
Computer Science Journal of Moldova, vol.21, no.1(61), 2013

ECO-generation for some restricted classes of

compositions

Jean-Luc Baril, Phan-Thuan Do

Abstract

We study several restricted classes of compositions by giving
one-to-one maps between them and different classes of restricted
binary strings or pattern avoiding permutations. Inspired by the
ECO method [8], new succession rules for these classes are pre-
sented. Finally, we obtain generating algorithms in Constant
Amortized Time (CAT) for theses classes.

Keywords : Composition of an integer, ECO method, succession rule,

generating tree, pattern avoiding permutation.

1 Introduction

A composition of an integer n is an ordered collection of one or more
positive integers whose sum is n. So, a composition c of n can be
written c = (c1, c2, . . . , ck) with c1 + c2 + · · · + ck = n and ci ≥ 1
for all i ≤ k. The integer k corresponds to the number of parts of
the composition. Let C(n) be the set of compositions of n. It is well
known that the cardinality of C(n) is 2n−1 and there is a one-to-one
correspondence between C(n) and binary strings of length n − 1 (see
Definition 1). There are many studies about enumeration of compo-
sitions and their restrictions: (1, p)-compositions, i.e., compositions
whose parts are 1 or p have been introduced in [12, 15, 16]; composi-
tions with no occurrence of part p have been studied in [17]; see also
[1, 14, 24, 25, 27, 28, 30, 32]. However, a very few articles deal with
their exhaustive generations. Some Gray codes are given for composi-
tions of a positive integer n in [31, 37]; for compositions with parts of

c©2013 by Jean-Luc Baril, Phan-Thuan Do

97

Jean-Luc Baril, Phan-Thuan Do

size smaller than p in [36]; or for (1, p)-compositions in [12, 15]. These
papers mostly study the classes of compositions in terms of binary
strings. On the other hand, in [30], some results are provided using re-
stricted permutations for a few classes of compositions, but they cannot
be considered as avoidance patterns. More recently, a generalization
of the Simion-Schmidt injection [35] gave a bijection between binary
strings and pattern avoiding permutations [29] which creates a natural
link between compositions and pattern avoiding permutations. For ex-
ample, the class of compositions is in one-to-one correspondence with
the class of permutations avoiding 321 and 312 [4, 26]; the set of com-
positions of n with all parts of sizes smaller than (p + 1) is enumerated
by the p-generalized Fibonacci numbers, see [4, 11, 27, 28] and there
is a bijection between this set and permutations avoiding the patterns
321, 312 and 234 · · · (p + 1)1.

In this paper, we use the ECO method [8] (Enumeration Combi-
natorial Object method) in order to generate some restricted classes
of compositions represented as binary strings or pattern avoiding per-
mutations. The ECO method is a recursive description of a combi-
natorial object class which explains how an object of size n can be
reached from one and only one object of smaller size (see for example
[2, 3, 5, 6, 7, 13, 18, 19, 21, 22, 23]). It consists to define a system
of succession rules for a combinatorial object class which induces a
generating tree such that each node is labeled by the number of its
successors. In fact, the set of successions rules describes for each node
the label of its successors. More formally, the root of the generating
tree is labeled (b), b ∈ N

+, and we define the rules Ω:

{(k) (e1(k))(e2(k)) · · · (ek(k)), k ∈ N},

where ei : N
+ −→ N

+. This means that each node labeled (k) has k
successors labeled (e1(k)), (e2(k)),. . . , (ek(k)). For ` ≥ 1, the symbol
`
 means that the succession rule transforms an element of size n into
another one of size n + `. For ` = 1 we frequently omit the superscript
` over .

By coding each node of the generating tree with either a binary
string or a permutation, we deduce new bijections between classes of

98

ECO-generation for some restricted classes of . . .

restricted compositions, pattern avoiding permutations and restricted
binary strings.

This paper is organized as follows. Section 2 recalls the defini-
tion of pattern avoiding permutations, and gives existing links between
compositions, binary strings and pattern avoiding permutations. Sec-
tions from 3 to 7 present succession rules for compositions with a given
number of parts, compositions with at most p parts, (1, p)-compositions
and compositions without parts of a given size. Moreover, each induced
generating tree will be encoded by binary strings and pattern avoid-
ing permutations. Finally, we deduce efficient algorithms (Constant
Amortized Time algorithms) for generating all these classes (Constant
Amortized Time means that the total amount of computation divided
by the number of objects is bounded by a constant independent of the
size of objects).

2 Definitions and notations

Let Sn be the set of permutations on [n] = {1, 2, . . . , n}. We represent
a permutation π ∈ Sn in one line notation: i.e., π = π1π2 · · · πn, where
πi = π(i) for all i ≤ n. A permutation π ∈ Sn contains the pattern
τ ∈ Sk if and only if a sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ n
exists such that π(i1)π(i2) · · · π(ik) is order-isomorphic to τ . We denote
by Sn(τ) the set of n-length permutations avoiding the pattern τ , i.e.,
permutations that do not contain τ . For instance, the permutation
523164 contains the pattern 321 while 314265 ∈ S6(321). Moreover,
we consider a barred pattern τ̄ , i.e., a permutation in Sk having a bar
over one or several consecutive entries (see [34]). Let r, 1 ≤ r ≤ k − 1,
be the number of barred elements in τ̄ ; τ be the permutation on [k]
identical to τ̄ but unbarred; and τ̂ be the permutation on [k − r] made
up of the k − r unbarred elements of τ̄ rewritten to be a permutation
on [k − r]. Let b = b1 · · · bk ∈ {0, 1}k such that bi = 1 if and only
if the i-th entry of τ̄ is barred. Then π ∈ Sn avoids the pattern τ̄
if and only if each pattern τ̂ in π can be expanded into a pattern τ
in π such that the positions of the extended entries correspond to the
positions of 1s in b. For example, if τ̄ = 2134, then b = 0011 and

99

Jean-Luc Baril, Phan-Thuan Do

2134 ∈ S4(τ̄) and 21435 /∈ S5(τ̄) since 43 can not be expanded into a
pattern 43ab, where 4 < a < b. Now we define a special pattern denoted
τ̇ = 23 · · · (p − 1)p1̇ (see [10]). A permutation π avoids τ̇ if and only if
each pattern 23 · · · (p−1)1 can be extended to a pattern 23 · · · (p−1)p1
such that the positions of the extended values do not matter, i.e., each
pattern 23 · · · (p − 1)1 is contained in a pattern 23 · · · (p − 1)p1 of π.
For instance, if τ̇ = 231̇, then 2341 ∈ S4(τ̇) and 21 /∈ S2(τ̇) while
2341 /∈ S4(234̄1).

