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Abstract

Profit maximization is an important issue to the firms that
pursue the largest economic profit possible. In this paper, we
consider the profit-maximization problem with the known Cobb-
Douglas production function. Its equivalent geometric program-
ming form is given. Then due to the presence of uncertainties in
real world modeling, we have assumed interval uncertainties on
the model parameters. The robust counterpart is not known to
be considered as a geometric program and efficiently solvable us-
ing interior point algorithms. Thus using piecewise convex linear
approximations, an approximate equivalent of the robust coun-
terpart is given, which is in the form of a geometric programming
problem. Finally an example is presented showing the impact of
uncertainties.

Keywords: Economic Profit; Geometric Program; Robust
Optimization.

1 Introduction

Economic profit is the difference between revenue from selling output
and the cost of acquiring the factors necessary to produce it. A profit
maximizing firm chooses both its inputs and outputs to achieve max-
imum economic profits. In other words, the firm seeks to maximize
the difference between its total revenue and its total economic costs. If
firms are strict profit maximizers, they will adjust those variables that
can be controlled until it is impossible to increase profits further [9-14].
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Most production functions in the profit maximization problem are
represented as power functions. When the production function is rep-
resented as a power function, the profit-maximization problem can be
treated as a geometric program, a class of nonlinear program which
is efficiently solvable using interior point methods [8], while tradition-
ally, the profit-maximization problem is solved by classical method of
calculus [1, 5].

In real world applications, model parameters usually involve cer-
tain level of uncertainties and thus the original model does not apply
anymore. Robust optimization is a new framework which takes into
account the parameters uncertainties of the model and solves the un-
derlying problem in the worst case. Several uncertainty sets have been
considered in the literature. In this paper, we consider interval un-
certainties on parameters of the model [2]. The robust counterpart is
not known to be in the form of a tractable geometric programming
problem [7]. Thus we give upper and lower piecewise convex linear
approximations of it that are efficiently solvable using interior point
methods [3, 8]. Finally an illustrative example is presented to show the
importance of the model parameters uncertainties.

2 Mathematical Model and Robust Counter-
part

Let us consider the following short-run profit maximization problem

max p(Axα
1 xβ

2 )− v1x1 − v2x2

s.t. x1 ≤ k,

where Axα
1 xβ

2 is the known Cobb-Douglas production function, p is the
market price per unit, A is the scale of production, α and β are the
output elasticities, xi and vi are ith input quantity and output price,
respectively and k is a given constant that restricts the quantity of x1

[4,9-14]. To solve this problem using efficient algorithms like interior
point methods, we may write it as follows
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max π

s.t. pAxα
1 xβ

2 − v1x1 − v2x2 ≥ π, (1)
x1 ≤ k,

or in the geometric programming form

min π−1

s.t. πp−1A−1x−α
1 x−β

2 + v1p
−1A−1x1−α

1 x−β
2 + v2p

−1A−1x−α
1 x1−β

2 ≤ 1,

k−1x1 ≤ 1, (2)

where π, x1, x2 and p, A, v1, v2, k, α, β are variables and parameters
respectively. Moreover, by the change of variables

z1 = log(π), z2 = log(x1), z3 = log(x2)

and taking logarithm of the objective function and constraints and
finally using the following notation

lse(z1, . . . , zk) = v log(ez1 + · · ·+ ezk)

we have the following equivalent convex form of (1) which is efficiently
solvable by Mehrotra’s predictor-corrector interior point method [8]:

min [−1 0 0]z
s.t. lse([1 − α − β]z + b1, [0 1− α − β]z + b2,

[0 − α 1− β]z + b3) ≤ 0,

[0 1 0]z + b4 ≤ 0, (3)

where z = (z1 z2 z3)T are variables and

b1 = log(p−1A−1), b2 = log(v1p
−1A−1),

b3 = log(v2p
−1A−1), b4 = log(k−1).
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Now suppose that parameters α, β, p, v1, v2, k are subject to interval
uncertainties, namely

α− ε1 ≤ α ≤ α + ε1 or α + u1ε1 |u1| ≤ 1,

β − ε2 ≤ β ≤ β + ε2 or β + u2ε2 |u2| ≤ 1,

p− ε3 ≤ p ≤ p + ε3 or p + u3ε3 |u3| ≤ 1,

v1 − ε4 ≤ v1 ≤ v1 + ε4 or v1 + u4ε4 |u4| ≤ 1,

v2 − ε5 ≤ v2 ≤ v2 + ε5 or v2 + u5ε5 |u5| ≤ 1,

k − ε6 ≤ k ≤ k + ε6 or k + u6ε6 |u6| ≤ 1.

