
Computer Science Journal of Moldova, vol.21, no.1(61), 2013

Developments in Networks of Evolutionary

Processors ∗

Artiom Alhazov

Abstract

Networks of evolutionary processors (NEPs) are distributed
word rewriting systems typically viewed as language generators.
Each node contains a set of words, a set of operations (typically
insertion, deletion or rewriting of one symbol with another one),
an input filter and an output filter. The purpose of this paper is
to overview existing models of NEPs, their variants and develop-
ments.

In particular, besides the basic model, hybrid networks of
evolutionary processors (HNEPs) have been extensively studied.
In HNEPs, operations application might be restricted to specific
end of the string, but the filters are random-context conditions
(they were regular in the basic model). We will also cover the
literature on the so-called obligatory HNEPs, i.e., ones where the
operations are obligatory: the string that cannot be rewritten is
not preserved.

Some specific aspects that we pay attention to are: computa-
tional universality and completeness, the topology of the under-
lying graph, the number of nodes, the power of filters.

1 Introduction

Insertion, deletion, and substitution are fundamental operations in for-
mal language theory, their power and limits have obtained much at-

c©2013 by A. Alhazov
∗The author gratefully acknowledges project STCU-5384 “Models of high per-

formance computations based on biological and quantum approaches”, and project
ref. nr. 12.819.18.09A “Development of IT support for interoperability of electronic
linguistic resources” from Supreme Council for Science and Technological Develop-
ment of the Republic of Moldova.

3

A. Alhazov

tention during the years. Due to their simplicity, language generating
mechanisms based on these operations are of particular interest. Net-
works of evolutionary processors (NEPs, for short), introduced in [17],
are proper examples for distributed variants of these constructs. In this
case, an evolutionary processor (a rewriting system which is capable to
perform an insertion, a deletion, and a substitution of a symbol) is lo-
cated at every node of a virtual graph which may operate over sets or
multisets of words. The system functions by rewriting the collections
of words present at the nodes and then re-distributing the resulting
strings according to a communication protocol defined by a filtering
mechanism. The language determined by the network is defined as the
set of words which appear at some distinguished node in the course of
the computation. These architectures also belong to models inspired
by cell biology, since each processor represents a cell performing point
mutations of DNA and controlling its passage inside and outside the
cell through a filtering mechanism. The evolutionary processor corre-
sponds to the cell, the generated word – to a DNA strand, and the
operations insertion, deletion, and substitution of a symbol – to the
point mutations. It is known that, by using an appropriate filtering
mechanism, NEPs with a very small number of nodes are computa-
tionally complete computational devices, i.e. they are as powerful as
the Turing machines (see, for example [12, 13]).

1.1 Basic model

Motivated by some models of massively parallel computer architectures,
networks of language processors have been introduced in [19]. Such a
network can be considered as a graph, where the nodes are sets of
productions and at any moment of time a language is associated with
a node. In a derivation step, any node derives from its language all
possible words as its new language. In a communication step, any
node sends those words to other nodes that satisfy an output condition
given as a regular language, and any node takes those words sent by
the other nodes that satisfy an input condition also given by a regular
language. The language generated by a network of language processors

4

Developments in Networks of Evolutionary Processors

consists of all (terminal) words which occur in the languages associated
with a given node.

Inspired by biological processes, a special type of networks of lan-
guage processors was introduced in [17], called networks with evolu-
tionary processors, because the allowed productions model the point
mutation known from biology. The sets of productions have to be sub-
stitutions of one letter by another letter or insertions of letters or dele-
tion of letters; the nodes are then called substitution node or insertion
node or deletion node, respectively. Results on networks of evolution-
ary processors can be found e. g. in [17], [16], [15], [12]. In [16] it was
shown that networks of evolutionary processors are universal in that
sense that they can generate any recursively enumerable language, and
that networks with six nodes are sufficient to get all recursively enumer-
able languages. In [12] the latter result has been improved by showing
that networks with three nodes are sufficient.

In [12] one presents the proof of the computational complete-
ness with two nodes, additionally employing a morphism. In [9] one
shows that NEPs with two nodes (one insertion node and one deletion
node) generate all recursively enumerable languages (in intersection
with a monoid), avoiding the need for a morphism. The same paper
shows that insertion and substitution characterize context-sensitive lan-
guages, while deletion and substitution characterize finite languages.