It is well-known that the set C(n + 1) of compositions of n + 1 is in
one-to-one correspondence with the set B(n) of binary strings of length
n. The following bijection ϕ shows this correspondence.

Definition 1 Let c = (c1, c2, . . . , ck) be a composition of n + 1.
The bijection ϕ between C(n + 1) and B(n) is defined by: ϕ(c) =
1c1−101c2−10 · · · 1ck−1−101ck−1.

For instance, if c = (1, 3, 2, 3), then ϕ(c) = 01101011.
On the other hand, Juarna and Vajnovszki in [29] gave a bijec-

tion φ between the binary strings in B(n) and the permutations in
Sn+1(321, 312). This bijection is considered as a generalization of the
Simion-Schmidt injection [35].

Definition 2 Let b = b1b2 · · · bn ∈ B(n). The bijection φ between B(n)
and Sn+1(321, 312) is defined by: π = φ(b) ∈ Sn+1 which has its i-th
value πi given by the following rule: if Xi = [n+1] \{π1, π2, . . . , πi−1},
then

πi =

{
the minimum value in Xi, if bi = 0, or i = n + 1
the second minimum value in Xi, if bi = 1.

For instance, if b = 01101011, then φ(b) = 134265897.

3 Compositions of n with parts of size at

most p

The set C≤p(n) of compositions of n with parts of size at most p is
enumerated by the (n+1)-th p-generalized Fibonacci number (see [11]).

100

ECO-generation for some restricted classes of . . .

The map ϕ (Section 2) induces a bijection between C≤p(n) and the
set B<p(n − 1) of binary strings of size n − 1 without p consecutive
ones. It is proved [4, 11] that there are also one-to-one correspondences
with the two classes of permutations Sn(321, 231, (p + 1)12 · · · p) and
Sn(321, 312, 23 · · · (p + 1)1). These permutation classes admit known
succession rules (see [4, 26] and Table 1) and they can be generated in
constant amortized time (see also [11, 9, 33, 36] for Gray code listing).

4 Compositions of n with exactly p parts

The set Cp(n) of compositions of n with exactly p parts is enumer-
ated by the binomial coefficient

(
n−1
p−1

)
. Also, Cp(n) is in one-to-one

correspondence with the set Bp−1(n − 1) of binary strings of length
n − 1 and having exactly p − 1 zeros. The function ϕ (see Sec-
tion 2) shows such a bijection. The following theorem gives a sys-
tem of succession rules in order to generate the sets Bp−1(n − 1) and
Sn(132, 312, (p + 1) · · · 21, 12 · · · (n − p + 1)(n − p + 2)). In this part,
we say that the level of a node in the generating tree is the length of
the unique path between the root and this node, plus p (thus the root
is on the level p).

Theorem 1 For p ≥ 1, a system (Ωp) of succession rules for the set
Cp(n) is:

(Ωp)

{
(p)
(k) (1)(2) · · · (k − 1)(k).

Each level n ≥ p of the generating tree induced by (Ωp) can be
coded by the binary strings of Bp−1(n − 1) or by the permutations in
Sn(132, 312, (p + 1) · · · 21, 12 · · · (n − p + 1)(n − p + 2)). A node other
than the root and labeled (k) is coded by a binary string of the form
b = b′10k−1 (resp. a permutation π = π′n(k − 1)(k − 2) · · · 21) and
its successors are obtained from b (resp. π) either by inserting 1 (resp.
n+1) between two entries of the suffix 10k−1 (resp. n(k−1)(k−2) · · · 21)
or by appending 1 (resp. n + 1) on the right (see Figure 1).

Proof. We attach the binary string 0p−1 to the root of the generating
tree obtained by (Ωp) and we proceed by induction on the level n of

101

Jean-Luc Baril, Phan-Thuan Do

(3)
00/321

(1)
001/3214

(1)
0011/32145

(1)

(2)
010/3241

(1)
0101/32415

(1)

(2)
0110/32451

(1) (2)

(3)
100/3421

(1)
1001/34215

(1)

(2)
1010/34251

(1) (2)

(3)
1100/34521

(1) (2) (3)

Figure 1. The first levels of the generating tree (Ω3) (the level of the root is
3). Each node on the level n is coded by one binary string in B2(n− 1) or by
one permutation in Sn(132, 312, 4321, 12 · · ·(n − 2)(n − 1)).

the tree (the root being on the level p by convenience). So we assume
that the level (n− 1) generates once each binary string of Bp−1(n− 2).
Let b ∈ Bp−1(n − 2) such that b = b′0k, k ≤ p − 1, where b′ is either
empty or has 1 on its right. Therefore, by inserting 1 on the right
of b, or between two entries of the suffix 0k, or on the left of 0k, we
produce k + 1 binary strings of Bp−1(n − 1) and each binary string
c = b′10k−`+110`−1 obtained by this process has ` successors labeled
(1), (2), . . . , (`). Conversely, each binary string of Bp−1(n − 1) can be
uniquely obtained from an element of Bp−1(n−2) by this construction.

Now, we define a map φ′ from Bp−1(n − 1) to Sn(132, 312).
Let b = b1b2 · · · bn−1 ∈ Bp−1(n − 1). If π = φ′(b1b2 · · · bn−1), then

π1 = p and for i ≥ 2,

πi =

{
p − ` if bi−1 is the `-th 0 from the left
p + ` if bi−1 is the `-th 1 from the left.

