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Linear discrete-time Pareto-Nash-Stackelberg

control problem and principles for its solving
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Abstract

A direct-straightforward method for solving linear discrete-
time optimal control problem is applied to solve control prob-
lem of a linear discrete-time system as a mixture of multi-
criteria Stackelberg and Nash games. For simplicity, the expo-
sure starts with the simplest case of linear discrete-time optimal
control problem and, by sequential considering of more general
cases, investigation finalizes with the highlighted Pareto-Nash-
Stackelberg and set valued control problems. Different principles
of solving are compared and their equivalence is proved.
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1 Introduction

Optimal control theory which appeared due to Lev Pontryagin [2] and
Richard Bellman [3], as natural extension of calculus of variations, often
doesn’t satisfy all requirements and needs for modelling and solving
problems of real dynamic systems and processes. A situation of this
type occurs for problem of linear discrete-time system control by a
decision process that evolves as Pareto-Nash-Stackelberg game with
constraints – a mixture of hierarchical and simultaneous games [5, 6, 7,
8, 9]. For such system, the notion of optimal control evolves naturally to
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the notion of Pareto-Nash-Stackelberg type control and to the natural
principle for solving the highlighted problem by applying a concept of
Pareto-Nash-Stackelberg equilibrium [9] with a direct-straightforward
principle for solving.

The direct method and principle for solving linear discrete-time
optimal control problem is extended to control problem of a linear
system in discrete time as a mixture of multi-criteria Stackelberg and
Nash games [9]. The exposure starts with the simplest case of linear
discrete-time optimal control problem [1] and, by sequential considering
of more general cases, finalizes with the Pareto-Nash-Stackelberg and
set valued control problems. The maximum principle of Pontryagin is
formulated and proved for all the considered problems. Its equivalence
with the direct-straightforward principle for solving is established.

2 Linear discrete-time optimal control prob-
lem

Consider the following problem [1]1:

f(x, u) =
T∑

t=1

(ctxt + btut) → max,

xt = At−1xt−1 + Btut, t = 1, ..., T,
Dtut ≤ dt, t = 1, ..., T,

(1)

where x0, xt, ct ∈ Rn, ut, bt ∈ Rm, At−1 ∈ Rn×n, Bt ∈ Rn×m,
dt ∈ Rk, Dt ∈ Rk×n, ctxt =

〈
ct, xt

〉
, btut =

〈
bt, ut

〉
, t = 1, ..., T,

u = (u1, . . . , uT ).

1Symbol T means discrete time horizon in this paper. Symbol of matrix transla-
tion is omitted. Left and right matrix multiplications are largely used. The reader
is asked to understand by himself when column or row vector are used.
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The problem (1) may be represented in the form:

Ex1 −B1u1 = A0x0,
−A1x1 + Ex2 −B2u2 = 0,

. . . . . . . . .
−AT−1xT−1 + ExT −BT uT = 0,

D1u1 ≤ d1,
D2u2 ≤ d2,
. . . . . .

DT uT ≤ dT ,
c1x1 + c2x2 + · · ·+ b1u1 + b2u2 + · · ·+ bT ut→ max .

Its dual problem is

p1 −p2A1 = c1,
p2 − p3A2 = c2,

. . . . . .
pT = cT ,

−p1B1 +q1D1 = b1,
−p2B2 +q2D2 = b2,

. . . . . .
−pT BT +qT DT = bT ,

q1 ≥ 0,q2 ≥ 0, qT ≥ 0,
p1A0x0 +q1d1 +q2d2 + · · ·+ qT dT → min .

From the constraints of dual problem it follows that the values of vari-
ables p1, p2, . . . , pT are calculated on the bases of recurrent relation:

pT = cT ,
pt = pt+1At + ct, t = T − 1, ..., 1.

(2)

So, the dual problem is equivalent to:

q1D1 = p1B1 + b1,
q2D2 = p2B2 + b2,

. . .
qT DT = pT BT + bT ,

qt ≥ 0, t = 1, . . . , T,
p1A0x0 + q1d1 + q2d2 + · · ·+ qT dT → min .
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The dual of the last problem is:

D1u1 ≤ d1,
D2u2 ≤ d2,

. . .
DT uT ≤ dT ,

T∑

t=1

〈
ut, ptBT + bt

〉 → max .

