistic regression and
machine learning methods to show how OO metrics and fault proneness
are correlated. The results showed that WMC, CBO, and SLOC were
found to be strong predictors across all severity levels based on the
public domain NASA datasets.

4 Goals and Approaches

As described earlier, this is the second part of one paper. In the first
part that was published in CSJM, V.21, N.2(62), 2013 [19], we de-
scribed in details the coupling metrics that we want to investigate. We
described them with examples and also described the developed tool to
automatically collect those coupling metrics. In this part, we assembled
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a case study of a large number of source code.
We will define the terminologies and the abbreviations that are used

in later sections. Table 2 shows the terms and the definitions used in
this paper as well as the abbreviation of terms.

5 Results and Analysis

In this section, we will present the results from the collection of metrics
and their statistical and correlation analysis with bug reports for the
same source code. The first section includes descriptive statistics for
the collected coupling metrics.

5.1 Descriptive Statistics for Coupling measures

Table 3 presents the descriptive statistics for the coupling measures
collected from Scarab project. The columns: Min, Max, Mean, and
Std. Deviation are the: minimum value, maximum value, mean value
and standard deviation, respectively. N > 5 is NO if the count of
non-zero values is less than six.

The following observations can be made from Table 3:

• The measures that are counting various relationships through in-
heritance (i.e. ACAIC, DCAEC, ACMIC, and ACMIC) have all
relatively zero values for all columns which means that no exten-
sive use of inheritance (at the attribute and method use, override
and reuse) is observed in the Scarab project.

• The largest maximum value is for RFC, which also has the largest
mean. This may be explained by the fact that RFC counts
method invocations plus the number of methods. MPC has the
next maximum mean value as it counts the sent statement.

• All measures with significant variance (i.e. six or more non-zero
values – N > 5) were subjected to further analysis. Therefore,
ACAIC, DCAEC, ACMIC, and DCMEC are removed from fur-
ther analysis.
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Table 2. Terminology Abbreviation
Term Definition Abbre-

viation
Defined
methods

Methods declared within class C Mdef

Inherited
methods

Methods declared within parent class and inher-
ited and (not overridden) within child class C

Minh

Polymorphic
method

Methods defined within an interface Mpoly

New meth-
ods

Methods declared within class C that do not
override inherited ones

Mnew

Overriding
methods

Methods declared within class C that override
(redefine) inherited ones

Mover

Invoked
methods

Methods that can be invoked in association with
class C

Minv

External
calls

Invocations to a method defined in other classes Callex

Internal
calls

Invocations to a method in the same class Callint

Polymorphic
calls

Invocations to a method defined in an interface Callpoly

Inherited
calls

Invocations to a method defined in parent class
through object of child class

Callinh

Defined at-
tributes

Attributes declared within class C Attrdef

Overriding
attributes

Attributes declared within class C that overrides
(redefines) inherited ones

Attrover

Inherited at-
tributes

Attributes inherited (and not overridden) in
class C

Attrinh

Used at-
tributes

Attributes that can be manipulated in associa-
tion with class C (those external public attribute
from other classes used in method of class C)

Attruse

Instance at-
tributes

Attributes of type class Attrinst

Instance pa-
rameters

Parameters of type class argins
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Table 3. Descriptive statistics for collected metrics
Descriptive Statistics

Metrics Min Max Mean
Std.

Devia-
tion

N>5

CBO 0 53 5.17 8.13
RFC 0 1098 33.42 85.49
MPC 0 928 24.56 71.79
DAC 0 12 .36 1.11
DAC1 0 11 .33 .99
ICP .0 1.6 .46 .39

ACAIC 0 0 .00 .00 NO
DCAEC 0 0 .00 .00 NO
ACMIC 0 0 .00 .00 NO
DCMEC 0 0 .00 .00 NO
AMMIC 0 32 .21 1.81
DMMEC 0 44 .21 2.37

NOC 0 31 .33 2.42
NDC 0 37 .39 2.87
NAC 0 4 .39 .70

5.2 A defect prediction model

In this section, we built a defect prediction model to validate the cor-
relation between coupling metrics and reported bugs. On the other
hand, we also measured which coupling metrics have more significant
effect in comparison with the rest of collected metrics.

Figure 1 shows the results from Gain Ratio (GR) feature selection
method applied on the collected dataset. It can be seen that inheritance
metrics have no significant role in bug prediction. CBO, RFC, MPC
and ICP are the most significant metrics in defects prediction. In
particular, CBO has the most significant effect.

J48graft data mining method is then used on the collected dataset
after applying feature selection. Table 4 shows prediction performance

139



A. Abu Asad, I. Alsmadi

Figure 1. Gain Ratio feature evaluator

metrics: recall, precision, and accuracy. The Table 4 shows the recall,
precision and accuracy for faulty (i.e. true case), and for not faulty
classes (i.e. false case). The Table 4 shows also the recall, precision
and accuracy for overall average of both. 10 cross validation method
is used as the selection for testing and training.

Table 4. Scarab performance metrics with J48graft and 10 cross vali-
dation

Precision Recall Accuracy
Not faulty 0.77 0.69 0.69
Faulty 0.61 0.70 0.70
Weighted
Avg.

0.70 0.70 0.70

Figure 2 shows the classification tree after applying gain ratio using
J48graft.

5.3 Study Limitation

Similar to most experiments conducted in this field one of the limi-
tations is the dependency of the results in one source code project.
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Figure 2. Metrics-bugs-dependent classification tree

141



A. Abu Asad, I. Alsmadi

This may have a risk of having possibly biased results that may not be
generalized to all software source codes especially those that may not
share the project same domain, environment, etc.

In addition, the dataset used in this research may not be perfect or
complete. Bugs reporting and judgments are also human subjective.
In addition, bugs were not classified or categorized based on their se-
riousness or importance. Those are examples of some of the possible
limitations on generalizing the results in this study on other software
products.

6 Summary and Conclusion

In this paper, we presented several metrics for evaluating the quality
of software design. Those metrics focus on evaluating design coupling
quality where software components are expected to be moderately cou-
pled. Experiments and analysis were conducted to demonstrate the
value of the proposed and evaluated metrics. Scarab open source is
used in the case study due to the availability of bug reports related to
the usage of this software. We used such bug reports for classification
and prediction where a bug class is formed with values of true or false
based on whether the subject class contains bugs or not (based on bug
reports). Some coupling metrics such as: CBO, RFC, MPC and ICP
showed significant correlation with bugs. This means that those cou-
pling metrics can be used for bugs prediction. Monitoring those metrics
early in the software project can help software project managements
monitor quality aspects especially those related to bugs.
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