For instance, if p = 5 and n = 9, then φ′(10011010) = 564378291.
In fact, the image by φ′ of an element in Bp−1(n− 1) is a permutation
of Sn(132, 312) verifying π1 = p, or equivalently a permutation of
Sn(132, 312) that avoids the two patterns (p + 1) · · · 21 and 12 · · · (n−

102

ECO-generation for some restricted classes of . . .

p+1)(n−p+2). Now let us prove that φ′ is a bijection from Bp−1(n−1)
to Sn(132, 312, (p + 1) · · · 21, 12 · · · (n − p + 1)(n − p + 2)). Indeed, a
permutation π in Sn(132, 312, (p+1) · · · 21, 12 · · · (n−p+1)(n−p+2))
verifies that πi is either max{πj , j ≤ i} or min{πj , j ≤ i} which are
respectively represented by 1 and 0 in order to obtain a binary string
b of length n − 1 (we do not consider the bit corresponding to π1).
Obviously, if π avoids (p+1)p · · · 21 (resp. 12 · · · (n− p+1)(n− p+2))
then b does not contain p zeros (resp. n−p+1 ones) which means that
b contains exactly p − 1 zeros. Moreover, if c = b′10`10k−` is obtained
from b = b′10k ∈ Bp−1(n−2) by inserting 1, then φ′(c) is obtained from
φ′(b) by inserting n on the same position from the right. 2

Notice that the set Sn(132, 312, (p + 1) · · · 21, 12 · · · (n− p + 1)(n−
p + 2)) depends on a pattern of length n − p + 2. However, it remains
the open question: is it possible to find a finite basis B (independent
of n) such that Sn(B) is enumerated by

(
n−1
p−1

)
?

5 Compositions of n with at most p parts

The set C#p(n) of compositions of n with at most p parts is enumerated
by

∑p
k=1

(
n−1
k−1

)
. Moreover, C#p(n) is in one-to-one correspondence with

the set B#(p−1)(n − 1) of binary strings of length n − 1 and having
at most p − 1 zeros. The function ϕ (see Section 2) shows such a
bijection. The following theorem gives succession rules in order to
generate B#(p−1)(n− 1). Since B#(p−1)(n− 1) =

⋃p−1
i=0 Bi(n− 1), these

rules are obtained by a simple adaptation of the rules described in the
previous section. Here we say that the level of a node in the generating
tree is the length of the unique path between the root and this node
(the root is on the level 0).

Theorem 2 For p ≥ 1, a system (Ω#p) of succession rules for the set

103

Jean-Luc Baril, Phan-Thuan Do

B2(n − 1)

B1(n − 1)

B0(n − 1)

..

..

..

..

..
..
..
..
..
..
..
..
..
..
..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

.

..

..

..

.

..

..

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

..

..

..

..

..

.

..

..

..

.

..

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
.

..
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
..

..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
.

...
...
..
...
...
...
...
..
...
...
...
...
...
...
...
.

...
...
....
...
...
...
...
...
...
....
...
...
...

...
....
....
....
....
...
....
....
....
....
.

.....
.....
.....
.....
.....
.....
.....
..

.......
.......
........

.......
......

..................
...............

...............................

...............................

..............................

..............................

..............................

..............................

....
................

...

...
.....
.....
......
...

..

...

...

...

...
...
...
.

.

...

...

...

..

...

...

..

.

..

..

..

..

..

..

..

..

.

..

.

.

.

..

.

..

.

.

..

.

..

.

..

.

.

.

..

..

.

..

..

.

..

.

..

..

.

.

.

..

..

..

..

..

..

..

..

..

..

.

..

..

...

..

..

..

...

..

..

.

...

....
...
....
....
...
...

.....
.....
....
.....
.....
.

.......
......
.......
......

.............................

................................

...................................

......................................

..

............................

...........................

..........................

.........................

.........................

........
........
........
..

.....
....
.....
....
.....
....

....
...
...
...
...
....
...
...
...

...
..
...
..
...
..
...
..
...
..
...
..

..
..
..
..
..
...
..
..
...
..
..
..
...
..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

.

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

.

.

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

.

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

..

.

.

..

.

..

..

.

..

.

..

..

..

..

..

..

..

.

..

.

..
..
..
..
..
..
..

...
...
...
...
..
.

....
.....
.....
...

......
........

.......
........

.......
.......

........
........

........
.........

.......

........
.........

..........
.........

.

..........
...........

...........
..

...............
..............

..

.....................
.......

.........................
....................

..................

...............

.............

..........

.......
.

..

...

...

..

...

...

...

..

...

...

...

..

...

...

..

..

...

..

...

..

...

..

...

..

...

..

...

..

...

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

.

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

.

.

..

..

.

..

..

..

.

..

..

..

..

.

..

..

..

.

..

.

.

...

..

..

..

..

..

...

..

..

..

..

...

..

..

.

..

..

..

...

..

..

...

..

..

...

..

..

...

..

.

..

...

...

...

....
...
...
...
...
...
...
.

....
....
....
.....
....
....
....
.....
.

.....
.....
.....
.....
....
.....
.....
.

.

.........
.........
........
.........

..............................

.............................

............................

...........................

..........................

.........................

.......................
.......................

......
.......
........
...

.....
....
....
....
....
....

...
...
...
...
...
..
...
...
...

...
...
..
..
...
..
...
...
...
..
.

..

..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..

..

..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

.

..

.

...

..

.

..

..

..

.

..

.

.

..

.

.

.

..

..

...

.......

........

..........

......
........

.

.....
.....
....
....

....
....
....
....
....
....
....
....
...
....
....
....

...
....
...
....
....
....
...
....
....
....
...
....

...
....
...
....
....
...
....
....
...
....
...
..

...
....
...
...
....
...
...
....
...
...
....

....
...
...
...
...
...
...
....
...
...
..

...
...
...
..
...
...
...
...
...
...
.

..
...
...
..
...
...
..
...
...
...

..
...
...
..
...
...
..
...
...

...
..
..
..
...
..
..
..
..

..

..
..
..
..
..
..
..
.

..

..

..

..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

.

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

.

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

.

.

..

.

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

.

.

..

..

.

..

..

..

..

..

..

..

..

..

..

...
...
...
...
.

....
.....
....
.

..........
............

.......

..

...

...

..

..

....

...

...

..

.

..

..

...

..

