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Tutte Polynomial of Multi-Bridge Graphs

Julian A. Allagan

Abstract

In this paper, using a well-known recursion for computing the
Tutte polynomial of any graph, we found explicit formulae for the
Tutte polynomials of any multi-bridge graph and some 2−tree
graphs. Further, several recursive formulae for other graphs such
as the fan and the wheel graphs are also discussed.

Keywords: Tutte polynomial, multi-bridge graph, 2-tree,
fan, wheel.

1 Basic notions

Throughout this paper, we let G = (V,E) be a simple graph, where
V (G) and E(G) denote, respectively, the set of vertices and the set of
unordered pair of vertices called edges of G. An edge e ∈ E(G) with
ends u, v ∈ V (G) is denoted by {u, v} or uv; e is said to be incident
with u and v. An edge {u, u} is called a loop. An edge {u, v} that
occurs more than once in E is called a multiple (or parallel) edge. A
graph G is said to be isomorphic to a graph H if G can be obtained
by relabelling the vertices of H; and we write G ∼= H.

A graph G = (V,E) is connected if there is a path between each
pair of its vertices and is disconnected otherwise (thus, has more than
one component). A separating set or vertex cut of a connected graph
G is a set S ⊆ V such that G − S is disconnected. G is said to be
k−connected if |S| ≥ k. Blocks of G are its maximal 2−connected
subgraphs. An edge in a connected graph is a bridge if its removal
leaves a disconnected graph. For further basic definitions of graphs, we
refer the reader to [14].
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Let G1 and G2 be two graphs. The join of G1 and G2, de-
noted by G1 ∨ G2, is the graph H whose vertex set is V (H) =
V (G1) ∪ V (G2), a disjoint union, and whose edge set is E(G) =
E(G1) ∪ E(G2) ∪ {v1v2 | v1 ∈ V (G1), v2 ∈ V (G2)}. For example,
Kn1

∨Kn2
∨. . .∨Knk

= K(n1, n2, . . . , nk) is a complete k−partite graph
with part sizes n1, . . . , nk. An l−cycle, written Cl := (v1, v2, . . . , vl),
consists of l distinct vertices v1, v2, . . . , vl, and l edges ej := {vj , vj+1},
with 1 ≤ j ≤ l − 1, and el := {vl, v1}. When el = ∅, then we have an
(l − 1)−path which we denote by P l−1.

The Tutte polynomial of a graph G = (V,E) is a bivariate polyno-
mial T (G) = T (G;x, y) which is given by

T (G;x, y) =
∑

S⊆E

(x − 1)c(S)−c(E)(y − 1)c(S)+|S|−|V |,

where c(S) is the number of components in the spanning subgraph
(V, S).

2 Preliminaries

Tutte polynomial (originally known as dichromatic polynomial) has a
particular relation with a number of univariate polynomials. A survey
of several related (and unrelated) polynomials can be found in [1, 11,
13]. For example, the reliability polynomial of G, denoted by R(G, p), is
the probability that G remains connected when each edge in G fails with
probability p. The chromatic polynomial of G, denoted by P (G,λ),
counts the number of ways the vertices of G can be colored using at
most λ colors. The flow polynomial of G, denoted by F (G, k), counts
the number of nowhere-zero k−flows. From the Tutte polynomial of a
(loopless) graph, we can recover the chromatic polynomial along y = 0
and the flow polynomial along x = 0. Thus, for a graph G on n vertices
with m edges and c components, the chromatic polynomial, the flow
polynomial and the reliability polynomial of G are respectively obtained
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from the Tutte polynomial by:

P (G,λ) = (−1)n−cλT (G; 1 − λ, 0)

F (G, k) = (−1)m−n+cT (G; 0, 1 − k)

R(G, p) = pn−c(1 − p)m−n+cT (G; 1,
1

1 − p
).

This paper does not focus on these previously mentioned polyno-
mials, and yet, their results can be derived from the Tutte polynomial
formulae we present using a simple substitution. For instance, knowing
T (C3;x, y) = x2 +x+y, easily follows that P (C3, λ) = λ(λ−1)(λ−2),
F (C3, k) = k − 1, and R(C3, p) = p2(3 − 2p), where C3 is a cycle on 3
vertices.

Other important evaluations of T (G;x, y) can be found at some
specific points of the plane and also along several algebraic curves. For
instance, T (G; 2, 2) gives the number of spanning subgraphs, T (G; 2, 1)
corresponds to the number of acyclic subgraphs, while T (G;−2, 0) gives
the number of Eulerian orientations. We refer to [6, 7, 8] for details
about the combinatorial interpretations of these evaluations and several
others.