(3)

The solution of (3) may be found by solving T linear programming
problems

Dtut ≤ dt,〈
ut, ptBT + bt

〉 → max,

for t = 1, . . . , T. So, the solution of initial control problem (1) is iden-
tical with a sequence of solutions of T linear programming problems.

Similar results may be obtained by performing direct transforma-
tions of (1):

x1 = A0x0 + B1u1,
x2 = A1x1 + B2u2 = A1(A0x0 + B1u1) + B2u2 =

= A1A0x0 + A1B1u1 + B2u2,
x3 = A2x2 + B3u3 = A2(A1A0x0 + A1B1u1 + B2u2) + B3u3 =

= A2A1A0x0 + A2A1B1u1 + A2B2u2 + B3u3,
. . .

xT = AT−1xT−1 + BT uT =

=
T−1∏

t=0

Atx0 +
T−1∏

t=1

AtB1u1 +
T−1∏

t=2

AtB2u2+

+ · · ·+
T−1∏

t=T−1

AtBT−1uT−1 + BT uT ,
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and by subsequent substitution in the objective function:

f(x, u)=c1
(
A0x0 + B1u1

)
+ c2

(
A1A0x0 + A1B1u1 + B2u2

)
+

+c3
(
A2A1A0x0 + A2A1B1u1 + A2B2u2 + B3u3

)
+ · · ·+

+cT

(
T−1∏

t=0

Atx0 +
T−1∏

t=1

AtB1u1 +
T−1∏

t=2

AtB2u2+

+ · · ·+
T−1∏

t=T−1

AtBT−1uT−1 + BT uT

)
+

+b1u1 + b2u2 + · · ·+ bT uT =
=

(
c1 + c2A1 + c3A2A1 + · · ·+ cT AT−1AT−2 . . . A1

)
A0x0+

+
(
c1B1 + c2A1B1 + c3A2A1B1 + · · ·+

+ cT AT−1AT−2 . . . A1B1 + b1
)
u1+

+
(
c2B2 + c3A2B2 + c4A3A2B2 + · · ·+

+ cT AT−1AT−2 . . . A2B2 + b2
)
u2+

+ · · ·+ (
cT BT + bT

)
uT .

Finally, the problem obtains the form

f(u) =
=

(
c1 + c2A1 + c3A2A1 + · · ·+ cT AT−1AT−2 . . . A1

)
A0x0+

+
(
c1B1 + c2A1B1 + c3A2A1B1 + · · ·+

+ cT AT−1AT−2 . . . A1B1 + b1
)
u1+

+
(
c2B2 + c3A2B2 + c4A3A2B2 + · · ·+

+ cT AT−1AT−2 . . . A2B2 + b2
)
u2+

+ · · ·+ (
cT BT + bT

)
uT → max,

Dtut ≤ dt, t = 1, . . . , T.

(4)

Obviously, (3) and (4) are identical. So, the solution of the last
problem (4) is obtained as a sequence of solutions of T linear pro-
gramming problems. Apparently, the complexity of such method is
polynomial, but really it has pseudo-polynomial complexity because of
possible exponential value of T on n.

Theorem 1. Let (1) be solvable. The sequence ū1, ū2, . . . , ūT forms an
optimal control if and only if ūt is the solution of linear programming
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problem

(
ctBt + ct+1AtBt + · · ·+ cT AT−1AT−2 . . . AtBt + bt

)
ut → max,

Dtut ≤ dt,

for t = 1, . . . , T.

Different particular cases may be established for (1).

Theorem 2. If A0 = A1 = · · · = AT−1 = A, B1 = B2 = · · · =
BT = B, and (1) is solvable, then the sequence ū1, ū2, . . . , ūT forms an
optimal control if and only if ūt is the solution of linear programming
problem

(
ctB + ct+1AB + ct+2(A)2B + · · ·+ cT (A)T−tB + bt

)
ut → max,

Dtut ≤ dt,

for t = 1, . . . , T.

Theorem 1 establishes a principle for solving (1). By considering
Hamiltonian functions

Ht(ut) =
〈
ptBt + bt, ut

〉
, t = T, . . . , 1,

where pt, t = T, . . . , 1 are defined by (2), as it is conjectured in [1] and
proved above by two ways, the maximum principle of Pontryagin [2]
holds.