1.2 Hybrid model

Particularly interesting variants of these devices are the so-called hy-
brid networks of evolutionary processors (HNEPs), where each lan-
guage processor performs only one of the above operations on a certain
position of the words in that node. Furthermore, the filters are de-
fined by some variants of random-context conditions, i.e., they check
the presence/absence of certain symbols in the words. These constructs
can be considered both language generating and accepting devices, i.e.,
generating HNEPs (GHNEPs) and accepting HNEPS (AHNEPs). The
notion of an HNEP, as a language generating device, was introduced
in [27] and the concept of an AHNEP was defined in [26].

5

A. Alhazov

In [18] it was shown that, for an alphabet V , GHNEPs with
27 + 3 · card(V) nodes are computationally complete. A significant
improvement of the result can be found in [6], where it was proved
that GHNEPs with 10 nodes (irrespectively of the size of the alpha-
bet) obtain the universal power. For accepting HNEPs, in [24] it was
shown that for any recursively enumerable language there exists a rec-
ognizing AHNEP with 31 nodes; the result was improved in [25] where
the number of necessary nodes was reduced to 24. Furthermore, in [25]
the authors demonstrated a method to construct for any NP-language
L an AHNEP with 24 nodes which decides L in polynomial time.

At last in [7] it was proved that any recursively enumerable lan-
guage can be generated by a GHNEP having 7 nodes (thus, the result
from [6] is improved) and in [8] the same authors showed that any
recursively enumerable language can be accepted by an AHNEP with
7 nodes (thus, the result from [25] is improved significantly). An im-
provement of the accepting result to 6 nodes has been obtained in [23],
by simulating Tag systems. In [8] also it was showed that the fami-
lies of GHNEPs and AHNEPs with 2 nodes are not computationally
complete.

In [18] it was demonstrated that a GHNEP with one node can
generate only regular language, while in [14] a precise form of the gen-
erated language was presented, also considering one case omitted in the
previous proof. Tasks of characterization of languages generated by a
GHNEP with two nodes and languages accepting by an AHNEP with
two nodes are still open.

1.3 Obligatory operations

A variant of HNEPs, called Obligatory HNEPs (OHNEP for short) was
introduced in [3]. The differences between HNEP and OHNEP are the
following:

1. in deletion and substitution: a node discards a string if no op-
erations in the node are applicable to the string (in HNEP case,
this string remains in the node),

6

Developments in Networks of Evolutionary Processors

2. the underlying graph is a directed graph (in HNEP case, this
graph is undirected); this second difference disappears when we
consider complete networks.

These differences make OHNEPs universal [3] with 1 operation per
node, no filters and only left insertion and right deletion.

In [5] complete OHNEPs were considered, i.e., OHNEPs with com-
plete underlying graph. One may now regard complete OHNEP as
a set of very simple evolutionary processors “swimming in the envi-
ronment” (i.e., once a string leaves a node, it is not essential for the
rest of the computation which node it left). In [5] it is proved that
the complete OHNEPs with very simple evolutionary processors, i.e.,
evolutionary processors with only one operation (obligatory deletion,
obligatory substitution and insertion) and filters containing not more
than 3 symbols are computationally complete. We recall that the filters
are either single symbols or empty sets, while the sum of weights has
been counted.

In [4] one considers OHNEPs without substitution. It is not difficult
to notice that in complete OHNEPs without substitution there is no
control on the number of insertion or deletion of terminal symbols (i.e.,
those symbols which appear in output words). Therefore, the definition
of OHNEPs needed to be modified in order to increase their computa-
tional power. In [4] one shows that it is possible to avoid substitution
using modified operations of insertion and deletion in evolutionary pro-
cessors similar to “matrix” rules in formal language theory. By using
such techniques a small universal complete OHNEP with 182 nodes
without substitution is constructed.

