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Abstract

The paper proposes a general method for construction cryp-
toschemes based on difficulty of simultaneous solving factoring
(FP) and discrete logarithm modulo prime problem (DLpP). The
proposed approach is applicable for construction digital signa-
tures (usual, blind, collective), public key encryption algorithms,
public key distribution protocols, and cryptoschemes of other
types. Moreover, the proposed approach provides reducing the
signature size and increasing the rate of the cryptoschemes, while
comparing with the known designs of the digital signature pro-
tocols based on the FP and DLpP.
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1 Introduction

Cryptographic protocols with public key are widely used to provide in-
formation security of the information technologies. Usually the public
key cryptoschemes are based on difficulty of one computational prob-
lem [1]. The problems of factoring and discrete logarithm (DL) modulo
a prime are two widely used difficult problems for designing different
types of the cryptographic protocols [2]. Their security is based on
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the following two facts: i) the used difficult problem is computationally
infeasible while applying the best known algorithm, i.e. its difficulty W
is sufficiently large; ii) the probability P of the discovery in near future
an computationally efficient algorithm for solving the hard problem is
negligibly small. Thus, the ratio W/P can be introduced as some in-
tegrated security parameter [3]. Therefore increasing the difficulty of
the hard problem or reducing the value P leads to increasing the in-
tegrated security parameter. The value P can be significantly reduced
in the case when breaking the public key cryptoscheme requires solv-
ing simultaneously two independent computationally hard problems.
The factoring problem (FP) and the problem of finding the discrete
logarithm (DL) modulo prime are two widely used problems for con-
structing the public key cryptoschemes.

A number of signature schemes based on difficulty of the simulta-
neous solving the factoring problem (FP) and the DL modulo prime
problem (DLpP) are proposed in the papers [4], [5]. In these cryp-
toschemes there is used the DLpP with the prime p′ having the follow-
ing structure p′ = en + 1, where the composite number n is difficult
for factoring. Such signature schemes are composed so that forging a
signature requires solving the both computing the discrete logarithm
problem modulo p′ and factoring n. However, the known design method
gives sufficiently low performance, large size of the signature, and it is
not evident how to apply it to construct the cryptoschemes of other
type based on difficulty of simultaneous solving the DLpP and FP.

The present paper introduces a new method to design the cryp-
toschemes, breaking of which requires to solve simultaneously both
the FP and the DLpP. The proposed method is free of the lacks of
the known one, while designing the signature algorithms, and provides
possibility to construct cryptoschemes of different other types. Section
2 describes the idea of the proposed method that consists in apply-
ing the difficulty of finding the discrete logarithm modulo a composite
number that is difficult for factoring. Section 3 describes a new public
key agreement scheme. Section 4 describes the public encryption al-
gorithm. Sections 5 and 6 present new signature schemes. Discussion
and conclusion are presented in section 7.
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2 The Proposed Method

The idea of the proposed method relates to the fact that, excluding
the exhaustive search algorithms, finding discrete logarithm modulo
a composite number n can be performed by factoring n and finding
discrete logarithm modulo each prime factor [2]. Therefore, if the dif-
ficulty of factoring n is sufficiently large and approximately equal to the
difficulty of finding DL modulo the largest prime factor of n, while us-
ing the best algorithms for solving these problems, then breaking some
cryptosystem based on difficulty of computing DL modulo n requires
solving simultaneously two different difficult problems, the FP and the
DLpP.

Difficulty of the factoring number n = pq that is equal to product of
two large strong [6] primes p and q is defined by the size of the smaller
one, for example q < p. Let |q| denote the bit size of the number q.
The difficulty of finding DL modulo prime p is approximately equal to
the difficulty of factoring number n, if |p| = 2|q|. Suppose one selects
n = pq such that |p| = 2|q|. Then, the difficulty of finding the DL
modulo n, the difficulty of finding the DL modulo p, and the difficulty
of factoring n are values of the same order. Therefore the difficulty of
breaking a cryptosystem based on the DL modulo n problem does not
change its order in the case when a breakthrough algorithm for solving
the FP or for solving the DLpP will be invented. Since the probability
of the last two events are sufficiently small, then the probability P is
significantly reduced for the cryptoschemes breaking of which requires
solving the DL modulo n problem (DLnP).

Thus, constructing the public key cryptoschemes based on the
DLnP like the known cryptoschemes based on the DLpP represents
an interesting and general approach to get the cryptoschemes based on
the difficulty of solving simultaneously the FP and the DLpP. Apply-
ing this design method one can extend the type set of algorithms and
protocols breaking of which implies simultaneous solving the FP and
the DLpP.

The DLnP is defined relatively some known numbers α and y, and
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consists in finding x such that the following expression holds:

y = αx mod n.

As it is shown in paper [7] the value α should be selected properly in
order to prevent some new factoring methods connected with using the
value α. The following two variants are possible for selecting secure α.

1. In the first variant there are generated primes p and q such that
sufficiently large prime γ divides both the number p−1 and the number
q − 1. A number having order γ modulo n is selected as the value α.
In this case the value γ is not secret.