Theorem 3. Let (1) be solvable. The sequence ū1, ū2, . . . , ūT forms an
optimal control if and only if

Ht(ūt) = max
ut:Dtut≤dt

Ht(ut), t = T, . . . , 1.

Evidently, Theorems 1 and 3 are equivalent.
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3 Linear discrete-time Stackelberg control
problem

Let us modify the problem (1) by considering the control of Stackelberg
type [7], that is Stackelberg game with T players [7, 8, 5, 6]. In such
game, at each stage t (t = 1, . . . , T ) the player t selects his strategy and
communicates his and all precedent selected strategies to the following
t+1 player. After all stage strategy selections, all the players compute
their gains on the resulting profile. Let us name such type of system
control as Stackelberg control, and the corresponding problem – lin-
ear discrete-time Stackelberg control problem. The described decision
process may be formalized as it follows:

f1(x, u) =
T∑

t=1

(
c1txt + b1tut

) −→
u1

max,

f2(x, u) =
T∑

t=1

(
c2txt + b2tut

) −→
u2

max,

. . .

fT (x, u) =
T∑

t=1

(
cTtxt + bTtut

) −→
uT

max,

xt = At−1xt−1 + Btut, t = 1, ..., T,
Dtut ≤ dt, t = 1, ..., T,

(5)

where x0, xt, cπt ∈ Rn, ut, bπt ∈ Rm, At−1 ∈ Rn×n, Bt ∈ Rn×m, dt ∈
Rk, Dt ∈ Rk×n, cπtxt =

〈
cπt, xt

〉
, bπtut =

〈
bπt, ut

〉
, t, π = 1, ..., T.

Formally, the set of strategies of player π (π = 1, 2, . . . , T ) is deter-
mined only by admissible solutions of the problem:

fπ

(
x, uπ||u−π

)
=

T∑

t=1

(
cπtxt + bπtut

) −→
uπ

max,

xπ = Aπ−1xπ−1 + Bπuπ,
Dπuπ ≤ dπ.
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In fact, as we can find out, the strategy sets of the players are
interconnected and the game is not a simple normal form game. A
situation similar with that in optimization theory may be established
– there are problems without constraints and with constraints. So, the
strategy (normal form) game may be named strategy game without
constraints. Game which contains commune constraints on strategies
may be named strategy game with constraints.

Player π (π = 1, 2, . . . , T ) decision problem is defined by the lin-
ear programming problem (5). Since the controlled system is one for
all players, by performing the direct transformations as above, (5) is
transformed into

fπ (uπ||u−π) =
=

(
cπ1 + cπ2A1 + cπ3A2A1 + · · ·+

+ cπT AT−1AT−2 . . . A1
)
A0x0+

+
(
cπ1B1 + cπ2A1B1 + cπ3A2A1B1 + · · ·+

+ cπT AT−1AT−2 . . . A1B1 + bπ1
)
u1+

+
(
cπ2B2 + cπ3A2B2 + cπ4A3A2B2 + · · ·+

+ cπT AT−1AT−2 . . . A2B2 + bπ2
)
u2+

+ · · ·+ (
cπT BT + bπT

)
uT →

uπ
max, π = 1, . . . , T,

Dtut ≤ dt, t = 1, . . . , T.

(6)

From equivalence of (5) and (6) the proof of Theorem 4 follows.

Theorem 4. Let (5) be solvable. The sequence ū1, ū2, . . . , ūT forms
a Stackelberg equilibrium control in (5) if and only if ūπ is optimal
solution of linear programming problem

fπ(uπ) =
(
cππBπ + cππ+1AπBπ + cππ+2Aπ+1AπBπ + · · ·+

+cπT AT−1AT−2 . . . AπBπ + bππ
)
uπ →

uπ
max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

There are various particular cases of (5) and Theorem 4. Theorem
5 presents one of such cases.
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Theorem 5. If A0 = A1 = · · · = AT−1 = A, B1 = B2 = · · · =
BT = B, and (5) is solvable, then the sequence ū1, ū2, . . . , ūT forms a
Stackelberg equilibrium control if and only if ūπ is the solution of linear
programming problem

(
cππB + cππ+1AB + · · ·+ cπT (A)T−πB + bππ

)
uπ →

uπ
max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

Theorem 4 establishes a principle for solving (5). The maximum
principle of Pontryagin may be applied for solving (5) too. Let us
consider the following recurrent relations

pπT = cπT ,
pπt = pπt+1At + cπt, t = T − 1, ..., 1,

(7)

where π = 1, . . . , T. Hamiltonian functions are defined as

Hπt

(
ut

)
=

〈
pπtBt + bπt, ut

〉
, t = T, . . . , 1, π = 1, . . . , T,

where pπt, t = T, . . . , 1, π = 1, . . . , T, are defined by (7).

