
Computer Science Journal of Moldova, vol.21, no.2(62), 2013

Design and code coupling assessment based on

defects prediction. Part 1

Arwa Abu Asad, Izzat Alsmadi

Abstract

The article discusses an application of code metrics at object-
oriented software design. Code metrics give an additional method
to avoid errors except the obvious ones like thorough require-
ments, design, programming, testing, and consumer’s feedback.
Software metrics try to collect values and measurements from the
software and predict possible current or future problems. This
paper includes the development, analysis and evaluation of sev-
eral software code metrics. The paper also investigates how could
coupling metrics be utilized as early indicators of fault proneness.
A tool is developed to parse through code projects and auto-
matically collect those metrics. A case study of Scarab project
is selected to evaluate coupling metrics ability to predict fault
proneness. Results showed that the value of the evaluated met-
rics can vary in terms of their ability to judge the software design
and fault proneness. Results showed also that CBO, RFC, MPC
and ICP have more correlation with reported bugs in comparison
with other collected and evaluated coupling metrics.

Keywords: Design metrics, Object-Oriented Designs, Coupling met-
rics, software faults.

1 Introduction

Software quality is affected significantly by design phase problems.
Typically, high quality software will be the outcome of software with a
good design. Therefore, designers should have the vision for quality of
software in earlier stage of design process by making software easier to

c©2013 by A. Abu Asad, I. Alsmadi

204



Design and code coupling assessment based on defects prediction . . .

understand and change later as well. It is largely acknowledged that
software design quality attributes can be directly related to software
code or implementation attributes. Thus, it is important to recognize
measuring reliability, efficiency, modularity and quality in early phases
prior to implementation of the code. How could we control design to
produce robust, maintainable and reusable software? Many metrics
were proposed to measure quality of design identifying potential prob-
lems as early as possible. Metrics provide an important assistance to
developers for design assessment.

Developers must recognize the factors that will improve their design
in terms of understandability and future change. One of the important
design quality factors is the coupling or type and nature of connec-
tion between components that may impact the way those components
interact or will respond to future modifications.

In this paper several design coupling metrics proposed by Briand
et al (1999) [1–3] are assessed using a large set of open source code
projects. One of the major design goals is to minimize coupling. There-
fore, it is important to calculate this attribute before the implemen-
tation phase. Goals or objectives of this research can be summarized
as:

• To develop a tool to collect several design or object oriented cou-
pling metrics.

• To find the relationship between code and design coupling met-
rics.

• To empirically verify the validity of coupling metrics by means of
a comparative evaluation of open source codes.

• To assess the correlation between coupling metrics and fault
proneness.

The remainder of this paper is organized as follows: Overview of
related work is described in Section 2. A measurement coupling model
is discussed in Section 3. Metrics calculation is presented in Section

205



A. Abu Asad, I. Alsmadi

4. In Section 5 we presented coupling correlation with fault proneness
and Section 6 presents the conclusion.

We divided the paper into two parts due to size limitation. In
the first part, we will describe all metrics, their equation and how can
they be measured with small examples. The second part will mainly
focus on the introduction, evaluation and analysis of the case study
that is conducted as part of this research. The case study includes the
collection and analysis of a large set of open source code applications.
After the automatic collection of all metrics described in the first part,
the second part includes an evaluation and assessment stage of the
collected metrics using statistical analysis to find possible values or
predictions based on the collected metrics and data.

2 Related Work

Metrics related to each other. They provide overlapping quality infor-
mation. Complexity and coupling are related to each other. Many re-
searchers studied the relation between them. Chidamber and Kemerer
(1994) [4] used group of coupling metrics to estimate the complexity of
OO systems such as RFC, CBO DIT and NOC. Fenton and Pfleeger
(1997) [6] proved that software metrics such as complexity, coupling,
and cohesion (CCC) could be used to evaluate software quality. Badri
et al. (2009) proposed multi-dimensional metrics that captures cou-
pling between classes using different internal software attributes, such
as complexity.