..

..

...

..

..

..

..

.

..

..

..

..

..

.

.

..

..

.

..

...

.

...

.

.

..

.

..

.

.

.

..

.

.

..

.

.

..

..

.

..

..

.

..

.

..

..

..

.

..

.

..

.

..

.

.

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

.

.

..

..

.

..

.

..

..

.

..

..

.

..

.

.

..

.

..

..

.

..

..

.

..

..

.

.

.

.

..

..

..

.

..

..

.

..

.

..

..

.

..

..

..

..

.

...

..

..

..

..

.

..

...

..

.....

..

.....

.......
.

......
.....

....
.....
.....

...
.....
....
.....

..

........
........
...

.....
.......
.......
.....

......
......
.......
......
..

.

......
......
.....
......
......

.

......
.....
......
.....
.....
.....

.

......
.....
......
.....
......
....

..

......
......
......
......
....

.....
......
......
......
....

.

.......
.......
.......
..

......
........
.......

...
....
.....
....
.

..

.....
.....
..

..

......
...

....
....

.....

..

(20)
λ/1

(30)
0/21

(3)
00/321

(1)
001/3214

(1)

(2)
010/3241

(1) (2)

(3)
100/3421

(1) (2) (3)

(2)
10/231

(1)
101/2314

(1)

(2)
110/2341

(1) (2)

(1)
01/213

(1)
011/2143

(1)

(1)
1/12

(1)
11/123

(1)
111/1234

(1)

Figure 2. The first levels of the generating tree (Ω#3). Each node on the
level n is coded by one permutation in Sn+1(132, 312, 4321) or by one binary
string in B#2(n). Encircled subtrees correspond to the subsets Bi(n − 1) for
0 ≤ i ≤ 2.

C#p(n) is:

(Ω#p)






(20)
(k0) ((k + 1)0)(k − 1) · · · (2)(1), if 2 ≤ k < p
(p0) (p)(p − 1) · · · (2)(1)
(k) (1)(2) · · · (k), if 1 ≤ k ≤ p.

Each level n ≥ 0 of the generating tree induced by (Ω#p) can be
coded by the binary strings of B#(p−1)(n) or by the permutations in
Sn+1(132, 312, (p + 1) · · · 21).

• A node labeled (k0), 2 ≤ k ≤ p, is coded by the binary string
0k−2 (resp. the permutation (k−1)(k−2) · · · 21) and its successors are
obtained either by appending 0 (resp. k) on the left or by inserting 1
(resp. k) between two zeros, on the right or on the left (resp. on the
same position from the right as for binary strings).

• All other nodes obey to the rules described in Theorem 1.

104

ECO-generation for some restricted classes of . . .

Proof. The proof is directly deduced from Theorem 1. Indeed, a node
labeled (k0), 2 ≤ k ≤ p, produces k−1 nodes labeled (1), (2), . . . , (k−1)
which have the same succession rules as those of Theorem 1, and either
one node labeled ((k + 1)0) if k 6= p or one node labeled (k) otherwise.
This means that the subtree T rooted by a node labeled (k0), k 6= p,
has one subtree T1 rooted by a node labeled ((k + 1)0) that generates
the sets Bk(n−1) for n−1 ≥ k (see Theorem 1). Now let T2 = T\T1 be
the subtree of T obtained by deleting all nodes of T1. So, T2 generates
the set Bk−1(n− 1) for n− 1 ≥ k− 1. Finally, the complete generating
tree of (Ω#p) is exactly the union of subtrees Ti for 0 ≤ i ≤ p − 1,
where Ti generates the set Bi(n−1), where n−1 ≥ i. This proves that
(Ω#p) generates B#(p−1)(n). By duality and with the same argument,
it also generates all permutations in Sn+1(132, 312, (p + 1) · · · 21) (see
Figure 2). 2

6 Compositions of n with parts 1 and p

Let C1,p(n) be the set of compositions of n with parts 1 and p. The
following bijection ϕ′ (see for example [12]) gives a bijection between
C1,p(n) and the set B≥p−1(n−p+1) of binary strings of length n−p+1
with at least p − 1 zeros between two ones.

Definition 3 Let c = (c1, c2, . . . , c`) be a composition of n such that
ci ∈ {1, p} for all i ≤ `. We define the bijection ϕ′ between C1,p(n) and
B≥p−1(n − p + 1) by the following algorithmical process. We initialize
b = λ (the empty string). For each i from 1 to `, if ci = 1, then we
modify b by appending 0 on its right; otherwise (i.e., ci = p), we modify
b by appending 10p−1 on its right. Finally, we delete p− 1 zeros on the
right of b which defines a binary string b of length n − p + 1 with at
least p − 1 zeros between two ones.

For instance, if n = 12, p = 3 and c = (1, 3, 1, 3, 3, 1), then ϕ′(c) =
0100010010.

Theorem 3 For p ≥ 2, a system (Ω1,p) of succession rules for the
(1, p)-compositions is given by:

105

Jean-Luc Baril, Phan-Thuan Do

(Ω1,p)






(2)
(2) (2)(10)
(1i) (1i+1), for 0 ≤ i < p − 2
(1p−2) (2).

Each level n of the generating tree induced by (Ω1,p) can be coded by the
binary strings in B≥p−1(n) (the root is on the level 0). A binary string
of length n can be obtained from a string of length n− 1 by inserting 0
or 1 on the last position (see Figure 3).

Proof. We will prove by induction that the nodes on the level k can be
coded by the binary strings of the set B≥p−1(k) for all k ≥ 0. Remark
that this is true for the root which is coded by the empty string λ (by
convenience the level of the root will be 0). So let us assume that each
level j ≤ k is coded by the elements of B≥p−1(j).

Let α be a binary string of length k + 1 on the level k + 1 and let
β ∈ B≥p−1(k) be its predecessor on the level k.

If α is obtained from β by inserting 0 on its right, then α also
belongs to B≥p−1(k + 1). If α is obtained by inserting 1 on the right
of β, then β has two sons, so its label is (2), and its predecessor γ is
labeled by (2) or (1p−2), then β = γ0.