Theorem 6. Let (5) be solvable. The sequence of controls ū1, . . . , ūT

forms a Stackelberg equilibrium control if and only if

Hππ (ūπ) = max
uπ:Dπuπ≤dπ

Hππ (uπ) ,

for π = 1, . . . , T.

The proof of Theorem 6 may be provided by direct substitution
of relations (7) in Hamiltonian functions and by comparing the final
results with linear programming problems from Theorem 4. Obviously,
Theorems 4 and 6 are equivalent.

From computational point of view, method for solving problem (5)
established by Theorem 4 looks more preferable than the method es-
tablished by Theorem 6.
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4 Linear discrete-time Pareto-Stackelberg con-
trol problem

Let us modify the problem (5) by considering control of Pareto-
Stackelberg type. At each stage a single player makes decision. Ev-
ery player selects on his stage his strategy according to his criteria
and communicates his choice and the precedent player choices to the
following player. At the last stage, after all stage strategy selec-
tions, the players compute their gains. Such type of control is named
Pareto-Stackelberg control, and the corresponding problem – the linear
discrete-time Pareto-Stackelberg control problem.

The described decision process may be formalized in a following
manner:

f1(x, u) =
T∑

t=1

(
c1txt + b1tut

) −→
u1

ef max,

f2(x, u) =
T∑

t=1

(
c2txt + b2tut

) −→
u2

ef max,

. . .

fT (x, u) =
T∑

t=1

(
cTtxt + bTtut

) −→
uT

ef max,

xt = At−1xt−1 + Btut, t = 1, ..., T,
Dtut ≤ dt, t = 1, ..., T,

(8)

where x0, xt ∈ Rn, cπt ∈ Rkπ×n, ut ∈ Rm, bπt ∈ Rkπ×m, At−1 ∈ Rn×n,
Bt ∈ Rn×m, dt ∈ Rk, Dt ∈ Rk×n, t, π = 1, ..., T. Notation ef max means
multi-criteria maximization.

The set of strategies of player π (π = 1, . . . , T ) is determined for-

74



Linear discrete-time Pareto-Nash-Stackelberg control problem...

mally by the problem

fπ

(
x, uπ||u−π

)
=

T∑

t=1

(
cπtxt + bπtut

) −→
uπ

ef max,

xπ = Aπ−1xπ−1 + Bπuπ,
Dπuπ ≤ dπ.

By performing direct transformations as above, (8) is transformed into

fπ (uπ||u−π) =
=

(
cπ1 + cπ2A1 + cπ3A2A1 + · · ·+

+ cπT AT−1AT−2 . . . A1
)
A0x0+

+
(
cπ1B1 + cπ2A1B1 + cπ3A2A1B1 + · · ·+

+ cπT AT−1AT−2 . . . A1B1 + bπ1
)
u1+

+
(
cπ2B2 + cπ3A2B2 + cπ4A3A2B2 + · · ·+

+ cπT AT−1AT−2 . . . A2B2 + bπ2
)
u2+

+ · · ·+ (
cπT BT + bπT

)
uπT →

uπ
ef max, π = 1, . . . , T,

Dtut ≤ dt, t = 1, . . . , T.

(9)

Equivalence of (8) and (9) proves the following Theorem 7.

Theorem 7. Let (8) be solvable. The sequence ū1, ū2, . . . , ūT forms a
Pareto-Stackelberg equilibrium control in (8) if and only if ūπ is efficient
solution of multi-criteria linear programming problem

fπ(uπ) =
(
cππBπ + cππ+1AπBπ + cππ+2Aπ+1AπBπ + · · ·+

+cπT AT−1AT−2 . . . AπBπ + bππ
)
uπ →

uπ
ef max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

As above, a particular case of (8) is examined in Theorem 7.