Yadav and Khan (2011) [11] proposed coupling complexity normal-
ization metric that minimizes complexity by controlling coupling of
software system. Misra et al. (2011) [8] proposed a new metric, Cog-
nitive code complexity (CCC), which is based on inheritance and basic
control structure. They observed that CCC is related to RFC, DIT,
NOC, CBO and WMC.

In addition, they showed that CCC could estimate OO design qual-
ity.

Stevens et al. (1974) [10] defined the first definition for coupling
metrics in procedural programming. Myers (1978) [12] defined six met-

206



Design and code coupling assessment based on defects prediction . . .

rics for procedural coupling among pairs of modules, which are con-
tent, common, external, control, stamp and data coupling. Offutt et
al. (1993) [9] extended the previous level of coupling by introducing
the no-coupling level, and redefining it; so, it algorithmically quanti-
fied these metrics on C-program. Chidamber and Kemerer (1994) [4]
proposed the first formal definition of coupling between classes and
defining number of metrics related to coupling that is CBO and RFC.

Eder et al. (1994) [5] redefined coupling types of procedural pro-
gramming for object-oriented systems, which are the following:

• Content Coupling occurs when one class has a direct access to pri-
vate method values (i.e. instance variables) of another class where
relation between classes allows such access, like friend classes in
C++ or internal in CSharp. Some special cases like ”Jump”
statements represent also examples of content coupling. ”Goto”
and ”Jump” keywords are used in low level and structural lan-
guages and restricted in the object oriented one.

• Common coupling occurs when one class has a public access for
instance variables or if such variables are accessed through an
inheritance relation.

• Control coupling occurs when one module controls the execution
of another module under certain conditions.

• Stamp coupling occurs in message passing scenarios where one
parameter type of the complete message is of type object (i.e.
not a primitive data type).

• Data coupling occurs in message passing where all parameters
are of primitive data types.

In addition, they identified three types of relationships in object-
oriented systems:

• Interaction relationships between methods,

• Component relationships, and

207



A. Abu Asad, I. Alsmadi

• Inheritance relationships between classes.

3 Coupling measurement model

3.1 Terminology

This section defines the terminologies and the abbreviations that are
used in the later sections. Table 2 shows the term and the definition
adapted for it in this paper as well as the abbreviation of terms.

3.2 Coupling Metrics model

Coupling Between objects (CBO)

The original definition of CBO excludes inheritance relations. How-
ever, this definition is revised to include inheritance relationship. Cou-
pling between objects metric is defined for Instance attributes, and
for method calls including inheritance relationship. The approach of
Briand et al. [1-3] deals with various method invocations with no con-
sideration for the type of call. However, in this paper polymorphism
call – due to interface method calls – is not considered as coupling.

There are different types of method calls:

• Direct calls: when method calls method in another class – it is
considered as coupling.

• Polymorphism calls: when method calls method of interface – it
is not considered as coupling between the class and the class that
implements the interface.

• Inherited method from parent class: when inherited method calls
from child – it is considered as coupling with parent class.

• Overriding method calls: they contribute to coupling between all
classes that define the method since metrics collection is statically
collected. Finding out exactly the class of overriding method
requires execution of the code.

208



Design and code coupling assessment based on defects prediction . . .

Table 1. Terminology Abbreviation
Term Definition Abbrevi-

ation
Defined
methods

Methods declared within class C Mdef

inherited
methods

Methods declared within parent class and inher-
ited and (not overridden) within child class C

Minh

Polymorphic
method

Methods defined within an interface Mpoly

new meth-
ods

Methods declared within class C that do not
override inherited ones

Mnew

Overriding
methods

Methods declared within class C that override
(redefine) inherited ones

Mover

invoked
methods

Methods that can be invoked in association with
class C

Minv

External
calls

Invocations to a method defined in other classes Callex

Internal
calls

Invocations to a method in the same class Callint

polymorphic
calls

invocations to a method defined in an interface callpoly

inherited
calls

Invocations to a method defined in parent class
through object of child class

callinh

defined
attributes

attributes declared within class C Attrdef

overriding
attributes

attributes declared within class C that override
(redefine) inherited ones

Attrover

Inherited at-
tributes

attributes inherited (and not overridden) in class
C

Attrinh

used at-
tributes

attributes that can be manipulated in associ-
ation with class C (those external public at-
tributes from other classes used in method of
class C)

Attruse

instance at-
tributes

attributes of type class Attrinst

Instance pa-
rameter

Parameter of type class argins

209



A. Abu Asad, I. Alsmadi

Calls are counted in both directions. Therefore, CBO of a class C
is the number of other classes that class C references and classes that
reference class C. Since CBO counts each class only one time, so if C
references C‘ and C‘ references C, then C‘ will be counted one time,
hence there is no need for counting in both directions.