Two basic graph operations (see Figure 1) define the Tutte polyno-
mial of any graph G.

(1) G− e, which means the deletion or the removal of the edge e and

(2) G/e, which means the contraction of the edge e; e is removed
and its incident vertices are merged (multiple edges and loops
may occur).

These deletion/contraction operations occur naturally in modeling
networks which arise from a wide range of problems in optimization,
coding theory, statistical physics, biology, engineering, and computer
science. For a thorough survey of research and applications of the Tutte
polynomial, we refer the reader to [1, 3, 4, 12].

In general, it is difficult to compute the Tutte polynomial of a given
graph; such a computation is NP-hard as the recursion grows exponen-
tially in complexity [11]. For this reason, several heuristic algorithms
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Figure 1. Example of the deletion/contraction of an edge

have been proposed for any given graph with a limited number of ver-
tices and the most efficient algorithm has recently been presented by
Haggard et al.[9]. Further, very few recursive, let alone explicit for-
mulae for some graphs are known and the research of finding explicit
formulae for different classes of graphs is still active [2, 10, 13]. In this
paper, we present some results concerning both recursive and explicit
formulae of some graphs.

3 Some recursive formulae

Definition 3.1. The Tutte polynomial of a graph G = (V,E) is defined
by:

T (G;x, y) =







1 E(G) = ∅
yT (G − e;x, y) e ∈ E(G) and e is a loop
xT (G/e;x, y) e ∈ E(G) and e is a bridge
T (G − e;x, y) + T (G/e, x, y) otherwise.

This definition provides a recursive algorithm also known as dele-
tion/contraction method for computing T (G;x; y), giving the next two
corollaries.

Corollary 3.0.1. Suppose H l denotes a tree on l edges. Then
T (H l;x, y) = xl.
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Corollary 3.0.2. The Tutte polynomial of an n−cycle is

T (Cn;x, y) =

n−1∑

i=1

xi + y.

Remark: When applying the deletion/contraction method, we are
free to choose any edge. Therefore, given a graph G, by starting with
the edges of G that are either bridges or loops, one can reduce the
the computation of its Tutte polynomial to T (G†), where G† is ob-
tained from G by removing its initial loops and bridges (multiple com-
ponents may occur). Thus, the computation of any graph with loops
and bridges is simplified by

Proposition 3.1. Given any graph G = (V,E) with at least l loops
and k bridges, then each of the following statements holds:

(a) T (G;x, y) = xkylT (G†;x, y).

(b) If G has c connected components G1, . . . , Gc, then
T (G;x, y) = T (G1;x, y) . . . T (Gc;x, y).

For this reason, the main results in this section and the rest of this
paper concern bridgeless and loopless graphs.

Let P l := (v1, e1, v2, . . . , el, vl+1) denote an alternating sequence
of distinct vertices vi and distinct edges ei. We define an l−fan by
F l = P l∨{w}, with w 6= vi for 1 ≤ i ≤ l+1. Figure 2(a) is an example.
We note that F 0 is an edge of multiplicity 2 (or a 2−edge) and F 1 ∼= C3

which Tutte polynomials are x + y and x2 + x + y respectively. Thus,
it is customary to define a fan graph on l ≥ 2.

Theorem 3.1. Suppose F l is an l−fan. Then, T (F l;x, y) =

xT (F l−1) +

l−1∑

i=0

yiT (F l−i−1) with T (F 0) = x + y and l ≥ 2.

Proof. When l = 2, let’s suppose F 2 := (v1, e1, v2, e2, v3) ∨ {w}. We
apply the deletion/contraction method on e2, giving that

T (F 2) = T (F 2 − e2) + T (F 2/e2) (1)

= xT (F 1) + T (F 1
∗ ), (2)
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where F 1
∗ := (v1, e1, v2) ∨ {w} ∪ {w, v2}. Further, we apply again the

deletion/contraction method on {w, v2} to obtain that

T (F 1
∗ ) = T (F 1) + yT (F 0). (3)

Thus, from (2) and (3) together, we have

T (F 2) = xT (F 1) + T (F 1) + yT (F 0). (4)

Hence,

T (F 2) = x(x2 + x + y) + x2 + x + y + y(x + y)

= x3 + 2x2 + 2xy + x + y2 + y. (5)

Moreover, for all l ≥ 2, we have

T (F l;x, y) = T (F l − el) + T (F l/el)

= xT (F l−1) + T (F l−1
∗ ), (6)

where F l−1
∗ = F l−1 ∪ {w, vl}.