Theorem 8. If A0 = A1 = · · · = AT−1 = A, B1 = B2 = · · · = BT =
B, and (8) is solvable, then the sequence ū1, ū2, . . . , ūT forms a Pareto-
Stackelberg equilibrium control if and only if ūπ is the efficient solution
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of multi-criteria linear programming problem
(
cππB + cππ+1AB + · · ·+ cπT (A)T−πB + bππ

)
uπ →

uπ
ef max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

Pontryagin maximum principle may be extended for (8). Let us
consider the following recurrent relations

pπT = cπT ,
pπt = pπt+1At + cπt, t = T − 1, ..., 1,

(10)

where π = 1, . . . , T. Hamiltonian vector-functions are defined as

Hπt

(
ut

)
=

〈
pπtBt + bπt, ut

〉
, t = T, . . . , 1, π = 1, . . . , T,

where pπt, t = T, . . . , 1, π = 1, . . . , T are defined by (10).

Theorem 9. Let (8) be solvable. The sequence of controls ū1, . . . , ūT

forms a Pareto-Stackelberg equilibrium control if and only if

ūπ ∈ Arg ef max
uπ :Dπuπ≤dπ

Hππ (uπ) ,

for π = 1, . . . , T.

By direct substitution of (10) in Hamiltonian functions and by com-
paring the final results with multi-criteria linear programming problems
from Theorem 7 the truth of Theorem 9 arises. Theorems 7 and 9 are
equivalent.

It can be remarked especially that method of Pareto-Stackelberg
control established by Theorems 7–9 needs solutions of multi-criteria
linear programming problems.
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5 Linear discrete-time Nash-Stackelberg con-
trol problem

Let us modify the problem (5) by considering the control of Nash-
Stackelberg type with T stages and ν1 + ν2 + · · · + νT players, where
ν1, ν2, . . . , νT are the numbers of players on stages 1, 2, . . . , T . Every
player is identified by two numbers (indices) (τ, π), where τ is the num-
ber of stage on which player selects his strategy and π ∈ {1, 2, . . . , ντ}
is his number at stage τ . In such game, at each stage τ the players
1, 2, . . . , ντ play a Nash game by selecting simultaneously their strate-
gies and by communicating his and all precedent selected strategies to
the following τ + 1 stage players. After all stage strategy selections,
on the resulting profile all the players compute their gains. Such type
of control is named Nash-Stackelberg control, and the corresponding
problem – linear discrete-time Nash-Stackelberg control problem.

The described decision process may be modelled as it follows:

fτπ(x, uτπ||u−τπ) =
T∑

t=1


cτπtxt +

νt∑

µ=1

bτπtµutµ


 −→

uτπ
max,

τ = 1, . . . , T, π = 1, . . . , ντ ,

xt = At−1xt−1 +
νt∑

π=1

Btπutπ, t = 1, ..., T,

Dtπutπ ≤ dtπ, t = 1, ..., T, π = 1, . . . , νt,

(11)

where
x0, xt, cτπt ∈ Rn,

ut, bτπtµ ∈ Rm,

At−1 ∈ Rn×n,

Bτπ ∈ Rn×m,

dτπ ∈ Rk,

Dτπ ∈ Rk×n,

t, τ = 1, . . . , T,

π = 1, . . . , ντ ,

µ = 1, . . . , νt.
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By performing direct transformations

x1 = A0x0 +
ν1∑

π=1

B1πu1π,

x2 = A1x1 +
ν2∑

π=1

B2πu2π =

= A1

(
A0x0 +

ν1∑

π=1

B1πu1π

)
+

ν2∑

π=1

B2πu2π =

= A1A0x0 + A1
ν1∑

π=1

B1πu1π +
ν2∑

π=1

B2πu2π,

x3 = A2x2 +
ν3∑

π=1

B3πu3π =

= A2

(
A1A0x0 + A1

ν1∑

π=1

B1πu1π +
ν2∑

π=1

B2πu2π

)
+

+
ν3∑

π=1

B3πu3π =

= A2A1A0x0 + A2A1
ν1∑

π=1

B1πu1π + A2
ν2∑

π=1

B2πu2π+

+
ν3∑

π=1

B3πu3π,

. . .