The relationship between child and parent was not considered in
Chidamber & Kemerer definition [4]. Nevertheless, this definition had
been revised to include inheritance coupling by Briand et al. frame-
work.

Instance variable is determined as:

• Instance attribute that is declared in C. Inherited, polymorphism,
and overriding attributes are not discussed by Briand et al. [1-3].
In this framework, they will be dealt with like the corresponding
method.

All these points are considered in the parsing and analysis process.
As such, the calculation of these metrics has been made directly from
the database using SQL.

CBO equation:

CBO =
∑

unique(Ci),

where Ci = C − c | c invoke M(C) or c defined Attrinst

Pseudo code for select statement:

Result1= Select used class num from call table where Callint = ’false’
and callpoly = ’false’ and current class num = ?
Result2= Select used class num from attribute table
where Attrinst = ’true’ and current class num = ?
CBO = count (distinct Result1, Result2)

Coupling between objects metric is defined as the number of classes
to which a class is coupled. However, for comparison reason in this
paper we defined average of CBO as follows:

210



Design and code coupling assessment based on defects prediction . . .

ACBO =
Number of classes to which a class is coupled

Total number of classes

Response for a Class (RFC)

The response for a class is the set of methods that have the pos-
sibility to be executed in response to a message received by an object
of that class. RFC is simply the number of methods in the set and
number of calls in that class. There are two versions of RFC, which
are:

RFC = M + R (First-setp measure)
RFC’ = M + R′ (Full measure),

where M = represents the number of methods in the class. Counted
class methods are:

• Declared methods.

• Inherited methods.

R = represents the number of remote methods that are directly
called by methods of the class. Here are the counted calls:

• Calls to methods in other classes. Internal calls of class methods
are not counted.

• Calls to library methods are not counted.

• Polymorphism calls through interface are not counted because
they are not considered as coupling calls.

• Calls to inherited methods through child classes are considered
as in a coupling relation with the parent class not the child one.

• Each called method is only counted once no matter how many
times the method is called.

R′ = represents the number of remote methods called recursively
through the entire call tree.

211



A. Abu Asad, I. Alsmadi

RFC represents the first level or direct calls outside of the class.
RFC may also consider recursive counts and all potential responses
set recursively until entire call tree is included. On the other hand,
polymorphic method calls that include all possible remote methods
executed are included either in R or R’. A given method is counted
only once in R (and R’) even if it is executed by several methods.
RFC’ that considers recursive calls is not considered in our developed
tool.

Pseudo code for select statement:

M = select count (method num) from method table
where current class num = ?
R (First-step measure) = select count (DISTINCT
invoked method num) from call table
where Callint = ’false’ and callpoly = ’false’ and current class num = ?
RFC = M + R (First-step measure)

Message passing coupling (MPC)

MPC is originally defined as : The number of send statements de-
fined in a class. MPC counts the number of method calls defined in
methods of a class to methods in other classes excluding inheritance
relation. MPC counts only method calls to non-descendent or ancestor
classes. On the other side, Briand et al. [1-3] redefined MPC as the
number of method invocations in a class including invocations to meth-
ods in inheritance relation. Since one of the purposes of this paper is
to investigate Briand framework, the redefined MPC is adapted.

MPC = select count (*) from call table where Callint= ’false’ and
callpoly = ”false”
and current class num = ?

Class Data Abstraction Coupling(DAC)

DAC counts the number of instantiations of other classes within
the given class or the number of attributes of type class. This type
of coupling is not caused by inheritance. Therefore, if a class has an

212



Design and code coupling assessment based on defects prediction . . .

attribute variable that is an instantiation (object) of another class, this
is considered as data abstraction coupling.