Claim 3.1.1. T (F r
∗ ;x, y) =

r∑

i=0

yiT (F r−i) for each r ≥ 1.

Proof. By induction on r. For r = 1, see (3).
Suppose F r

∗ = F r ∪ {w, vr+1}. Observe that {w, vr+1} becomes a
2−edge. So, as one edge is deleted (in deletion), the other becomes a
loop (in contraction). Thus, we apply the deletion/contraction method
on {w, vr+1} to obtain T (F r

∗ ;x, y) = T (F r)+ yT (F r−1
∗ ). By the induc-

tive hypothesis,

T (F r
∗ ;x, y) = T (F r) + y

( r−1∑

i=0

yiT (F r−i−1)
)

= T (F r) +
r∑

i=1

yiT (F r−i)

=

r∑

i=0

yiT (F r−i). (7)
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The result follows from (6) and Claim 3.1.1.

Given P l := v1, e1, v2, . . . , el, vl+1, when v1 = vl+1, then P l ∼= Cl

and we define a wheel graph by W l = Cl ∨ {w} for all l ≥ 2. C l is
often referred to as the rim of the wheel and the edges not in the rim
are called spokes. We will call a wheel on l rim edges, an l−wheel, for
short.

Theorem 3.2. Let W l be an l−wheel. Then, for all l ≥ 4,

T (W l;x, y) = T (W l−1) + T (F l−1) +
l−4∑

i=0

yi+1
( l−i−3∑

j=0

yjT (F l−i−j−3)
)

+

yl−2(x + y + y2), with T (F 0) = x + y.

Proof. We begin with some initial cases.
Let l = 2 and suppose W 2 := (v1, e1, v2, e2, v1) ∨ {w}. We apply

the deletion/contraction method on e2 to get that T (W 2) = T (F 1) +
yT (F 0), giving that

T (W 2) = x2 + y2 + xy + x + y. (8)

Similarly, when l = 3, T (W 3) = T (F 2) + T (W 2
∗ ), where T (W 2

∗ ) =
T (W 2)+yT (F 0)+y3, giving that T (W 3) = T (W 2)+T (F 2)+yT (F 0)+
y3. Hence, from (5), (8), and the initial condition,

T (W 3) = x3 + y3 + 3x2 + 3y2 + 4xy + 2x + 2y (9)

after expansion.
For l = 4, it follows from a similar recursion as in the previous case

that

T (W 4) = T (W 3) + T (F 3) + y
(

T (F 1) + yT (F 0)
)

+ y2T (F 0
∗ ), (10)

where T (F 0
∗ ) = x+ y + y2. Thus, we satisfy the basis for the recursion.

Claim 3.2.1. If Gr = F r ∪ {w, v1} ∪ {w, vr+1}, then T (Gr;x, y) =
r∑

i=0

yi
( r−i∑

j=0

yjT (F r−j−i)
)

for all r ≥ 1.
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Proof. Suppose Gr
∗ = F r ∪ {w, v1}. Then Gr = Gr

∗ ∪ {w, vr+1}.
Following the argument in the proof of Claim 3.1.1, it is clear that

T (Gr;x, y) =

r∑

i=0

yiT (Gr−i
∗ ). Further, since Gr

∗
∼= F r

∗ , the result fol-

lows.

Suppose W l := (v1, e1, v2, . . . , vl, el, v1) ∨ {w} for all l ≥ 4. We ap-
ply the deletion/contraction argument on el to get that T (W l;x, y) =
T (F l−1) + T (W l−1

∗ ), where W l−1
∗

∼= W l−1 ∪ {w, v1} is a graph that is
obtained by identifying the endpoints of el by v1 as a result of the
contraction. Further, we consider W l−1

∗ and apply again the dele-
tion/contraction argument on {w, v1} to obtain that T (W l−1

∗ ;x, y) =
T (W l−1) + yT (F l−3

∗∗ ), where F r
∗∗

∼= F r ∪ {w, v1} ∪ {w, vr+1}. To-
gether, we have that T (W l;x, y) = T (W l−1) + T (F l−1) + yT (F l−3

∗∗ ).
From Claim 3.2.1, we obtain that T (W l;x, y) = T (W l−1) + T (F l−1) +

y

l−3∑

i=0

yi
( l−3−i∑

j=0

yjT (F l−i−j−3)
)

. Further, having T (F 0
∗ ) = x + y + y2 as

an initial condition, the result follows for all l ≥ 4.

The next result follows from Theorem 3.2 after using T (W 3) as a
basis for the recursion.