xT = AT−1xT−1 +
νT∑

π=1

BTπuTπ =

=
T−1∏

t=0

Atx0 +
T−1∏

t=1

At
ν1∑

π=1

B1πu1π +
T−1∏

t=2

At
ν2∑

π=1

B2πu2π+

+ · · ·+
T−1∏

t=T−1

At

νT−1∑

π=1

BT−1πuT−1π +
νT∑

π=1

BTπuTπ,

and by subsequent substitution in the objective/cost functions of (11),
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the problem (11) is reduced to

f(uτπ||u−τπ) =
=

(
cτπ1 + cτπ2A1 + cτπ3A2A1 + · · ·+

+cτπT AT−1AT−2 . . . A1
)
A0x0+

+
(
cτπ1B11 + cτπ2A1B11 + cτπ3A2A1B11 + · · ·+

+ cτπT AT−1AT−2 . . . A1B11 + bτπ11
)
u11+

+
(
cτπ1B12 + cτπ2A1B12 + cτπ3A2A1B12 + · · ·+

+ cτπT AT−1AT−2 . . . A1B12 + bτπ12
)
u12+

+ · · ·+
+

(
cτπ1B1ν1 + cτπ2A1B1ν1 + cτπ3A2A1B1ν1 + · · ·+

+ cτπT AT−1AT−2 . . . A1B1ν1 + bτπ1ν1
)
u1ν1+

+
(
cτπ2B21 + cτπ3A2B21 + cτπ4A3A2B21 + · · ·+

+ cτπT AT−1AT−2 . . . A2B21 + bτπ21
)
u21+

+
(
cτπ2B22 + cτπ3A2B22 + cτπ4A3A2B22 + · · ·+

+ cτπT AT−1AT−2 . . . A2B22 + bτπ22
)
u22+

+ · · ·+
+

(
cτπ2B2ν2 + cτπ3A2B2ν2 + cτπ4A3A2B2ν2 + · · ·+

+ cτπT AT−1AT−2 . . . A2B2ν2 + bτπ2ν2
)
u2ν2+

+ · · ·+ (
cτπT BTνT + bτπTνT

)
uTνT →

uτπ
max,

τ = 1, . . . , T, π = 1, . . . , ντ ,
Dτπuτπ ≤ dτπ, τ = 1, . . . , T, π = 1, . . . , ντ .

(12)

Evidently, (12) defines a strategic game for which Nash-Stackelberg
equilibrium is also Nash equilibrium and it is simply computed as a
sequence of solutions of ν1 + · · ·+ νT linear programming problems

f(uτπ||u−τπ) =
=

(
cτπτBτπ + cτπτ+1AτBτπ + cτπτ+2Aτ+1AτBτπ + · · ·+

+ cτπT AT−1AT−2 . . . AτBτπ + bτπτπ
)
uτπ →

uτπ
max,

Dτπuτπ ≤ dτπ,

(13)

τ = 1, . . . , T, π = 1, . . . , ντ .
Equivalence of (11) and (13) proves the following Theorem 10.
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Theorem 10. Let (11) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Nash-Stackelberg equilibrium control in (11) if and only if ūτπ

is optimal in linear programming problem (13), for τ = 1, . . . , T, π =
1, . . . , ντ .

Various particular cases of (11) may be examined in Theorem 10,
e.g. Theorem 11.

Theorem 11. If A0 = A1 = · · · = AT−1 = A, B11 = B12 = · · · =
BTνT = B, and (11) is solvable, then the sequence ū11, ū12, . . . , ūTνT

forms a Nash-Stackelberg equilibrium control if and only if ūτπ is opti-
mal in linear programming problem

f(uτπ||u−τπ) =
=

(
cτπτB + cτπτ+1AB + cτπτ+2(A)2B + · · ·+

+ cτπT (A)T−τB + bτπτπ
)
uτπ →

uτπ
max,

Dτπuτπ ≤ dτπ,

for τ = 1, . . . , T, π = 1, . . . , ντ .

