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Abstract

In this article a number of neural networks based on self-
organizing maps, that can be successfully used for dynamic object
identification, is described. Unique SOM-based modular neural
networks with vector quantized associative memory and recurrent
self-organizing maps as modules are presented. The structured
algorithms of learning and operation of such SOM-based neural
networks are described in details, also some experimental results
and comparison with some other neural networks are given.

Keywords: Neural networks; forecasting; timeseries predic-
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1 Introduction

Identification theory solves problems of constructing mathematical
models of dynamic systems according to the observations of their be-
haviour. The object identification step is one of the most important
steps while constructing mathematical models of objects or processes.
The quality of the model relies on this step and, therefore, the quality
of control, that is based on this model, or results of a research with
this model also rely on this step.

Dynamic object identification is one of the basic problems which
could be solved using neural networks [1] along with different other
methods. Object identification is complicated if noises are present in
the source data, some of the object parameters change according to un-
known laws or the exact number of the object parameters is unknown.
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In such cases neural network can be applied for dynamic object identi-
fication. There are a lot of different types of neural networks that can
be used for dynamic object identification.

Among different neural network architectures applicable for dy-
namic object identification a class of neural networks based on self-
organizing maps (SOM) can be noted. Neural networks of such type
will be given special attention in this article due to their wider spread
and successful application in solving different kinds of problems [2,3] in-
cluding problems of forecasting and identification. A number of biomor-
phic neural networks, architecture of which is the result of studying the
structure of the cerebral cortex of mammals, will also be considered.

2 SOM-based neural networks that can be
used for dynamic object identification

2.1 Problem definition

Identification of a dynamic object that receives a vector of input pa-
rameters u(t) at time t and gives an output vector y(t) can be de-
scribed as finding the type of a model of this object, that has an out-
put ŷ(t) and finding parameters of this model such that minimize error
e =‖ y(t)− ŷ(t) ‖2 of this model (see figure 1).

Figure 1. Dynamic object identification scheme

Suppose that there is a sequence of vectors of input parameters
u(t), tε[0, T ] and a sequence of output vectors y(t), tε[0, T ], where T
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– number of input-output pairs. We will consider the solution of the
object identification problem as definition of the type of the function
f that will define the model of identified object:

ŷ(t) = f [y(t− 1), ..., y(t− ny), u(t), u(t− 1), ..., u(t− nu)], (1)

where ŷ(t) is vector of output parameters of the model. At a single
moment of time the input of the model takes current known measured
values of the input parameters along with nu < T previous values and
ny < T previous output parameters of the identified object.

Also we will consider solution of this problem in the following form:

ŷ(t) = f [ŷ(t− 1), ..., ŷ(t− ny), u(t), u(t− 1), ..., u(t− nu)], (2)

where ŷ(0) = y(0), ŷ(t) is vector of output parameters of the model,
nu < T . This identification scheme has recurrent connections and at
a single moment of time the input of the model takes current known
measured values of the input parameters of the object along with nu <
T previous values of these parameters and ny < T previous output
parameters of the model.

2.2 Vector quantized temporal associative memory (VQ-
TAM)

VQTAM is a modification of self-organizing maps which can be used
for identification of dynamic objects [4,5]. The input vector u(t) of this
network is split into two parts: xin(t), xout(t). The first part of the
input vector xin(t) contains information about the inputs of the dy-
namic object and its outputs at previous time steps. The second part
of the input vector xout(t) contains information about the expected
output of the dynamic object corresponding to the input xin(t). The
weights vector is also split into two parts in a similar way [4]. Thus

x(t) =
(

xin(t)
xout(t)

)
and wi(t) =

(
win

i (t)
wout

i (t)

)
, where wi(t) is weights vector

of the i-th neuron, win
i (t) is the part of the weights vector that contains

information on the inputs, and wout
i (t) is the part of the weights vector
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that contains information on the outputs. The first part of the in-
put vector contains information on the process inputs and its previous
outputs:

xin(t) = (y(t− 1), ..., y(t− ny), u(t), u(t− 1), ..., u(t− nu)) , (3)

where nu < T , ny < T . The second part of the input vector xout = y(t)
contains information on the expected output of the process correspond-
ing to the inputs xin(t).