Corollary 3.2.1. If W l is an l−wheel then, for all l ≥ 4,

T (W l;x, y) = T (W 3)+

l−1∑

k=3

(

T (F k)+

k−3∑

i=0

yi+1
( k−i−2∑

j=0

yjT (F k−i−j−2)
)

+

yk−1(x + y + y2)

)

, with T (F 0) = x + y.

We note here that the general recursion formula given in Theorem
3.2 would be quite different, if not impossible to obtain, if the dele-
tion/contraction is applied on the spokes instead.
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4 Explicit formula for a 2-tree graph

Suppose G = K(n, 2) ∼= {u1, . . . , un} ∨ {v1, v2} denotes a complete
bipartite graph. For each e ∈ E(G), we define ei,j := {ui, vj} with
i = 1, . . . , n; j = 1, 2 and n ≥ 1.

Theorem 4.1. The Tutte polynomial of the complete bipartite graph
G = K(n, 2) is

T (G;x, y) = x2(x + 1)n−1 +
n−1∑

i=1

(x + y)i(x + 1)n−i−1, for all n ≥ 1.

Proof. When n = 1, it is clear that G ∼= H2, and the result follows
(after setting the last term equal to zero)

T (K(1, 2)) = x2, (11)

satisfying the basis of the recursion.
For all n ≥ 1, we apply the algorithm on en,2 (and subsequently on

en,1 after en,2 is contracted) to obtain

T (G) = T (G − en,2) + T (G/en,2)

= T (G − en,2) +

(

T
(

(G/en,2) − en,1

)

+ T
(

(G/en,2)/en,1

)
)

= (x + 1)T (K(n − 1, 2)) + T (K∗(n − 1, 1)). (12)

Now, using (11) as the basis for (12) gives

T (K(n, 2)) = (x + 1)n−1T (K(1, 2)) +

+
n−1∑

i=1

(x + 1)n−i−1T (K∗(i, 1)), (13)

where K∗(s, 1) is K(s, 1) with edges, each of multiplicity 2. Therefore,
it is clear from Corollary 3.0.1 that

T (K∗(s, 1)) = (x + y)s. (14)

The result follows from (11), (13), and (14) for all n ≥ 1.
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F 3 = P 3 ∨ {w} H ′
3 = Θ(1, 2, 2, 2)

(a) Fan graph (b) 4−bridge graph

Figure 2. Two non-isomorphic 2−tree graphs

u1 u2 u3 u4

w

u1 v2 u3

u2

v1

As a generalization of a tree, a k−tree is a graph which arises from
a k−clique by 0 or more iterations of adding a new vertex joined to a
k−clique in the old graph; we shall refer to the initial k−clique in any
construction as a base of the k−tree. Thus, we construct any 2−tree
on n + 2 vertices from a base edge uv by repeatedly adding n new
vertices and making them adjacent to any two ends of an edge in the
graph formed so far. This process generates several non-isomorphic
2−tree graphs. k−tree graphs are proven to be useful in constructing
reliable network in [5] and Figures 2(a) and 2(b) depict an example of
two non-isomorphic 2−tree graphs. We list here some basic properties
of a 2−tree graph as we recall that a vertex v in a graph G is simplicial
if its neighborhood in G is a clique.

Proposition 4.1. Suppose H ′
n is a 2−tree on n+2 vertices. Then the

following statements are equivalent.

(a) H ′
n is 2−connected.

(b) H ′
n contains exactly n simplicial vertices.

(c) Every edge of H ′
n can be used as a base.
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(d) H ′
n does not contain any 4−clique.

(e) |E(H ′
n)| = 2(n + 2) − 3.

Proposition 4.2. Let F denote a class of all non-isomorphic 2−tree
graphs. Then Fn ∈ F , where Fn is an n−fan.

Proof. We denote by G′, a graph obtain by the following: starting
from an edge (base) {u1, w}, we connect each additional vertex ui to
the endpoints of {ui−1, w}, for i = 2, . . . , n + 1. Thus, G′ ∼= Fn, is an
n−fan (on n + 2 vertices). Further, from the construction, it is clear
that G′ is also a 2−tree.

For our result, we construct a 2−tree graph as follows: We connect
the endpoints of a base edge {v1, v2} to the added vertex ui, for i =
1, . . . , n. We denote the resulting 2−tree graph on n+2 vertices by H ′

n

and Figure 2(b) is an example.
Observe from the two previously given constructions that the chro-

matic polynomial P (H ′
n, λ) = λ(λ − 1)(λ − 2)n = P (Fn, λ), where n is

the number of simplicial vertices of any 2−tree graph.