Pontryagin maximum principle may be extended for (11). Let us
consider the following recurrent relations

pτπT = cτπT ,
pτπt = pτπt+1At + cτπt, t = T − 1, ..., 1,

(14)

where τ = 1, . . . , T, π = 1, . . . , ντ . Hamiltonian functions are defined as

Hτπt (uτπ) =
〈
pτπtBτπ + bτπτπ, uτπ

〉
, t = T, . . . , 1,

where τ = 1, . . . , T, π = 1, . . . , ντ and pτπt, t = T, . . . , 1, τ =
1, . . . , T, π = 1, . . . , ντ are defined by (14).

Theorem 12. Let (11) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Nash-Stackelberg equilibrium control if and only if

Hτπt (ūτπ) = max
uτπ :Dτπuτπ≤dτπ

Hτπt (uτπ) ,

for t = T, . . . , 1, τ = 1, . . . , T, π = 1, . . . , ντ .

Theorems 10 and 12 are equivalent.
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6 Linear discrete-time Pareto-Nash-
Stackelberg control problem

Let us integrate the problems (8) and (11) by considering the control of
Pareto-Nash-Stackelberg type with T stages and ν1 + · · ·+ νT players,
where ν1, . . . , νT are the correspondent numbers of players on stages
1, . . . , T. Every player is identified by two numbers as above in Nash-
Stackelberg control: τ – stage on which player selects his strategy and
π – player number at stage τ . In such game, at each stage τ the players
1, 2, . . . , ντ play a Pareto-Nash game by selecting simultaneously their
strategies according to their criteria (kτ1, kτ2, . . . , kτντ are the num-
bers of criteria of respective players) and by communicating his and
all precedent selected strategies to the following τ + 1 stage players.
After all stage strategy selections, all the players compute their gains
on the resulting profile. Such type of control is named Pareto-Nash-
Stackelberg control, and the corresponding problem – linear discrete-
time Pareto-Nash-Stackelberg control problem.

The decision control process may be modelled as:

fτπ(x, uτπ||u−τπ) =
T∑

t=1


cτπtxt +

νt∑

µ=1

bτπtµutµ


 −→

uτπ
ef max,

τ = 1, . . . , T, π = 1, . . . , ντ ,

xt = At−1xt−1 +
νt∑

π=1

Btπutπ, t = 1, ..., T,

Dtπutπ ≤ dtπ, t = 1, ..., T, π = 1, . . . , νt,

(15)

where x0, xt ∈ Rn, cτπtµ ∈ Rktp×n, uτπ ∈ Rm, bτπtµ ∈ Rktp×n, At−1 ∈
Rn×n, Bτπ ∈ Rn×m, dτπ ∈ Rk, Dτπ ∈ Rk×n, t, τ = 1, . . . , T, π =
1, . . . , ντ , µ = 1, . . . , νt.

By performing similar direct transformation as above, (15) is re-
duced to a sequence of multi-criteria linear programming problems
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f(uτπ||u−τπ) =
=

(
cτπτBτπ + cτπτ+1AτBτπ + cτπτ+2Aτ+1AτBτπ + · · ·+

+ cτπT AT−1AT−2 . . . AτBτπ + bτπτπ
)
uτπ →

uτπ
ef max,

Dτπuτπ ≤ dτπ,

(16)

τ = 1, . . . , T, π = 1, . . . , ντ .
Equivalence of (15) and (16) proves the following Theorem 13.

Theorem 13. Let (15) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Pareto-Nash-Stackelberg equilibrium control in (15) if and only
if ūτπ is an efficient solution of multi-criteria linear programming prob-
lem (16), for τ = 1, . . . , T, π = 1, . . . , ντ .

As a corollary, Theorem 14 follows.

Theorem 14. If A0 = A1 = · · · = AT−1 = A, B11 = B12 = · · · =
BTνT = B, and (15) is solvable, then the sequence ū11, ū12, . . . , ūTνT

forms a Pareto-Nash-Stackelberg equilibrium control if and only if ūτπ

is an efficient solution of multi-criteria linear programming problem

f(uτπ||u−τπ) =
=

(
cτπτB + cτπτ+1AB + cτπτ+2(A)2B + · · ·+

+ cτπT (A)T−τB + bτπτπ
)
uτπ →

uτπ
ef max,

Dτπuτπ ≤ dτπ,

for τ = 1, . . . , T, π = 1, . . . , ντ .