∑
attr | type(attr) e Ci− c

This formula is translated into SQL for DAC‘:

DAC‘= select count (DISTINCT Attrinst.class num)
from attribute table where Attrinst= ’true’ current class num =?

Information-flow-based coupling (ICP)

The original definition of ICP counts for a method m of a class
c, the number of polymorphically invoked methods of other classes,
weighted by the number of parameters of the invoked methods (Lee et
al., 1995) [7]. We used Briand definition for ICP that it measures the
amount of information flow to and out from the class via parameters
through method invocation as the number of method invocations in a
class. This is weighted by the number of parameters of the invoked
methods, where the weight is number of parameters plus 1.

The equation is then calculated as:

ICP =
∑

Call∑
Call +

∑
par(minv) + 1

This formula is translated into SQL as:

∑
Call

Result1 = ”select count (*) from call table where Callint = ’false’ and
Callpoly = ’false’ and current class num = ?

Result2 = ”select count (argument num) from call, method, argument
where call.invokedmethod num = method.method num and
method.method num = argument.method num
and current class num = ?

213



A. Abu Asad, I. Alsmadi

So,

ICP = Result1 / (Result1+Result2+1)

Briand Suite Measures [1-3]

Some of measures defined in this suite are based on friendship rela-
tion, which is dependent on C++ language terminology. To generalize
the issue to other programming languages, we considered only com-
mon aspects among the different languages evaluated: Java, CSharp
and C++. We considered only measurements that rely on inheritance
relationship. The meaning for these measures are explained in Sec-
tion 3.

Class-attribute interaction (CA)

Class-attribute interaction measures:

ACAIC(c) =
∑

d∈Ancestors(c)

CA(c, d)

ACAIC= select Attrinst.class num from attribute table
where Attrinst = ’true’ and
current class num =? and Attrinst.class num = ancestors class

DCAIC(c) =
∑

d∈Descendents(c)

CA(d, c)

DCAEC = select Attrinst.class num, count (*) from attribute table
where Attrinst = ’true’ and current class num =? And
Attrinst.class num = descendent class group by Attrinst.class num

Class-method interaction (CM)

Class-method interaction measures:

ACMIC(c) =
∑

d∈Ancestors(c)

CM(c, d)

214



Design and code coupling assessment based on defects prediction . . .

DCMEC(c) =
∑

d∈Descendents(c)

CM(d, c)

ACMIC = select Parameter table.class num, count (arg num)
from Parameter table, method table
where Parameter table.method num = method table.method num
and argins = ’true’ and method table.modifiers NOT LIKE ’override’
and method table.class num =? Parameter table.class num
eancestors class GROUP BY Parameter table.class num

DCMEC = select method.class num, count (arg num) from
Parameter table, method table where:
Parameter table.method num = method table.method num
and argins = ’true’ and method table.modifiers NOT LIKE ’override’
and method table.class num <>? and Parameter table.class num =?
and method table.class num edescendent class
GROUP BY method table.class num

Method-method interaction (MM)

Method-method interaction measure (newly defined or overrided).
The pseudo code for the two measures is summarized as follows:

AMMIC(c) =
∑

d∈Ancestors(c)

MM(c, d)

AMMIC = select called class num, count (invoked method num)
from call table where current class num =? And called
class eancestors class GROUP BY called class num

DMMEC(c) =
∑

d∈Descendents(c)

MM(d, c)

DMMEC = select current class num, count (invoked method num)
from call table Where used class num = ? and current class e
descendent class GROUP BY current class num

215



A. Abu Asad, I. Alsmadi

4 Metrics Demonstration

4.1 Metrics Demonstration

Previously, coupling metrics were discussed in theory. This section pro-
vides examples of CSharp code used to help in clarifying the coupling
metrics calculation. The following CSharp code has four classes: A, B,
C, and D, where coupling relation is shown in the source code.