Corollary 4.1.1. The Tutte polynomial of the 2−tree on n simplicial
vertices, H ′

n, is

T (H ′
n;x, y) = x2(x+ 1)n−1 +

n−1∑

i=1

(x + y)i(x + 1)n−i−1 + (x+ y)n, n ≥ 1.

Proof. Observe that H ′
n
∼= K(n, 2)∪ e, where e := {v1, v2} and K(n, 2)

is the complete bipartite as previously defined. Then, after applying
the algorithm on e, follows that for all n ≥ 1,

T (H ′
n;x, y) = T (K(n, 2)) + T (K∗(n, 1)). (15)

Hence, the result follows from (15) using (14) and Theorem 4.1.

5 Explicit formula for multi-bridge graphs

A network is reliable or fault-tolerant if it contains more alternative or
disjoint paths between its operatives sites. For this reason, we find it
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important to discuss this highly connected class of graphs as we recall
that two paths a1 and a2 are internally disjoint (or independent) if
they have no common internal vertex.

A multi-bridge (or m−bridge) graph G = θ(a1, . . . , am) is the graph
obtained by connecting two distinct vertices with m ≥ 2 internally
disjoint paths of lengths a1, . . . , am respectively, with ai ≥ 1. (See
Figure 2(b)). For instance, when m = 2, θ(a1, a2) ∼= Ca1+a2

. For our
result, we assume m ≥ 2 and ai ≥ 1, though it is customary to define
θ(a1, . . . , am) for m ≥ 3 and ai ≥ 2. As such, a multi-bridge graph is a
generalization of the well-known θ−graph [14].

For the next result, we define

τm =







y +
m−1∑

r=1

xr if m ≥ 2

y otherwise.

As a consequence of this definition, a loop is therefore isomorphic to
C1, a cycle on a single vertex, and the result of Corollary 3.0.2 becomes

T (Cm;x, y) = τm, m ≥ 1. (16)

Theorem 5.1. If G = θ(a1, . . . , am) is a multi-bridge graph, then for
each ak ≥ 1,

T (G;x, y) =

m−3∑

i=0

i∏

j=1

( am−j+1−1
∑

r=0

xr
)m−i−1∏

k=1

τak
+

m−2∏

j=1

( am−j+1−1
∑

r=0

xr
)

τa1+a2
,

m ≥ 2.

Proof. It is easy to verify the special case when ak = 1 for each

1 ≤ k ≤ m. Because
i∏

j=1

( am−j+1−1
∑

r=0

xr
)

= 1 for i = 0, . . . ,m − 3, we
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have

T (θ (1, . . . , 1, 1)
︸ ︷︷ ︸

m

) =
m−3∑

i=0

(τ1)
m−i−1 + τ2

=
m−3∑

i=0

ym−i−1 + y + x

=

m−1∑

i=1

yi + x,

which is the Tutte polynomial of an edge of multiplicity m ≥ 2. When
m = 2, we set the first term in the original formula equal to zero (and
the coefficient of the last term equal to one) to obtain that

T (G;x, y) = τa1+a2
= T (Ca1+a2

), (17)

satisfying the basis of the recursion.
For m ≥ 2, we apply the deletion/contraction (sequentially) on am

to get that

T (G;x, y) =
( am−1∑

r=0

xr
)

T (θ(a1, . . . , am−1)) +

m−1∏

j=1

T (Caj
). (18)

Now, we use T (Ca1+a2
) (and subsequently expression (16)) as the

basis for (18) to get

T (G;x, y) =

m∏

j=3

( aj−1
∑

r=0

xr
)

T (Ca1+a2
) +

m−2∑

i=1

m∏

j=3+i

( aj−1
∑

r=0

xr
)i+1∏

k=1

T (Cak
)

=
m∏

j=3

( aj−1
∑

r=0

xr
)

τa1+a2
+

m−2∑

i=1

m∏

j=3+i

( aj−1
∑

r=0

xr
) i+1∏

k=1

τak
,

giving the result for all ak ≥ 1 and m ≥ 2.
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Corollary 5.1.1. If G = θ(a1, a2, a3) is a θ−graph, then for each

ak ≥ 1, T (G;x, y) =
( a3−1∑

r=0

xr
)

τa1+a2
+ τa1

τa2
.

Proof. The result follows from Theorem 5.1 when m = 3.

Observe that, because θ(1, 2, . . . , 2
︸ ︷︷ ︸

m+1

) ∼= H ′
m, a 2−tree on m + 2 ver-

tices, Theorem 5.1 extends the result of Corollary 4.1.1.
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