Pontryagin maximum principle may be generalized for (15). By
considering recurrent relations

pτπT = cτπT ,
pτπt = pτπt+1At + cτπt, t = T − 1, ..., 1,

(17)

where τ = 1, . . . , T, π = 1, . . . , ντ , Hamiltonian vector-functions are
defined as

Hτπt (uτπ) =
〈
pτπtBτπ + bτπτπ, uτπ

〉
, t = T, . . . , 1,

where τ = 1, . . . , T, π = 1, . . . , ντ and pτπt, t = T, . . . , 1, τ =
1, . . . , T, π = 1, . . . , ντ . Remark the vector nature of (17) via (14).
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Theorem 15. Let (15) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Pareto-Nash-Stackelberg equilibrium control if and only if

ūτπ ∈ Arg ef max
uτπ :Dτπuτπ≤dτπ

Hτπt (uτπ) ,

for t = T, . . . , 1, τ = 1, . . . , T, π = 1, . . . , ντ .

Theorems 13 and 12 are equivalent.

7 Linear discrete-time set-valued optimal con-
trol problem

The state of controlled system is described above by a point. Indeed,
real systems may be treated as n-dimension body, the state of which is
described by a set of points in every time moment. Evidently, the initial
state of the system is described by initial set X0 ⊂ Rn. Naturally, the
following problem arises

F (X,U) =
T∑

t=1

(ctXt + btU t) → max,

Xt = At−1Xt−1 + BtU t, t = 1, ..., T,
DtU t ≤ dt, t = 1, ..., T,

(18)

where X0, Xt ⊂ Rn, ct ∈ Rn, U t ⊂ Rm, bt ∈ Rm, At−1 ∈ Rn×n,
Bt ∈ Rn×m, dt ∈ Rk, Dt ∈ Rk×n, ctXt =

〈
ct, Xt

〉
, btU t =

〈
bt, U t

〉
,

t = 1, ..., T. Linear set operations in (18) are defined obviously (see,
e.g., [4]): AX = {Ax : x ∈ X} , ∀X ⊂ Rn, ∀A ∈ Rn×n.

The objective set-valued map F : X × Y ( R, F (X, Y ) ⊂ R
represents a summation of intervals. That is, the optimization of the
objective map in problem (11) needs interval arithmetic treatment.
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By direct transformations, (18) is transformed into

F (U) =
=

(
c1 + c2A1 + c3A2A1 + · · ·+

+cT AT−1AT−2 . . . A1
)
A0X0+

+
(
c1B1 + c2A1B1 + c3A2A1B1 + · · ·+

+ cT AT−1AT−2 . . . A1B1 + b1
)
U1+

+
(
c2B2 + c3A2B2 + c4A3A2B2 + · · ·+

+ cT AT−1AT−2 . . . A2B2 + b2
)
U2+

+ · · ·+ (
cT BT + bT

)
UT → max,

DtU t ≤ dt, t = 1, . . . , T.

(19)

The equivalence of the problems (18) and (19) and the form of
objective map proves that optimal solution doesn’t depend on initial
point. The cardinality of every control set U1, . . . , UT is equal to 1.
Thus, the Theorem 1 is true for problem (18).

Theorem 16. Let (18) be solvable. The sequence ū1, ū2, . . . , ūT forms
an optimal control if and only if ūt is the solution of linear programming
problem

(
ctBt + ct+1AtBt + · · ·+ cT AT−1AT−2 . . . AtBt + bt

)
ut → max,

Dtut ≤ dt,

for t = 1, . . . , T.

Analogous conclusions are true for all problems and theorems con-
sidered above.

8 Concluding remarks

There are different types of processes control: optimal control, Stack-
elberg control, Pareto-Stackelberg control, Nash-Stackelberg control,
Pareto-Nash-Stackelberg control, etc.

The direct-straightforward, dual and classical principles (Pontrya-
gin and Bellman) may be applied for determining the desired con-
trol of dynamic processes. These principles are the bases for pseudo-
polynomial methods, which are exposed as a consequence of theorems
for linear discrete-time Pareto-Nash-Stackelberg control problems.
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The direct-straightforward principle is applied for solving the prob-
lem of determining the optimal control of set-valued linear discrete-time
processes. Pseudo-polynomial method of solving is constructed.

The results obtained for different types of set-valued control will be
exposed in a future paper.
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