Several open questions were posed in [4], in particular the question
about the minimal total complexity of filters of evolutionary processor
in computationally complete OHNEPs and the question about univer-
sal complete OHNEP without substitution with the minimal number
of nodes. In [1] one considers a model of OHNEP allowing the use
of all three molecular operations: insertion, deletion and substitution,
and provides a very unexpected result. OHNEPs are computationally
complete even if the total power of the filters of each node does not ex-
ceed 1! This means that in any node, all four filters are empty, except

7

A. Alhazov

possibly one, being a single symbol.
In the following we describe selected results in details.

2 Prerequisites

We first recall some basic notions from formal language theory that we
shall use in the paper. An alphabet is a finite and non-empty set of
symbols. The cardinality of a finite set A is denoted by card(A). A
sequence of symbols from an alphabet V is called a word (or a string)
over V . The set of all words over V is denoted by V ∗; the empty word
is denoted by ε; and we define V + = V ∗\{ε}. The length of a word x is
denoted by |x|, and we designate the number of occurrences of a letter
a in a word x by |x|a. For each non-empty word x, alph(x) denotes the
smallest alphabet Σ such that x ∈ Σ∗.

For a word u ∈ V ∗, we define the sets of proper prefixes, proper
suffixes and non-empty suffixes of u by

PPref(u) = {x | u = xy, |y| ≥ 1},
PSuf(u) = {y | u = xy, |x| ≥ 1},
NSuf(u) = {y | u = xy, |y| ≥ 1}, respectively.

The shuffle operation is defined on two words x, y ∈ V ∗ by
∐∐

(x, y) = {x1y1x2y2 . . . xnyn | n ≥ 1, xi, yj ∈ V ∗,
x = x1x2 . . . xn, y = y1y2 . . . yn}.

Let L1, L2 ∈ V ∗ are two languages. Then

∐∐
(L1, L2) =

⋃
x∈L1,y∈L2

∐∐
(x, y).

A type-0 generative grammar is a quadruple G = (N,T, S, P),
where N and T are disjoint alphabets, called the nonterminal and ter-
minal alphabet, respectively, S ∈ N is the start symbol or the axiom,
and P is a finite set of productions or rewriting rules of the form u → v,
where u ∈ (N ∪ T)∗N(N ∪ T)∗ and v ∈ (N ∪ T)∗. For two strings x
and y in (N ∪ T)∗, we say that x directly derives y in G, denoted by

8

Developments in Networks of Evolutionary Processors

x =⇒G v, if there is a production u → v in P such that x = x1ux2

and y = x1vx2, x1, x2 ∈ (N ∪ T)∗ holds. The transitive and reflexive
closure of =⇒G is denoted by =⇒∗

G. The language L(G) generated by
G is defined by L(G) = {w ∈ T ∗ | S =⇒∗

G w}.

We recall now a concept dual to a type-0 generative grammar,
called a type-0 analytic grammar [28]. A type-0 analytic grammar
G = (N, T, S, P) is a quadruple, where N,T, S are defined in the same
way as for a generative grammar, and P is a finite set of productions
of the form u → v, where u ∈ (N ∪ T)∗ and v ∈ (N ∪ T)∗N(N ∪ T)∗.
The derivation relation is defined for a type-0 analytic grammar analo-
gously to the derivation relation for a type-0 generative grammar. The
language L(G) recognized or accepted by a type-0 analytic grammar
G = (N, T, S, P) is defined as L(G) = {w ∈ T ∗ | w =⇒∗

G S}.

It is well-known that for the type-0 analytic grammar G′ obtained
from a type-0 generative grammar G with interchanging the left and the
right hand sides of the productions in G, it holds that L(G′) = L(G).

A type-0 generative grammar G = (N, T, S, P) is in Kuroda normal
form if every rule in P is one of the following forms: A −→ a, A −→ ε,
A −→ BC, AB −→ CD, where A,B,C, D ∈ N and a ∈ T .

Analogously, we can say that a type-0 analytic grammar G =
(N,T, S, P) is in Kuroda-like normal form if every production in P is
one of the following forms: a −→ A, ε −→ A, AB −→ C, AB −→ CD,
where A, B,C, D ∈ N and a ∈ T .

It is well-known that the type-0 generative grammars in Kuroda
normal form determine the class of recursively enumerable languages
and it can immediately be seen that the same statement holds for the
type-0 analytic grammars in Kuroda-like normal form.