(i) If γ is labeled (1p−2), its predecessor γ1 is labeled (1p−3). We
repeat this process until γp−2, i.e., until we reach the label (10).
Then γp−2 is obtained from a binary string β′ labeled (2) by
inserting 1 on the right of β′.

Thus α is of the form α = β1 = β′10p−11. Moreover, β′ ∈
B≥p−1(k − p) by the recurrence hypothesis. We conclude that
α ∈ B≥p−1(k + 1).

(ii) If γ is labeled (2), its predecessor γ1 is labeled (1p−2) or (2). If
γ1 is labeled (1p−2), we return to the case (i) just above, so α has
at least p− 1 consecutive zeros between two ones. If γ1 is labeled
(2), we repeat the process by replacing γ1 with γ and it will finish
when: either we reach the label (1p−2) which corresponds to the

106

ECO-generation for some restricted classes of . . .

case (i), or we reach the root labeled (2). In any case, α contains
p−1 consecutive zeros between two ones. Then α ∈ B≥p−1(k+1).

Conversely, we consider α ∈ B≥p−1(k + 1) and we construct a path
on the generating tree (Ω1,p) which generates this string. We distin-
guish two cases:

• α = α′10j , where j ≤ p−1. So α′1 ∈ B≥p−1(k+1−j). Therefore,
α′ is labeled (2) and α is obtained from α′ with either the path
(2)/α′

 (10)/α
′1 (11)/α

′10 · · · (1j)/α
′0j or (2)/α′

(10)/α
′1 (11)/α

′10 · · · (1p−2)/α
′10p−2

 (2)/α′10p−1;

• α = α′′10j , where j ≥ p. Then α′ = α′′10p−1 ∈ B≥p−1(k + p− j).
So, α is obtained from α′ with a path of nodes all labeled (2) in
the generating tree.

We repeat the same process by replacing α with α′ and we will find
the path from the root of the generating tree (Ω1,p) to reach α. For
instance, α = 010010001, the path to reach α from the root in the
generating tree (Ω1,3) is:

(2)/λ (2)/0 (10)/01 (11)/010 (2)/0100 (10)/01001
(11)/010010 (2)/0100100 (2)/01001000 (10)/010010001.

We finally conclude that the generating tree induced by (Ω1,p) is
coded by the set B≥p−1(n) of binary strings of length n with at least
p − 1 zeros between two ones. 2

Theorem 4 Each level n ≥ 0 of the generating tree of (Ω1,p) can be

coded by the permutations in Sn+1(231, 312, 321, 2134 · · · (p + 1)(p +
3)(p + 2)). A permutation of length n is obtained from a permutation
π of length (n− 1) by inserting n either on the right of π or just before
its last entry (see Figure 3).

Proof. In [12], Baril and Moreira showed there is a bijection f between
B≥p−1(n) and Sn+1(231, 312, 321, 2134 · · · (p + 1)(p+3)(p+2)). More-
over, the insertion of 0 (resp. 1) on the right of b ∈ B≥p−1(n) is equiva-
lent to the insertion of (n+1) on the right of π = f(b) (resp. just before
the last entry). This means that Sn+1(231, 312, 321, 2134 · · · (p + 1)(p+
3)(p + 2)) also codes the generating tree (Ω1,p). 2

107

Jean-Luc Baril, Phan-Thuan Do

(2)
λ/1

(10)
1/21

(11)
10/213

(2)
100/2134

(10)
1001/21354

(2)
1000/21345

(2)
0/12

(10)
01/132

(11)
010/1324

(2)
0100/13245

(2)
00/123

(10)
001/1243

(11)
0010/12435

(2)
000/1234

(10)
0001/12354

(2)
0000/12345

Figure 3. The first five levels of the generating tree (Ω1,3). Each node on the
level n is coded by one permutation in Sn(231, 312, 321, 213465) or by one
binary string in B≥2(n − 1).

7 Compositions of n without part of size p

Let Cp̂(n) be the set of compositions of n without part of size p. The
bijection ϕ (see Section 2) transforms Cp̂(n) into the set B

p̂−1
(n − 1)

of the binary strings of length (n − 1) without run of ones of length
p− 1 knowing that a run of ones is a maximal substring of consecutive
ones. For instance, the binary string b = 0110011101 contains three
runs of ones illustrated in boldface. In this section, we consider the
concept of jumping succession rules introduced in [23]. This allows the
construction of an element of size greater than n + 1 from an element
of size n (see Section 1).

Theorem 5 For p ≥ 2, a system of jumping succession rules (Ωp̂) for

108

ECO-generation for some restricted classes of . . .

the compositions without part of size p is given by:

(Ωp̂)






(20)
(2i) (20)(2i+1), for 0 ≤ i ≤ p − 3

(2p−2)
1
 (20)
2
 (2p−1)

(2p−1) (20)(2p−1).

Each level n of the generating tree of (Ωp̂) is coded by the set B
p̂−1

(n)

(the root is on the level 0). Let b be a binary string in B
p̂−1

(n) corre-
sponding to a node of level n. Then b has two successors:
- if the two successors of b are on the level n + 1, they are obtained by
inserting 0 or 1 on the right of b.
- if one successor of b is on the level n + 1 and the other on the level
n + 2, we insert 0 on the right of b in order to obtain the successor on
the level n+1 and we insert 11 on the right of b in order to obtain that
on the level n + 2 (see Figure 4).

Proof. We proceed by induction. The root of the tree is coded by the
empty string λ (by convenience the level of the root is 0). We assume
that each level k ≤ n is coded by the elements of B

p̂−1
(k). Let α be

the binary string of length (n+1) corresponding to a node on the level
n+1 and let β be its predecessor on the level n or n−1, then β belongs
to B

p̂−1
(n) or B

p̂−1
(n − 1).

(i) If β is on the level n − 1, then β is labeled (2p−2), α is labeled
(2p−1) and α is obtained from β by inserting 11 on its right. Thus
β is obtained from its predecessor β1 labeled (2p−3) (if p− 3 > 0)
by inserting 1 on its right. We repeat this process until we create
βp−2, i.e., until we reach a node labeled (20). Necessarily βp−2 is
obtained from its predecessor β′ by inserting 0 on its right. Thus
α = β11 = β′01p, and α does not contain any run of ones of
length p − 1, which implies that α ∈ B

p̂−1
(n + 1).