Class A {
C obj1;
D obj2;
Public methoda1 () {obj1.methodc1 () ;}
Virtual Public methoda2(l obj3)
{obj1.methodc2 (obj3);
Obj2.methodd1 () ;} }

Class C {
D obj1;
Public methodc1(){
obj1.methodd1();}
Public methodc2(C
obj2){obj1.methodd1();
ebj1.mothodd2();}}
}

Class B: A {
Public C obj1;
C obj2;
A obj5;
Public methodb1 (A cbj6)
{obj1.methodc1 () ;}
Public methodb2(c obj3)
{obj1.methodc2 (obj3);
Obj2.methodc1 () ;
methoda1(); }
Override methoda2(c obj3) {D obj4;
Obj4.methodd1();
Obj3.methodc2(obj3);} }

Class D {
B obj1;
A obj2;
Public methodd1(){
obj1.methodb2(t obj3);}
Public
methodd2(){obj1.methodb1();
Obj1.methoda1();}
}

CBO:

• Class A is coupled to two classes C and D since it has two at-
tributes of type class C and D as well as invocations to methods:
methodc1 and methodc2 in C, and methodd1 in D. Thus, CBO
for A is 2.

• Class B is coupled to two classes A, and C since it has attributes
of type C, invocations to methods: methodc1, methodc2 and

216



Design and code coupling assessment based on defects prediction . . .

methodd1 in addition to an invocation to methoda1 of class A.
Thus, CBO for B is 3.

• Class C is coupled to class D since it has an attribute of type
D and invocations to methods methodd1 and methodd2. Thus,
CBO for C is 1.

• Class D is coupled to three classes: A, B and C since it has
two attributes of type class: A and B as well as invocations to
methods: methodb1, methodb2 and methoda1. Thus, CBO for
D is 2. It should be noticed that invocation to method methoda1
through class B is considered as coupling with A because coupling
will be with the class that declares the method, where inherited
methods will be considered as coupled through parent class.

RFC:

• Class A: The class has two methods: methoda1 and methoda2.
Methoda1 has one call to methodc1 and methoda2 has two calls
to methodc2 and methodd1. Thus, RFC = 2+ 3 = 5

• Class B: The class has three methods: methodb1, methodb2
and methodb3. It has also one inherited method methoda1.
Methodb1 has one call to methodc1. Methodb2 has three calls to:
methodc2, methodc1 and methoda1. Methoda2 has two calls to:
methodd1 and methodc2. Methoda1 has one call to methodc1.
Thus, RFC = 3+ 6 = 9.

• Class C: The class has two methods: methodc1 and methodc2.
Methodc1 has one call to methodd1. Methodc2 has two calls to:
methodd1 and methodd2. Thus, RFC = 2 + 3=5.

• Class D: The class has two methods: methodd1 and methodd2.
Methodd1 has one call to methodb2. Methodd2 has two calls to:
methodb1 and methoda1. Thus, RFC = 2 + 3=5.

MPC:

217



A. Abu Asad, I. Alsmadi

• Class A: The class has three method calls to: methodc1,
methodc2 and methodd1. Thus, MPC = 3.

• Class B: The class has five calls to: methodc1, methodc2,
methodc1, methodd1, methoda1 and methodc2. Thus, MPC =6.

• Class C: The class has three calls to: methodd1, methodd1 and
methodd2. Thus, MPC = 3.

• Class D: The class has three calls to: methodb2, methodb1 and
methoda1. Thus, MPC = 3.

DAC:

• Class A has 2 attributes of type class. Thus, DAC= 2 and
DAC1=2.

• Class B has 2 attributes of type class. Thus, DAC= 2 and
DAC1=1.

• Class C has 1 attribute of type class. Thus, DAC= 1 and
DAC1=1.

• Class D has 2 attributes of type class. Thus, DAC= 2 and
DAC1=2.

ICP:

• Class A has three calls with methods. One method has one
parameter and the others with no parameters. Thus, ICP =
(3/5)=0.6.

• Class B has six calls with 2 parameters of method methodc2 and
the rest has no parameters. Thus, ICP = (6/9).

• Class C has three calls with no parameters for the three methods.
Thus, ICP = (3/4).

218



Design and code coupling assessment based on defects prediction . . .

• Class D has three calls with one parameter of method methodc2
and the rest has no parameters. Thus, ICP = (3/5).

ACAIC:

• Class A has no ancestors. Thus, ACAIC = 0.