In the sequel, following the terminology in [18], we recall the neces-
sary notions concerning evolutionary processors and their hybrid net-
works. These language processors use so-called evolutionary opera-
tions, simple rewriting operations which abstract local gene mutations.

9

A. Alhazov

2.1 Circular Post machines

Circular Post Machines (CPMs) were introduced in [21], where it was
shown that all introduced variants of CPMs are computationally com-
plete, and moreover, the same statement holds for CPMs with two sym-
bols. In [22], [10] several universal CPMs of variant 0 (CPM0) having
small size were constructed1, among them in [10] a universal CPM0
with 6 states and 6 symbols. In this article we use the deterministic
variant of CPM0s.

A Circular Post Machine is a quintuple (Σ, Q,q0,qf , R) with a
finite alphabet Σ, where 0 is the blank, a finite set of states Q, the initial
state q0 ∈ Q, the final state qf ∈ Q, and a finite set of instructions
R with all instructions having one of the forms px → q (erasing the
symbol read by deleting a cell), px → yq (overwriting and moving to
the right), p0 → yq0 (overwriting and creating a blank cell), where
x, y ∈ Σ and p,q ∈ Q, p 6= qf . We also refer to all instructions with
qf in the left hand side as halt instructions.

The storage of this machine is a circular tape, the read and write
head moves only in one direction (to the right), and with the possibility
to delete a cell or to create and insert a new cell with a blank.

2.2 Evolutionary processors

For an alphabet V, we say that a rule a → b, with a, b ∈ V ∪ {ε} is
a substitution rule if both a and b are different from ε; it is a deletion
rule if a 6= ε and b = ε; and, it is an insertion rule if a = ε and b 6= ε.
The set of all substitution rules, deletion rules, and insertion rules
over an alphabet V is denoted by SubV , DelV , and InsV , respectively.
Given such rules π, ρ, σ, and a word w ∈ V ∗, we define the following
actions of σ on w: If π ≡ a → b ∈ SubV , ρ ≡ a → ε ∈ DelV , and
σ ≡ ε → a ∈ InsV , then

π∗(w) =
{ {ubv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

(1)

1Other variants of CPMs use slightly different instruction sets, which may make
a difference for the size of small universal machines.

10

Developments in Networks of Evolutionary Processors

ρ∗(w) =
{ {uv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

(2)

ρr(w) =
{ {u : w = ua},
{w}, otherwise

(3)

ρl(w) =
{ {v : w = av},
{w}, otherwise

(4)

σ∗(w) = {uav : ∃u, v,∈ V ∗(w = uv)}, (5)
σr(w) = {wa}, σl(w) = {aw}. (6)

Symbol α ∈ {∗, l, r} denotes the way of applying an insertion or a
deletion rule to a word, namely, at any position (a = ∗), in the left-hand
end (a = l), or in the right-hand end (a = r) of the word, respectively.
Note that a substitution rule can be applied at any position. For every
rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define the α − action of
σ on L by σα(L) =

⋃
w∈L σα(w). For a given finite set of rules M ,

we define the α − action of M on a word w and on a language L by
Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w), respectively.

An evolutionary processor consists of a set of evolutionary opera-
tions and a filtering mechanism.

For two disjoint subsets P and F of an alphabet V and a word over
V , predicates ϕ(1) and ϕ(2) are defined as follows:

ϕ(1)(w; P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
and

ϕ(2)(w; P, F) ≡ alph(w) ∩ P 6= ∅ ∧ F ∩ alph(w) = ∅.
The construction of these predicates is based on random-context condi-
tions defined by the two sets P (permitting contexts) and F (forbidding
contexts).

For every language L ⊆ V ∗ we define ϕi(L,P, F) = {w ∈ L |
ϕi(w; P, F)}, i = 1, 2.

An evolutionary processor over V is a 5-tuple (M,PI, FI, PO, FO),
where:

- Either M ⊆ SubV or M ⊆ DelV or M ⊆ InsV . The set M repre-
sents the set of evolutionary rules of the processor. Notice that every
processor is dedicated to only one type of the evolutionary operations.