Each vector in the learning sample consists of a pair of vectors
(y(t), u(t)) and the sample should contain not less than max(nu, ny)
vectors. Vectors y(t) are the measured output parameters of the process
at time step t, and u(t) are the input parameters of the process at the
same time step.

After presenting a subsequent input vector x(t), combined of several
vectors from the learning sample, to the network the winner neuron is
determined only by the xin(t) part of the vector:

i∗(t) = arg min
i

{‖ xin(t)− win
i (t) ‖} , (4)

where i∗(t) is a number of the winner neuron at time step t.
For weight modification a modified SOM weight modification rule

is used:

∆win
i (t) = α(t)h(i∗, i, t)[xin(t)− xin

i (t)],
∆wout

i (t) = α(t)h(i∗, i, t)[xout(t)− wout
i (t)],

(5)

where 0 < α(t) < 1 is a learning rate of the network, h is neighbourhood
function of the i-th and i∗-th neurons. For example a Gaussian function
can be chosen as a neighbourhood function h(i∗, i, t):

h(i∗, i, t) = exp
(
−‖ ri(t)− ri∗(t) ‖2

2σ2(t)

)
, (6)

where ri(t) and ri∗(t) are positions on the map of the i-th and i∗-th
neurons, σ(t) > 0 determines the radius of the neighbourhood function
at time step t. When the winner neuron i∗ is defined, the output of
the network is set to wout

i∗ (t).
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On the test sample VQTAM’s input takes only xin(t) part of the
input, which is used to define the winner neuron, and the output of
the network is set to wout

i∗ (t). Vector wout
i∗ (t) can be interpreted as the

predicted output ŷ(t) of the dynamic object at time step t.
Learning algorithm of VQTAM network is similar to regular SOM

algorithm:

1. Weights are initialized with random values or values from the
training sample.

2. A vector from the sample is presented to the network and the
winner neuron is identified according to equation 4.

3. Weights are modified according to the rule 5.

4. Steps 2 and 3 are repeated for each vector from the sample.

5. Steps 2 – 4 are repeated for the sample several times until a
specified number of epochs has passed or a desired accuracy of
identification has been reached.

On a test sample after presenting an input vector containing only
the first xin(t) part of the input vector a winner neuron is identified and
the output of the network (modeled output of the object) is set equal
to the second part of the weight vector of the winner neuron wout

i∗ (t).
The output can be also identified as average between several wout

i (t) of
best-matching neurons.

2.3 Recurrent self-organizing map (RSOM)

In RSOM unlike conventional SOMs with recurrent connections, a de-
caying in time vector of outputs is introduced for each neuron. This
vector is used to determine the winner neuron and is used in maps
weights modification [6, 7].

The network inputs vector x(t) is represented as follows:

x(t) = (y(t− 1), ..., y(t− ny), u(t), u(t− 1), ..., u(t− nu))) , (7)
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where nu < T , ny < T .
Output of each neuron is determined according to the following

equation:

Vi(t) =‖ νi(t) ‖, (8)

where νi(t) = (1− α)νi(t− 1) + α(x(t)−wi(t)), α is the output decay
factor (0 < α 6 1), Vi(t) is output of the i-th neuron at time step
t, wi(t) is weights vector of the i-th neuron. Further in the article it
will be shown, that a neuron with defined like this output is close to
definition of a chaotic neuron, and also some benefits of this approach
will be described.