In the sequel we show how these uncertainties affect b1, . . . , b4. We
have

b1 = − log p− log A, b2 = b1 + log v1, b3 = b1 + log v2, b4 = − log k.

Let us consider the following case:

p− ε3 ≤ p ≤ p + ε3 implies log(p− ε3) ≤ log p ≤ log(p + ε3)

or

log p− log p + log(p− ε3) ≤ log p ≤ log p− log p + log(p + ε3)

or

log p + log p−1 + log(p− ε3) ≤ log p ≤ log p + log p−1 + log(p + ε3).

Thus we have

log p + log(1− p−1ε3) ≤ log p ≤ log p + log(1 + p−1ε3).

Since p, ε3 ≥ 0, then we have

1 + p−1ε3 ≤ 1
1− p−1ε3

= (1− p−1ε3)−1,

thus
log(1 + p−1ε3) ≤ − log(1− p−1ε3).
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Using this at the previous inequality we have

log p + log(1− p−1ε3) ≤ log p ≤ log p + log(1 + p−1ε3)
≤ log p− log(1− p−1ε3)

or

log p− (− log(1− p−1ε3)) ≤ log p ≤ log p + (− log(1− p−1ε3)).

Thus the uncertainty for log p approximately is as follow

log p− δ1 ≤ log p ≤ log p + δ1, δ1 = − log(1− p−1ε3).

Analogously, for the other parameters we have

b1 − δ1 ≤ b1 ≤ b1 + δ1, δ1 = − log(1− p−1ε3) ⇒ b1 + u7δ1, |u7| ≤ 1

b2 − δ2 ≤ b2 ≤ b2 + δ2, δ2 = δ1 − log(1− v−1
1 ε4) ⇒ b2 + u8δ2, |u8| ≤ 1

b3 − δ3 ≤ b3 ≤ b3 + δ3, δ3 = δ1 − log(1− v−1
2 ε5) ⇒ b3 + u9δ3, |u9| ≤ 1

b4 − δ4 ≤ b4 ≤ b4 + δ4, δ4 = − log(1− k−1ε6) ⇒ b4 + u10δ4, |u10| ≤ 1.

Now the approximate robust counterpart of (3) is as follows:

min c̄T t

sup
u∈U

lse




[
1 −α + u1ε1 −β + u2ε2 b1 + u7δ1

]
t,[

0 (1− α) + u1ε1 −β + u2ε2 b2 + u8δ2

]
t,[

0 −α + u1ε1 (1− β) + u2ε2 b3 + u9δ3

]
t


 ≤ 0,

sup
u∈U

([
0 1 0 b4 + u10δ4

]
t
) ≤ 0, (4)

where c̄T =
[−1 0 0 0

]
, |ui| ≤ 1, t =

(
z
w

)
∈ R4, w = 1.

In general it is not known whether (4) can be put in a geometric pro-
gramming form, thus in the sequel we give an approximate model of
(4). To do so, the first three-term constraint is approximated by two
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two-term constraints as follows [3]:

min cT y

sup
|ui|≤1

lse([1 − α + u1ε1 − β + u2ε2 b1 + u7δ1 0]y,

[0 0 0 0 1]y) ≤ 0, (5)
sup
|ui|≤1

lse([0 (1− α) + u1ε1 − β + u2ε2 b2 + u8δ2 − 1]y,

[0 − α + u1ε1 (1− β) + u2ε2 b3 + u9δ3 − 1]y) ≤ 0,

sup
|ui|≤1

lse([0 1 0 b4 + u10δ4 0]y) ≤ 0,

where

cT = [−1 0 0 0 0], ā1 = [1 − α − β b1 0],
ā2 = [0 1− α − β b2 − 1], ā3 = [0 − α 1− β b3 − 1],

ā4 = [0 1 0 b4 0], B1 = [0 ε1 ε2 δ1 0]T ,

B2 = [0 ε1 ε2 δ2 0]T , B3 = [0 ε1 ε2 δ3 0]T ,

B4 = [0 0 0 δ4 0]T , |ui| ≤ 1, y =
(

t
s

)
∈ R5.