2. In the second variant there are generated primes p and q such
that the prime γ′ divides the number p − 1 (γ′|p − 1), the prime γ′′

divides the number q − 1 (γ′′|q − 1), γ′ does not divide q − 1, and γ′′

does not divide p − 1. A number having order γ = γ′γ′′ modulo n is
selected as the value α. In this case the values γ, γ′, and γ′′ are secret.

In the case of construction the cryptoscheme with 128-bit security
the values γ, γ′, and γ′′ should have the following size: |γ| ≥ 256
bits, |γ′| ≥ 128 bits, and |γ′′| ≥ 128 bits. Below in the proposed
cryptoschemes there is used modulus n that is the product of the two
strong primes q and p having the length |q| ≈ 1232 bits and the length
|p| ≈ 2464 bits. For such size of the used numbers the difficulty of fac-
toring n and the difficulty of finding DL modulo p are equal to O(2128)
modulo multiplication operations, where O(∗) is the order notation.

3 The Public Key Agreement Protocol

The ith user generates the secrete prime values pi, qi, and a random
256-bit number xi. Then he computes his public key (ni, αi, yi), where
ni = piqi; yi = αxi

i mod ni; αi is a number having 256-bit prime order
modulo ni. The public keys (ni, αi, yi) are registered at some authority
center that publishes all registered public keys in some reference book.
Some ith user and some jth user can compute their common secret key
Zij using the following protocol:

1. The ith user generates a random 256-bit number ui, computes
the value Ri = αui

j mod nj , and sends Ri to the jth user.
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2. The jth user generates a random 256-bit number uj , computes
the value Rj = α

uj

i mod ni, and sends Rj to the ith user.
3. The ith user selects from the reference book the public key yj and

computes the following values: Z ′ij = yui
j mod nj , Z ′′ij = Rxi

j mod ni,
and Zij = Z ′ijZ

′′
ij .

4. The jth user selects from the reference book the public key yi and
computes the following values: Z ′ji = y

uj

i mod ni, Z ′′ji = R
xj

i mod nj ,
and Zji = Z ′jiZ

′′
ji.

The secret shared by the ith and jth users is the value Zji = Zij .
The protocol correctness proof is as follows:

{
Z ′ij = yui

j mod nj = α
xjui

j mod nj

Z ′′ji = R
xj

i mod nj = α
uixj

j mod nj

}
⇒ Z ′′ji = Z ′ij ,

{
Z ′ji = y

uj

i mod ni = α
xiuj

i mod ni

Z ′′ij = Rxi
j mod ni = α

ujxi

i mod ni

}
⇒ Z ′′ij = Z ′ji ,

{
Z ′′ji = Z ′ij ; Z

′′
ij = Z ′ji;Zij = Z ′ijZ

′′
ij ; Zji = Z ′jiZ

′′
ji

}
⇒

⇒ Zij = Zji.

4 The Public Encryption Algorithm

Suppose some sender wishes to send a secret message M < n to some
user using the public communication channel. This can be done using
the following public encryption algorithm, like the ElGamal’s encryp-
tion algorithm [8].

1. The sender selects from the public key reference book the re-
ceiver’s public key (n, α, y), generates a 256-bit random number u,
computes the value R = αu mod n, and the value Z = yu mod n.

2. Then he encrypts the message M as follows: C = MZ mod n.
3. The cryptogram (R, C) is send to the receiver.
The decrypting message M procedure is as follows:
1. The receiver, using his secret key x such that y = αx mod n,

computes the value W = R−x mod n.
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2. Then he computes the message M : M = CW mod n. The
decryption correctness proof is as follows:

{CW ≡ MZR−x ≡ Myu(αu)−x ≡ Mαxuα−ux ≡ M mod n} ⇒
⇒ CW mod n = M.

5 The Digital Signature Protocol

Suppose some user has registered his public key (n, α, y) in the author-
ity center. The value y is computed as follows y = αx mod n, where
x is the 256-bit secret key; n = pq, and the value α has 256-bit prime
order γ modulo n (γ is not secret). The user can sign the message M
using the following digital signature scheme, that is like the Schnorr’s
signature algorithm [9].

1. Generate a random 256-bit number k and compute the value
R = αk mod n.

2. Using some specified 256-bit hash function FH compute the first
element of the signature: E = FH(R||M).

3. Compute the second element of the signature (E, S) : S =
k + xE mod γ.

The signature verification procedure includes the following steps:
1. Compute the values R̃ = y−EαS mod n and Ẽ = FH

(
R̃||M

)
.

2. Compare the values E and Ẽ. If E = Ẽ, then the signature to
message M is valid, otherwise the signature is rejected as the false one.

The signature scheme correctness proof is as follows:
{
R̃ ≡ y−EαS ≡ α−xEαk+xE ≡ αk ≡ R mod n

}
⇒

⇒
{
R̃ = R; Ẽ = FH

(
R̃||M

)
; E = FH (R||M)

}
⇒ Ẽ = E .