• Class B has 1 attribute of parent A type. Thus, ACAIC = 1.

• Class C has no ancestors. Thus, ACAIC = 0.

• Class D has no ancestors. Thus, ACAIC = 0.

DCAEC:

• Class A has 1 attribute of type A in its descendent B. Thus,
DCAEC = 1.

• Class B has no descendents. Thus, DCAEC =0.

• Class C has no descendents. Thus, DCAEC =0.

• Class D has no descendents. Thus, DCAEC =0.

ACMIC:

• Class A has no ancestors. Thus, ACMIC = 0.

• Class B has 1 parameter of parent A type in the method
methodb1 (A cbj6). Thus, ACMIC = 1.

• Class C has no ancestors. Thus, ACMIC = 0.

• Class D has no ancestors. Thus, ACMIC = 0.

DCMEC:

219



A. Abu Asad, I. Alsmadi

• Class A has 1 parameter of its type A in method methodb1 (A
cbj6) in its descendent B. Thus, DCMEC = 1.

• Class B has no descendents. Thus, DCMEC =0.

• Class C has no descendents. Thus, DCMEC =0.

• Class D has no descendents. Thus, DCMEC =0.

AMMIC:

• Class A has no ancestors. Thus, AMMIC = 0.

• Class B has 1 method invocation of its parent A through
methoda1. Thus, AMMIC = 1.

• Class C has no ancestors. Thus, AMMIC = 0.

• Class D has no ancestors. Thus, AMMIC = 0.

DMMEC:

• Class A has 1 method invocation of its methoda1 in its descendent
B. Thus, DMMEC = 1.

• Class B has no descendents. Thus, DMMEC =0.

• Class C has no descendents. Thus, DMMEC =0.

• Class D has no descendents. Thus, DMMEC =0.

As it was described earlier, a tool is developed to automate the
collection and calculation of those metrics from source codes. Initially,
we conducted a manual evaluation for small source codes to make sure
that metrics are calculated correctly in the tool in comparison with
manual calculation or verification.

220



Design and code coupling assessment based on defects prediction . . .

4.2 Discussion of Metrics Demonstration

The tool is developed to carry out an evaluation on evaluated cou-
pling metrics, which are: CBO, RFC, MPC, DAC, DAC1, ICP, COF,
ACAIC, DCAEC, ACMIC, DCMEC, AMMIC, and DMMEC. These
coupling metrics are used to assess the quality of design affecting many
high level quality attributes such as: Reusability, maintainability, un-
derstandability, complexity, and testability. In most cases, tight cou-
pling will have negative impact on these quality attributes and decrease:
reusability, maintainability, understandability, and testability as well as
increasing complexity.

High CBO indicates that the class is tightly coupled with other
classes in the software, which complicates testing and modification,
and limits reusability. The large number of RFC means that many
methods are invoked in response to a message. As a result, testing and
debugging of the class are then more complex and harder to understand
so eventually making it a harder task for tester to pursue an error. As
testing and debugging is complicated, quality is decreased and which
in turn indicates bad design. MPC indicates also effect on: reusability,
maintenance and testing effort. A larger MPC indicates high coupling
between the subject class and other classes in the system which means
that the class is difficult to change. Higher values of DAC and DAC‘
indicate complexity in data structures and classes of the code. High
ICP indicates a high amount of information flow in the class which may
complicate maintenance tasks. ACAIC, DCAEC, ACMIC, DCMEC,
AMMIC, and DMMEC are indicators of the degrees of inheritance
coupling, so high values in those metrics may complicate maintenance
and reusability. The degree of coupling determines ability to make
changes in design and code. In tightly coupled class, a change in one
class may cause eventually several changes on other classes as well.
Such ripple effect may go through all or most of the code or the design.
Therefore, coupling metrics can play a major role in predicting quality
of design showing some symptoms of serious issues.

Coupling metrics are then effective predictors for design quality.
The tool is first validated manually by comparing tool results with

221



A. Abu Asad, I. Alsmadi

manual assessment of metrics. The tool is then used in a case study
of several open source codes. Further details about the experimental
case study and its analysis will be described in the second part of this
paper.