(ii) If β is on the level n, then α is obtained from β by inserting 0 or
1 on its right.

109

Jean-Luc Baril, Phan-Thuan Do

- if α is obtained from β by inserting 0 on its right, then α obvi-
ously belongs to B

p̂−1
(n + 1).

- if α is obtained from β by inserting 1 on its right, then β is
labeled (2) or (2i), with i < p − 2:

(a) if β is labeled (2), it is obtained from its predecessor (also
labeled (2)) by inserting 1 on its right. We repeat this pro-
cess until we reach the label (2p−2). So we retrieve the case
(i) above. Then, α = α′1` = β′01p1`, with ` > 0, and
β′ ∈ B

p̂−1
(n − p − l). Therefore α ∈ B

p̂−1
(n + 1).

(b) if β is labeled (2i), with the same process of the case (i), we
have α = β′1i+1, with β′ ∈ B

p̂−1
(n − i) with i + 1 < p − 1.

Thus α ∈ B
p̂−1

(n + 1).

Conversely, each string α in B
p̂−1

(n + 1) can be constructed on

the level n + 1 of the generating tree (Ωp). Indeed, if β = α0, then
β ∈ B

p̂−1
(n + 2). So β can be decomposed as 1c1−101c2−10 · · · 1c`−10

such that c = (c1, c2, . . . , c`) ∈ C
p̂−1

(n + 3) (see the bijection ϕ : Cp̂(n +

1) B
p̂−1

(n)). Let β = β′1c`−10, then β′ ∈ B
p̂−1

(n + 2 − c`). We
distinguish two cases:

• if c` < p, then β is obtained from β′ on the generating tree (Ωp)
by the path
(21) (22) · · · (2c`−1) (20),

• if c` > p, then β is obtained from β′ on the generating tree (Ωp)
by the path

(21) (22) · · · (2p−2)
2
 (2p−1) (2p−1)

c`−p−1
 (20).

We repeat this process by replacing β with β′ and we obtain a path
from the root to β on the generating tree (Ωp̂). For instance, on the
generating tree (Ω3̂), if α = 1110100, then the path for reaching α from
the root is:
(20)/λ (21)/1

2
 (22)/111 (20)/1110 (21)/11101

(20)/111010 (20)/1110100. 2

110

ECO-generation for some restricted classes of . . .

(20)
λ/1

(21)
1/21

(22)
111/2341

(20) (22)

(20)
10/213

(21)
101/2143

(22)

(20)

(20)
100/2134

(21) (20)

(20)
0/12

(21)
01/132

(22)

(20)
010/1324

(21) (20)

(20)
00/123

(21)
001/1243

(22)

(20)

(20)
000/1234

(21) (20)

Figure 4. The first levels of the generating tree (Ω3̂). Each node on the level
n ≥ 0 is coded by a permutation in Sn+1(312, 321, 2341̇) or by a binary string
in B2̂(n).

In order to code the generating tree by permutations avoiding pat-
terns, we use the new pattern 23 · · · n1̇ presented in Section 2.

Theorem 6 Each level n of the generating tree induced by (Ωp̂) can be
coded by the permutations π ∈ Sn(312, 321, 23 · · · (p + 1)1̇) as follows:
• If the two successors of π belong to the level (n+1), they are obtained
by inserting n + 1 on the right or just before the last entry of π.
• If a successor of π is on the level (n + 1) and the other on the level
(n+2), we insert n+1 on the right of π in order to obtain the successor
on the level n+1, and we insert (n+1)(n+2) just before the last entry
of π in order to obtain that of the level (n + 2) (see Figure 4).

In order to prove this theorem, we present the following proposition.

Proposition 1 The map φ defined in Section 2 is a bijection from
Bp̂(n) to Sn+1(312, 321, 23 · · · (p + 2)1̇).

111

Jean-Luc Baril, Phan-Thuan Do

Proof. Recall that φ is a bijection from the set of binary strings of
length n to the set of (n + 1)-length permutations avoiding 321 and
312. So we will prove that φ(Bp̂(n)) = Sn+1(321, 312, 23 · · · (p + 2)1̇).

Let b be a binary string in Bp̂(n) and π be its image by φ in
Sn+1(321, 312). As φ(b) ∈ Sn+1(321, 312), there exist (see [36]) some
indices 0 = k0 < k1 < · · · < kr < · · · < km = n such that π is divided
into m blocks

π = π1π2 · · · πk1
· · · πkr−1+1πkr−1+2 · · · πkr

· · ·

· · · πkm−1+1πkm−1+2 · · · πkm

satisfying the two following conditions:

(i) the rightmost elements of each block are in increasing order (i.e.,
1 = πk1

< πk2
< · · · < πkm

);

(ii) each block πkr−1+1πkr−1+2 · · · πkr
having at least two elements is

of the form (a + 1)(a + 2) · · · (a + kr − kr−1 − 1)a with a = πkr
.

For instance, if b = 110111, then π = 2315674. It is remarkable from
the definition of φ that if we add on the last position of b one occur-
rence of 0 and then divide the obtained binary string into separated
blocks where each block contains exactly one occurrence of 0 at its
end, then we obtain m blocks corresponding to the m blocks of φ(b).
Furthermore, the number of consecutive 1s in each block of b is also
the number, minus one, of elements of the respective block in φ(b) (see
Definition 2). This leads us to the following claim: for q ≥ 2, if one sub-
sequence of φ(b) is a pattern 23 . . . q1 (of length q), then this sequence
must belong to only one block of φ(b) (since the smallest element of
each block of φ(b) is greater than the largest element of the previous
blocks of φ(b)). Moreover, since b does not contain exactly p consecu-
tive 1s, φ(b) does not contain any block of length p + 1 exactly. Hence,
if the subsequence 23 . . . p(p + 1)1 appears in φ(b), then we can extend
it (without considering positions of extended entries) into a sequence
23 . . . (p+1)(p+2)1, which means that φ(b) avoids 23 . . . (p+1)(p+2)1̇.