After presenting a subsequent input vector to the network a winner
neuron is determined as the neuron with minimal output [7]:

i∗(t) = arg min
i
{Vi(t)} . (9)

To modify the weights a modified conventional SOM rule is used:

∆wi(t) = α(n)h(i∗, i, t)νi(t), (10)

where 0 < α(t) < 1 is learning rate, h is neighbourhood function of
i-th and i∗-th neurons.

When the learning process is complete, the network is presented
again with the learning sample and clusterizes it. Each cluster can be
approximated with an individual model, for example a linear function
fi(t) for the i-th cluster. Thus, after presenting the learning sample a
linear function is defined for each vector of this sample. These functions
can be used to determine the output value at the next time step.

This process can be speeded up by using algorithms for constructing
local linear models while training the neural network. Each neuron of
the RSOM network is associated with a matrix Ai(t) that contains
coefficients of the corresponding linear model:

Ai(t) =
[
bi,1(t), ..., bi,ny(t), ai,1(t), ..., ai,nu(t)

]T
, (11)

115



A. Averkin, V. Albu, S. Ulyanov, I. Povidalo

The output value of the network is defined according to the follow-
ing equation:

ŷ(t) =
ny∑

k=1

bi∗,k(t)u(t− k) +
nu∑

l=1

ai∗,i(t)y(t− l) = AT
i∗(t)x(t), (12)

where Ai∗(t) is the matrix of coefficients associated with the winner
neuron i∗(t). Matrix Ai∗(t) is used for linear approximation of model’s
output.

While constructing the local linear models simultaneously with
training of the neural network an additional rule to modify the co-
efficients of the linear model is needed:

Ai(t + 1) = Ai(t) + βh(i∗, i, t)∆Ai(t), (13)

where 0 < β < 1 is learning rate of the model, ∆Ai(t) is Widrow-Hoff’s
rule for error correction:

∆Ai(t) =
[
y(t)−AT

i (t)x(t)
] x(t)
‖ x(t) ‖2

, (14)

where y(t) is desired output of the model for the x(t) input.
Thus, at each step of the network training a modification of the

model coefficients is performed along with modification of the weights
of neurons. On the test sample after an input vector is presented to
the network a winner neuron i∗(t) is chosen. Then a corresponding
coefficients matrix Ai∗(t) of the linear model is calculated. Using the
determined matrix the output of the model is defined by the equation:
ŷ(t) = AT

i∗(t)x(t).
So, learning algorithm of RSOM network is similar to SOM training

algorithm but with some differences:

1. Weights are initialized with random values or values from the
training sample.

2. Parameters of the local models assigned to neurons are initialized
with random values.
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3. A vector from the sample is presented to the network, outputs of
all neurons are calculated according to (8) and the winner neuron
is identified by (9).

4. Weights are modified according to the rule (10).

5. Local models parameters are modified according to (13).

6. Steps 3 – 5 are repeated for each vector from the sample.

7. Steps 3 – 6 are repeated for the sample several times until a
specified number of epochs has passed or a desired accuracy of
identification has been reached.

On a test sample after presenting an input vector, outputs of all
neurons are calculated according to (8), the winner neuron is identified
and the corresponding local model is chosen and the resulting modelled
output is determined by equation (12).

2.4 Modular self-organizing maps

Modular self-organizing maps are presented in Tetsuo Furukava’s works
[8, 9]. Modular SOM has a structure of an array which consists of
functional modules that are actually trainable neural networks (see fig-
ure 2), such as multilayer perceptrons (MLP), but not a vector, as in
conventional self-organizing maps. In case of MLP-modules modular
self-organizing map finds features or correlations in input and output
values simultaneously building a map of their similarity. Thus, a mod-
ular self-organizing map with MLP modules is a self-organizing map in
a function space but not in a vector space [9].

These neural network structures can be considered biomorphic, as
their emergence is due to research of the brain structure of mammals
[10], and confirmed by a number of further studies [11]. The basis of
the idea of the cerebral cortex structure is a model of cellular structure,
where each cell is a collection of neurons, a neural column. Columns
of neurons are combined in a more complex structures. In this regard
it was suggested to model the individual neural columns with neural
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Figure 2. Modular network structure

networks [11]. This idea has formed the basis of the modular neural
networks.