5 Conclusion and Future Work

There are several possible characteristics in which software product
quality can be evaluated. Part of quality assurance software metrics
tools are used to automatically collect and assess the software quality
through code and design. Coupling metrics are used to assess the soft-
ware product in general and the design quality in particular. In this
paper, we formulated, developed and evaluated several software cou-
pling metrics. Coupling minimization improves the quality of design.
Thus, coupling metrics could be utilized as early indicators of software
quality. The coupling metrics that were evaluated in this paper in-
clude: CBO, RFC, MPC, DAC, DAC1, ICP, COF, ACAIC, DCAEC,
ACMIC, DCMEC, AMMIC, and DMMEC. A program is developed to
parse software source code and collect those metrics automatically. In
this first part of the paper, we showed examples of all coupling metrics
and how can they be calculated.

We evaluated the correctness of the tool in terms of measuring cou-
pling metrics correctly through comparing the tools results with manual
calculation of those metrics based on their defined formulas. In the next
part of this paper, we will collect several open source codes. We will col-
lect all coupling metrics described earlier from those source codes. We
will then conduct several statistical and data mining analysis methods
to show the value of the evaluated metrics specially in terms of software
or design quality aspects such as bugs detection, maintainability, etc.

References

[1] L. Briand, J.W. Daly, J.K. Wust. A unified framework for cou-
pling measurement in object-oriented systems, IEEE Transactions

222



Design and code coupling assessment based on defects prediction . . .

on Software Engineering, 25 (1) (1999), pp. 91–121.

[2] L. Briand, P. Devanbu, W. Melo. An investigation into coupling
measures for C++, Proc. 19th Int’l Conf. Software Eng, ICSE,
(1997), pp. 412–421.

[3] L. Briand, J. Wust, J.W. Daly, D.V. Porter. Exploring the rela-
tionships between design measures and software quality in object
oriented systems’, Journal of Systems and Software, 51(3), (2000),
pp. 254–273.

[4] S. Chidamber, C. Kemerer. A metrics suite for object oriented de-
sign, IEEE Transactions on Software Engineering, 20 (6), (1994),
pp. 476–493.

[5] J. Eder, C. Kappel, M. Schrefl. Coupling and Cohesion in Object-
Oriented Systems. Technical Report, Univ. of Klagenlurt, available
at ftp://ftp.ifs.uni-inz.ac.at/pub/publications/1993/0293.ps.gz,
(1994).

[6] N. Fenton, S.L. Pfleeger. Software Metrics: A Rigorous and Prac-
tical Approach, PWS Publishing Co., (1997), Boston, MA, USA.

[7] Y. Lee, B.S. Liang, S.F. Wu, F.J. Wang. Measuring the coupling
and cohesion of an object-oriented program based on information
flow, Proc. Int’l Conf. Software Quality, Maribor, Slovenia 12,
(1995), pp. 81–90.

[8] S. Misra, I. Akman, M. Koyuncu. An inheritance complexity met-
ric for object-oriented code: A cognitive approach, Indian Academy
of Sciences, 36 (3), (2011), pp. 317–337.

[9] J. Offutt, M.J. Harrold, P. Kolte. A software metric system for
module coupling, The Journal of Systems and Software, 20(3),
(1993), pp. 295–308.

[10] W. Stevens, G. Myers, L. L. Constantine. Structured design, IBM
Systems Journal, 13 (2), (1974), pp. 115–139.

223



A. Abu Asad, I. Alsmadi

[11] A. Yadav, R.A. Khan. Coupling Complexity Normalization Metric-
An Object Oriented Perspective, International Journal of Informa-
tion Technology and Knowledge Management, 4(2), (2011), pp.
501–509.

[12] G. J. Myers. Composite Structured Design, Van Nostrand Reinhold
Co, New York, 1978.

Arwa Abu Asad, Izzat Alsmadi Received October 17, 2012

Arwa Abu Asad
Institution: Yarmouk University
Address: CIS department
E–mail: arwa abuasad@yahoo.com

Izzat Alsmadi
Institution : Yarmouk University
Address : CIS department
E–mail: ialsmadi@yu.edu.jo

224