6 The Blind Signature Protocol

Blind signature protocol is characterized by the fact that the person
signing some electronic message M prepared by some other person
(called requester) doesn’t know the content of the message M and
later after the signature generation the signer can’t link the signed
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message to its author. The signature scheme described in section 5 can
be extended to the following blind signature protocol.

1. The signer generates a random 256-bit number k and value
R̄ = αk mod n, then he sends the value R to the requester.

2. The requester generates two 256-bit random values ε and µ called
the “blinding” parameters and calculates the value R = R̄yµαε mod n.
Then, using some specified 256-bit hash function FH , he calculates
H = FH(M) and E = FH (R||M) and Ē = E + µ mod γ. The value
E is the first element of the blind signature. The requester sends E to
the signer.

3. The signer computes the second element of the blind signature:
S = (k + xE) mod γ, then he sends the value S to the requester.

4. The requester “unblinds” parameter S, i.e. computes the second
element of the signature (E,S) to message M : S = S + ε mod γ.

The signature verification is performed as it is described in Sec-
tion 5.

The blind signature protocol correctness proof is as follows:

{
R̃ ≡ y−EαS ≡ α−xEαS̄+ε ≡ α−x(Ē−µ)αk+xĒ+ε ≡ (αx)µαkαε ≡
≡ R̄yµαε ≡ R mod n

}
⇒

⇒
{
R̃ = R; Ẽ = FH

(
R̃||M

)
; E = FH (R||M)

}
⇒ Ẽ = E .

7 Discussion and conclusion

Earlier the signature and blind signature protocols based on FP and
DLpP have been proposed in papers [3], [4], [5]. Comparing these
signature protocols with the signature scheme proposed in this paper
one can find that the proposed scheme provides significantly shorter
signatures (512 bit against at least 2500 bits for the case of 128-bit
security) and significantly faster generation and verification procedures.
Detailed estimation of the hardware implementation cost, like the one,
performed in [10], represent interest for an additional research. One
can expect that the indicated advantages should yield more efficient
implementation in hardware though.
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Except the blind signature protocol, in all described cryptoschemes
it is possible to use the value α with the non-secret 256-bit prime value
γ (such that γ|p − 1 and γ|q − 1) or with secret γ = γ′γ′′, where the
numbers γ′ and γ′’ are some 128-bit primes (such that γ′|p− 1; γ′′|q −
1; γ′ does not divide q−1; and γ′′ does not divide p−1). In the last case
one can easily prove that the algorithm solving the DLnP can be used
to solve both the factoring n problem and the DL modulo p problem.
Indeed, using such hypothetic algorithm we can perform the following
computations:

1. Select a random 300-bit number X and compute the value y =
αX mod n.

2. Using the hypothetic algorithm for solving the DLnP compute
the value x such that y = αx mod n.

3. Factor the value X−x (this is the sufficiently easy computational
procedure, since the size of the largest factors γ′ and γ′′ is equal to 128
bits) and find the values γ′ and γ′′.

4. Compute the value D = αγ′ mod n (note that the value p divides
the value D − 1, since D ≡ αγ′ ≡ 1 mod p).

5. Using the Euclidian algorithm compute the greatest common
divisor gcd(n,D − 1) = p (i.e. the factorization of the value n is com-
puted).

Suppose one should find the value u from the given values β and
z, where z = βu mod p and β has order γ′ modulo p. The hypothetic
algorithm for finding the DL modulo n can be used to compute the
value u as follows:

1. Generate a value λ having prime order γ′′ modulo q.
2. Compute the integer α′ < n from the following system of two

congruences {
α′ ≡ β mod p
α′ ≡ λ mod q

.
3. Compute the integer y < n from the following system of two

congruences {
y ≡ z mod p
y ≡ λ mod q
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.
4. Applying the hypothetic algorithm compute the unknown x from

the equation y = α′x mod n.
5. Output the value u = x mod γ′.
It is sufficiently evident that the values α′ and y computed at steps

2 and 3, correspondingly, have order γ′γ′′. From the equation y =
α′x mod n one can get

y ≡ α′x mod p ⇒ (y mod p) ≡ (α′ mod p)x mod p ⇒
⇒ z = βx mod p ⇒ u ≡ x mod γ′ .

This means the last described algorithm outputs the correct value
u.

It has been demonstrated that for the case of the value α having
secret order γ = γ′γ′′, in certain sense, solving the DLnP is equivalent
to solving both the DLpP and FP. Analogous proof for the case of the
value α having non-secret prime order γ represents an open problem.

To reduce the signature size (from 512 bits to 384 bits in the case
of 128-bit security) in the schemes based on difficulty of simultaneous
solving the FP and the DLpP one can apply the signature schemes
based on the difficulty of FP and proposed earlier in paper [11]. For
this purpose in the design of the signature and blind signature protocols
described in [11] only small modification is required, which consists in
using the composite modulus described in this paper instead of the
composite modulus equal to the product of two primes having almost
the same size.

Thus, the present paper shows that using the difficulty of the DLnP
is an alternative and efficient approach to the design of the cryp-
toschemes based on difficulty of solving simultaneously both the FP
and the DLpP.
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