Conversely, we take a permutation π of Sn+1(321, 312, 23 . . . (p +
1)(p+2)1̇). We also have the decomposition of π into blocks as above. It
needs to show that φ−1(π) belongs to Bp̂(n). This is induced by the fact

112

ECO-generation for some restricted classes of . . .

that all blocks of π considered as subsequences of π are either of length
less than p + 1 (if they do not contain the reduced pattern 23 . . . p(p +
1)1) or more than p+1 (if they contain the extended pattern 23 . . . (p+
2)1). Therefore, φ−1(π) is a binary string without p consecutive 1s. 2

Now, the proof of Theorem 6 is obtained using the following remark.
The insertion of 0 (resp. 1) on the right of b ∈ Bp̂(n) is equivalent to
the insertion of n + 1 on the right of π = φ(b) (resp. just before the
last entry). And also the insertion of 11 on the right of b ∈ Bp̂(n) is
equivalent to the insertion of (n + 1)(n + 2) just before the last entry
of π = φ(b). This means that Sn(312, 321, 23 · · · (p + 1)1̇) also codes
the generating tree (Ωp̂).

8 Algorithmic considerations and conclusion

In this section, we explain how all studied classes can be generated
efficiently.

Let π ∈ Sn; the sites of π are the positions between two consecutive
entries, before the first and after the last entry. We suppose that the
sites are numbered from 1 to n+1 and from right to left. For example,
the third site of the permutation π = 463512 is between the entries 5
and 1. Moreover, let τ be an n-length permutation (or equivalently a
binary string) on a generating tree defined by a succession rule (Ω).
Then, the i-th site of τ is said active if the element obtained from τ
by the insertion of a value into this site also belongs to the generating
tree. The active sites of τ are right-justified (see [20]) if all sites to the
right of the leftmost active site are also active. If each element on the
generating tree is right-justified, we will say that the generated class is
regular. It is crucial to notice that all classes defined in this paper are
regular.

An algorithm runs in Constant Amortized Time (CAT) if the
amount of computations, after a small amount of preprocessing, is pro-
portional to the number of generated objects. Many CAT algorithms
exist in the literature, but we will take that presented in [20, 33]. This
recursive algorithm acts on regular classes and enables us to ensure

113

Jean-Luc Baril, Phan-Thuan Do

that we can generate all successors of a given node in constant amor-
tized time. Thus the total amount of computations is proportional to
the number of recursive calls. Moreover, the number obj of generated
objects is at least c−c1

2 , where c is the total number of recursive calls,
and c1 is the number of recursive calls of degree one. So, for each
generating tree of this study, we will calculate c1.

- We immediately have c1 = 0 for the generating tree defined in
Section 7 and c

obj
evolves as O(1).

- In Section 6, a simple observation gets c1 ≤ p(c − c1) and c
obj

evolves as O(p).

- The generating tree of Section 5 is constituted of several generating
trees of Section 4. So it suffices to compute c1 for Section 4 (see below).

- In Section 4, each node produces exactly once a node of degree
one. Thus the number of nodes of degree one and on levels at most
n − 1 in the generating tree (Ωp) is equal to

c1 =

n−1∑

i=p−1

(
i

p − 1

)
.

A simple calculation proves that if p ≥ bn
2 c and n ≥ 4, then c1 ≤

2
(

n
p−1

)
, which means that the number of nodes of degree one divided

by 2 is smaller than the number of generated objects obj =
(

n
p−1

)
for

p ≥ bn
2 c. In this case, the complexity is O(1). The case p ≤ bn

2 c
is obtained mutatis mutandis by interchanging 0 with 1 in the binary
strings of the generating tree.

Finally, this means that the total amount of computation divided
by the number of objects is bounded by a constant independently to
the size of the objects. Therefore all studied classes in this paper can
be generated in Constant Amortized Time (CAT) using an algorithm
similar to that of [20, 33]. We summarize our results in Table 1 that
contains the succession rules of each studied class and their correspond-
ing pattern avoiding permutation classes.

114

ECO-generation for some restricted classes of . . .

Table 1. Classes of compositions, corresponding succession rules and corre-
sponding classes of pattern avoiding permutations.

Classes Succession rules Avoided patterns

C(n)
(2)
(2) (2)(2)

{321, 312} [4, 26]

(2)
(k) (k + 1)(1)k−1 {321, 231} [4, 26]

Cp(n)
(p)
(k) (1)(2) · · · (k)

{132, 312, (p + 1)p · · · 21,
12 · · · (n − p)(n − p + 1)}

C#p(n)

(20)
(k0) ((k + 1)0)(k − 1) · · · (2)(1) for 2 ≤ k < p
(p0) (p)(p − 1) · · · (2)(1)
(k) (1)(2) · · · (k − 1)(k) for 1 ≤ k ≤ p

{132, 312, (p + 1)p · · · 21}

C≤p(n)

(20)
(20) (20)(21)
(2i) (20)(2i+1), for 1 ≤ i < p − 2
(2p−2) (20)(1)
(1) (20)

{321, 312, 234 · · · (p + 1)1} [4, 11]

(2)
(k) (k + 1)(1)k−1

(p) (p)(1)k−1
{312, 231, (p + 1)p · · · 321} [4, 11]

C1,p(n)

(2)
(2) (10)(2)
(1i) (1i+1), for 0 ≤ i < p − 2
(1p−2) (2)

{231, 312, 321,

2134 · · · (p + 1)(p + 3)(p + 2)}

Cp̂(n)

(20)
(2i) (20)(2i+1), for 0 ≤ i ≤ p − 3

(2p−2)
1
 (20)
2
 (2p−1)

(2p−1) (20)(2p−1)

{312, 321, 23 · · · (p + 1)1̇}

115

Jean-Luc Baril, Phan-Thuan Do

References

[1] K. Alladi and V.E. Hoggatt. Compositions with ones and twos.
Fibonacci Quarterly, 13(3):233–239, 1975.

[2] S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive
generation of combinatorial objects by ECO. Acta Informatica,
40:585–602, 2004.