In fact, the modular self-organizing map is a common SOM, where
neurons are replaced by more complex and autonomous entities such as
other neural networks. Such replacement requires a slight modification
of the learning algorithm. In the proposed by [9] algorithm at the
initial stage the network receives the i-th sample of the input data
corresponding to I functions, which will be mapped by the network,
and the error is calculated for each network module:

Ek
i =

1
J

J∑

j=1

‖ ŷk
i,j − yi,j ‖2, (15)

where k is module number, for which the error is calculated, J is num-
ber of vectors in the sample, ŷk

j is output of the k-th module, yj is
expected output of the network on the suggested set of input data.
Winner module is calculated as the module that minimizes the error
Ek:

k∗i = arg min
k

Ek
i . (16)

As soon as the winner module is defined, the adaptation process
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takes place and the weights of the module are being modified according
to one of learning algorithms suitable for the networks of this type, after
that the weights of the main SOM are being modified. In this process
parameters (weights) of each module are considered as the weights of
the SOM and are modified according to standard learning algorithms
suitable for conventional SOMs.

In this study SOMxVQTAM and SOMxRSOM networks were de-
veloped, which are SOMs with modules of VQTAM type and SOMs
with modules of RSOM type respectively. Further some application
results of such networks will be reviewed.

3 Using SOM-based neural networks for dy-
namic object identification

For some experiments and comparisons of the algorithms the neural
networks of types VQTAM, RSOM, SOMxVQTAM and SOMxRSOM
were tested on samples that were used in 2006 – 2007 to identify the
winners at neural networks forecasting competition [14]. Results of
these competitions were used in this study as there is a detailed de-
scription of the place definition method used for all competitors. Also
a fair amount of different algorithms took part in this competion and
there was a description for the most of those algorithms as well as the
learning and testing samples, which allowed a comparative analysis of
the neural networks described in this paper with other advanced al-
gorithms. To determine the place in the table, the organizers of the
competition [14] suggested to forecast 18 steps for each of the 111 sam-
ples. For each of the resulting predictions a symmetric mean absolute
percentage error (SMAPE) was calculated:

SMAPE =
1
n

n∑

t=1

‖ y(t)− ŷ(t) ‖
(y(t) + ŷ(t))/2

∗ 100, (17)

where y(t) is the real state of the object at time step t, ŷ(t) is the
output of the model at time step t, n is the number of vectors in the
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testing sample (18 for this competition). Then the place in the table
was determined from the average error for all of 111 samples.

Each of the 111 samples had different lengths (from 51 to 126 points
in the training samples), those samples represented a monthly measure
of several macroeconomic indicators.

Each of the algorithms described in this article were launched with
the same parameters for all of 111 samples, that is the parameters
for each network were set only once before presenting the set of all 111
samples, but not set individually for each of the 111 samples, which lead
to some not very successful forecasts that led to growth of the average
error. Despite this fact algorithms could accurately predict the future
values, as it is clearly seen from the results table (see Table 1). The
SMAPE error of the forecast for most of the 111 samples was lower
than 5% (for more than 70% of all samples) but the average error
grew due to unsuccessful forecasts with error values up to 60%. The
above error can be greatly reduced if the automatic tuning of network
parameters for each of the samples would be applied.