Since (5) still is not in the form of a problem which could be easily
solved, thus we assume both the lower and upper convex piecewise
linear approximations of the constraints to satisfy the same inequality
[3]. For example the lower three-term approximation of a two-term
constraint is as follows:

sup
u∈U

lse(x, y) = max{x, y, 0.5x + 0.5y + 0.693}

Thus we consider to have

sup
u∈U

([0 (1− α) + u1ε1 − β + u2ε2 b2 + u8δ2 − 1]y) =

sup
u∈U

(ā2y + u1ε1y2 + u2ε2y3 + u8δ2y4) ≤

ā2y + |ε1y2|+ |ε2y3|+ |δ2y4| = ā2y +
5∑

i=1

|(B2)iyi| ≤ 0,
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sup
u∈U

(0.5 ∗ [0 (1− α) + u1ε1 − β + u2ε2 b2 + u8δ2 − 1]y+

0.5 ∗ [0 − α + u1ε1 (1− β) + u2ε2 b3 + u9δ3 − 1]y) + 0.693 ≤

0.5ā2y + 0.5ā3y + 0.5

(
5∑

i=1

|(B2)iyi|+
5∑

i=1

|(B3)iyi|
)

+ 0.693 ≤ 0,

and

sup
u∈U

([0 − α + u1ε1 (1− β) + u2ε2 b3 + u9δ3 − 1]y) =

sup
u∈U

(ā3y + u1ε1y2 + u2ε2y3 + u9δ3y4) ≤

ā3y + |ε1y2|+ |ε2y3|+ |δ3y4| = ā3y +
5∑

i=1

|(B3)iyi| ≤ 0.

Moreover, to have more accurate results, we have used 25 term piece-
wise convex linear approximations that are derived using the algorithm
in [3]. In Table 1, we have given several best lower piecewise convex
linear approximations of lse(x, y) function. It is worth to note that in
[3] up to five term approximations are reported.

Furthermore, in the following table the errors of piecewise convex
linear approximations up to 25 terms are given for two levels of uncer-
tainties.

3 Example

Let us consider the following values for the parameters in (1)

p = 20, A = 40, α = 0.1, β = 0.4, v1 = 10, v2 = 35, k = 30.

Using Mehrotra’s predictor-corrector interior point algorithm, the opti-
mal objective value of (1) is 3399.55. However, if we take the following
uncertainty set parameters

|ui| ≤ 0.5, ε1 = 0.003, ε2 = 0.007, ε3 = ε4 = ε5 = ε6 = 0.5,
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Table 2. Error of piecewise convex linear approximation

Errors |ui| ≤ 0.5 |ui| ≤ 1
Error of 3 terms approximation 0.9184 0.9184
Error of 4 terms approximation 0.2876 0.3104
Error of 5 terms approximation 0.1986 0.1986

......... ......... .........
Error of 16 terms approximation 0.0138 0.0138

......... ......... .........
Error of 25 terms approximation 0.0055 0.0058

and solve its upper and lower approximations, then the optimal solu-
tions of the upper and lower 25 term piecewise convex linear approx-
imation of (5) are 2980.7 and 2964.3, respectively. Thus the lower
bound for the optimal solution of (4) is 2964.3. As one can see, the
range to which the optimal solution of the robust problem belongs,
[2964.3, 2980.7], is significantly different than the original optimal ob-
jective value. Thus a slight uncertainty in the input parameter might
lead to significant change of the optimal objective value. Moreover, if
we solve the approximate robust model of (5) for the case, where

|ui| ≤ 1, ε1 = 0.003, ε2 = 0.007, ε3 = ε4 = ε5 = ε6 = 1,

then the values of the upper and lower 25 term piecewise convex linear
approximations are 2797.6 and 2781.6, respectively. Thus the lower
bound for the optimal solution of (4) is 2781.6. A similar observation
as in the previous case holds here as well. We should note that all
computations are done in MATLAB 7.8 and we have used cvx software
package [6] to solve problem (5).

4 Conclusions

Extensive research specially in the last decade shows that robust op-
timization can alleviate sensitivity of a given problem to its data un-
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certainty by incorporating explicitly data uncertainty into the prob-
lem. In this paper, we consider the robust counterpart of the profit-
maximization problem which is in the form of a geometric programming
problem. Since it is not known in general that a robust geometric pro-
gramming problem can be reformulated as a tractable optimization
problem that interior point or other algorithms can efficiently solve,
then using piecewise convex linear approximations, an approximate
equivalent of the robust counterpart is given, which is in the form of
a geometric programming problem. Moreover, an illustrative example
is given which shows the importance and impact of the uncertainties
in the model parameters for different level of uncertainties. Due to
the presence of uncertainty in economical model parameters, the idea
might be useful to be applied to other models.
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