[3] C. Banderier, P. Flajolet, D. Gardy, M. Bousquet-Melou,
A. Denise, and D. Gouyou-Beauchamps. Generating functions for
generating trees. Discrete Mathematics, 246:29–55, 2002.

[4] E. Barcucci, A. Bernini, and M. Poneti. From Fibonacci to Catalan
permutations. PU.M.A., 2007(1-2):1–18, 2006.

[5] E. Barcucci, A. Del Lungo, and E. Pergola. Random generation
of trees and other combinatorial objects. Theoretical Computer
Science, 218(2):218–232, 1999.

[6] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. A method-
ology for plane tree enumeration. Discrete Mathematics, 180:45–
64, 1998.

[7] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. Directed
animals, forests of trees and permutations. Discrete Mathematics,
204:41–71, 1999.

[8] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a
methodology for the enumeration of combinatorial objects. Jour-
nal of Difference Equations and Applications, 5:435–490, 1999.

[9] J.-L. Baril. More restrictive Gray codes for some classes of pattern
avoiding permutations. Information Processing Letters, 109:799–
804, 2009.

[10] J.-L. Baril. Classical sequences revisited with permutations
avoiding dotted pattern. Electronic Journal of Combinatorics,
18:p#178, 2011.

116

ECO-generation for some restricted classes of . . .

[11] J.L. Baril and P.T. Do. ECO-generation for p-generalized Fi-
bonacci and Lucas permutations. Pu.M.A., 17(1-2):19–37, 2006.

[12] J.L. Baril and C. Moreira Dos Santos. Gray code for compositions
of n with parts 1 and p. Advances and Applications in Discrete
Mathematics, 3(1):67–84, 2009.

[13] S. Brlek, E. Duchi, E. Pergola, and S. Rinaldi. On the equivalence
problem for succession rules. Discrete Math., 298:142–154, 2005.

[14] L. Carlitz. Restricted compositions. The Fibonacci Quart., 14:254–
264, 1976.

[15] T. Chinburg, C.D. Savage, and H.S. Wilf. Combinatorial families
that exponentially far from being listable in Gray code sequence.
Transactions of the AMS, 351:379–402, 1999.

[16] P. Chinn and S. Heubach. (1, k)-Compositions. Congressus Nu-
merantium, 164:183–194, 2003.

[17] P. Chinn and S. Heubach. Compositions of n with no occurrence
of k. Congressus Numerantium, 164:33–51, 2003.

[18] A. Del Lungo, A. Frosini, and S. Rinaldi. ECO method and the
exhaustive generation of convex polyominoes. DMTCS, pages 103–
116, 2003.

[19] E. Deutsch, L. Ferrari, and S. Rinaldi. Production matrices. Ad-
vances in Applied Mathematics, 34:101–122, 2005.

[20] P.T. Do and V. Vajnovszki. Exhaustive generation of some classes
of pattern avoiding permutations using succession functions. Con-
ference in honor of Donald E. Knuth, 2007.

[21] E. Duchi, A. Frosini, R. Pinzani, and S. Rinaldi. A note on rational
succession rules. Journal of Integer Sequences, Article 03.1.7, 6,
2003.

117

Jean-Luc Baril, Phan-Thuan Do

[22] L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi. An algebraic
characterization of the set of succession rules. Theoretical Com-
puter Science, 281:351–367, 2002.

[23] L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi. Jumping succes-
sion rules and their generating functions. Discrete Math, 271:29–
50, 2003.

[24] R.P. Grimaldi. Compositions with odd summands. Congressus
Numerantium, 142:113–127, 2000.

[25] R.P. Grimaldi and S. Heubach. Binary strings without odd runs
of zeros. Ars Combinatoria, 75:241–255, 2005.

[26] O. Guibert. Combinatoire des permutations motifs exclus en
liaison avec mots, cartes planaires et tableaux de Young. Ph.D
Thesis, Université Bordeaux 1, 1995.

[27] S. Heubach and T. Mansour. Combinatorics of compositions and
words. Discrete Mathematics and its Applications (Boca Raton).
CRC Press, Boca Raton, FL.

[28] S. Heubach and T. Mansour. Compositions of n with parts in a
set. Congressus Numerantium, 168:127–143, 2004.

[29] A. Juarna and V. Vajnovszki. Combinatorial isomorphism between
Fibonacci classes. Journal of Discrete Mathematical Science and
Cryptography, 11(2):147–158, 2008.

[30] S. Kitaev, T. McAllister, and K. Petersen. Enumerating segmented
patterns in compositions and encoding with restricted permuta-
tions. Integers: Electronic Journal of Combinatorial Number The-
ory, 6:16pp, 2006.

[31] P. Klingsberg. A Gray code for compositions. J. Algorithms, 3:41–
44, 1982.

[32] A. Knopfmacher and H. Prodinger. On Carlitz compositions. Eu-
ropean Journal of Combinatorics, 19(5):579–589, 1998.

118

ECO-generation for some restricted classes of . . .

[33] T. Mansour, W.M. Dukes, M.F. Flanagan, and V. Vajnovszki.
Combinatorial Gray codes for classes of pattern avoiding permu-
tations. Theoretical Computer Science, 396:35–49, 2008.

[34] L. Pudwell. Enumeration schemes for permutations avoiding
barred patterns. The electronic Journal of Combinatorics, 17,R29,
2010.

[35] R. Simion and F.W. Schmidt. Restricted permutations. European
J. Combin., 6:383–406, 1985.

[36] V. Vajnovszki. A loopless generation of bitstrings without p con-
secutive ones. Discrete Mathematics and Theoretical Computer
Science, 1:227–240, Springer 2001.

[37] T.R. Walsh. Loop-free sequencing of bounded integer composi-
tions. J. Combin. Math. Combin. Comput., 33:323–345, 2000.

Jean-Luc Baril, Phan-Thuan Do Received July 16, 2012

Jean-Luc Baril,

LE2I UMR-CNRS 5158, Université de Bourgogne

B.P. 47 870, 21078 DIJON-Cedex France

E–mail: barjl@u-bourgogne.fr

Phan-Thuan Do,

Hanoi University of Science and Technology, Vietnam

Department of Computer Science

E–mail: thuandp@soict.hut.edu.vn

119