Table 1: Results table for different forecasting algorithms

Num. Algorithm name SMAPE
1 Stat. Contender - Wildi 14,84%
2 Stat. Benchmark - Theta Method (Nikolopou-

los)
14,89%

3 Illies, Jager, Kosuchinas, Rincon, Sakenas,
Vaskevcius

15,18%

4 Stat. Benchmark - ForecastPro (Stellwagen) 15,44%
5 CI Benchmark - Theta AI (Nikolopoulos) 15,66%
6 Stat. Benchmark - Autobox (Reilly) 15,95%
7 Adeodato, Vasconcelos, Arnaud, Chunha, Mon-

teiro
16,17%

8 Flores, Anaya, Ramirez, Morales 16,31%
9 Chen, Yao 16,55%
10 D’yakonov 16,57%
11 Kamel, Atiya, Gayar, El-Shishiny 16,92%
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Continuation of Table 1
Num. Algorithm name SMAPE
12 Abou-Nasr 17,54%
13 Theodosiou, Swamy 17,55%
– VQTAM 17,61%
– SOMxVQTAM 17,70%
14 CI Benchmark - Naive MLP (Crone) 17,84%
– RSOM 17,94%
15 de Vos 18,24%
16 Yan 18,58%
17 CI Benchmark - Naive SVR (Crone, Pietsch) 18,60%
18 C49 18,72%
19 Perfilieva, Novak, Pavliska, Dvorak, Stepnicka 18,81%
20 Kurogi, Koyama, Tanaka, Sanuki 19,00%
21 Stat. Contender - Beadle 19,14%
22 Stat. Contender - Lewicke 19,17%
23 Sorjamaa, Lendasse 19,60%
24 Isa 20,00%
25 C28 20,54%
26 Duclos-Gosselin 20,85%
– SOMxRSOM 21,64%
27 Stat. Benchmark - Naive 22,69%
28 Papadaki, Amaxopolous 22,70%
29 Stat. Benchmark - Hazarika 23,72%
30 C17 24,09%
31 Stat. Contender - Njimi, Melard 24,90%
32 Pucheta, Patino, Kuchen 25,13%
33 Corzo, Hong 27,53%

3.1 Example of learning on one of the samples

For example, take one of the 111 samples and see the results of the
identification done by all four types of the described neural networks.
The original sample is shown in Figure 3, the test 18 points of the
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sample are separated from the learning sample with a vertical dashed
line.

Figure 3. The original sample divided into learning and test samples
with a vertical dashed line

In Figure 4 the results of testing VQTAM network on the last 18
points of the sample are overlain on the original sample. The SMAPE
of 7.54% has been observed.

Figure 4. Results of testing VQTAM network, SMAPE 7.54%

In Figure 5 the results of testing RSOM network are overlain on
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the original sample. The SMAPE of 7.79% has been observed.

Figure 5. Results of testing RSOM network, SMAPE 7.79%

In Figure 6 the results of testing SOMxVQTAM modular network
are presented. The SMAPE of 6.12% has been reached.

Figure 6. Results of testing SOMxVQTAM modular network, SMAPE
6.12%

In Figure 7 the results of testing SOMxRSOM modular network
are overlain on the original sample. The SMAPE of 9.20% has been
observed.
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Figure 7. Results of testing SOMxRSOM modular network, SMAPE
9.20%

This and other tests that were concluded lead to a suggestion that
modular modification gives a significant increase if accuracy in case of
VQTAM modules, but modular networks are more sensitive to changes
of learning parameters. The higher SMAPE in case of the SOMxRSOM
modular network compared to RSOM network can be explaned by the
fact that RSOM itself contains local models and during the learning
process of the SOMxRSOM network those local models are treated
as weight vectors for the whole SOMxRSOM network, but the local
models are constructed for different parts of the input data and the
local model corresponding to one of the neurons of one of the RSOMs
are most likely to be constructed for the different part of the input
data compared to the local model contained in another RSOM for the
neuron on the same position.

4 Conclusion

In this article several SOM-based neural networks, that can be suc-
cessfully used for dynamic object identification, have been described.
Also, this study proves the necessity of investigating the possibilities
of modular neural networks of higher complexity for identification of
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dynamic objects and study of the ability of such networks to identify
patterns in time series. Also it is necessary to develop an algorithm
to automatically select learning parameters of presented in this paper
neural networks in order to reduce prediction error.
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