11

A. Alhazov

- PI, FI ⊆ V are the input permitting/forbidding contexts of the
processor, while PO, FO ⊆ V are the output permitting/forbidding
contexts of the processor.
The set of evolutionary processors over V is denoted by EPV .

2.3 Hybrid networks

Definition 1 A hybrid network of evolutionary processors (an HNEP,
shortly) is a 7-tuple Γ = (V,H,N , C0, α, β, i0), where the following
conditions hold:

- V is the alphabet of the network.
- H = (XH , EH) is an undirected graph with set of vertices or

nodes XH and set of edges EH . H is called the underlying graph of the
network.

- N : XH −→ EPV is a mapping which associates the evolutionary
processor N (x) = (Mx, P Ix, F Ix, POx, FOx) with each node x ∈ XH .

- C0 : XH −→ 2V ∗ is a mapping which identifies the initial configu-
ration of the network. It associates a finite set of words with each node
of the graph H.

- α : XH −→ {∗, l, r}; α(x) defines the action mode of the rules
performed in node x on the words occurring in that node.

- β : XH −→ {(1), (2)} defines the type of the input/output filters of
a node. More precisely, for every node, x ∈ XH , we define the following
filters: the input filter is given as µx(·) = ϕβ(x)(·; PIx, F Ix), and the
output filter is defined as τx(·) = ϕβ(x)(·, POx, FOx). That is, µx(w)
(resp.τx) indicates whether or not the word w can pass the input (resp.
output) filter of x. More generally, µx(L) (resp. τx(L)) is the set of
words of L that can pass the input (resp. output) filter of x.

- i0 ∈ XH is the output node of Γ.

We say that card(XH) is the size of Γ. An HNEP is said to be a
complete HNEP, if its underlying graph is a complete graph.

A configuration of an HNEP Γ, as above, is a mapping C : XH −→
2V ∗ which associates a set of words with each node of the graph. A
component C(x) of a configuration C is the set of words that can be
found in the node x in this configuration, hence a configuration can be

12

Developments in Networks of Evolutionary Processors

considered as the sets of words which are present in the nodes of the
network at a given moment.

A configuration can change either by an evolutionary step or by a
communication step. When it changes by an evolutionary step, then
each component C(x) of the configuration C is altered in accordance
with the set of evolutionary rules Mx associated with the node x and
the way of applying these rules, α(x). Formally, the configuration C ′

is obtained in one evolutionary step from the configuration C, written
as C =⇒ C ′, iff C ′(x) = M

α(x)
x (C(x)) for all x ∈ XH .

When the configuration changes by a communication step, then
each language processor N (x), where x ∈ XH , sends a copy of its
each word to every node processor, where the node is connected with
x, provided that this word is able to pass the output filter of x, and
receives all the words which are sent by processors of nodes connected
with x, provided that these words are able to pass the input filter of
x. Those words which are not able to pass the respective output filter,
remain at the node. Formally, we say that configuration C ′ is obtained
in one communication step from configuration C, written as C ` C ′,
iff C ′(x) = (C(x)−τx(C(x)))

⋃
{x,y}∈EH

(τy(C(y))∩µx(C(y))) holds for
all x ∈ XH .

2.4 Computation and result

For an HNEP Γ, the computation in Γ is a sequence of configurations
C0, C1,C2, . . . , where C0 is the initial configuration of Γ, C2i =⇒ C2i+1

and C2i+1 ` C2i+2, for all i ≥ 0.
HNEPs can be considered both language generating devices (gen-

erating hybrid networks of evolutionary processors or GHNEPs) and
language accepting devices (accepting hybrid networks of evolutionary
processors or AHNEPs).

In the case of GHNEPs we define the generated language as the
set of all words which appear in the output node at some step of the
computation. Formally, the language generated by a generating hybrid
network of evolutionary processors Γ is L(Γ) =

⋃
s≥0 Cs(i0).

In the case of AHNEPs, in addition to the components above,

13

A. Alhazov

we distinguish an input alphabet and a network alphabet, V and
U, where V ⊆ U, and instead of an initial configuration, we indi-
cate an input node iI . Thus, for an AHNEP, we use the notation
Γ = (V,U,H,N , iI , α, β, i0).

The computation by an AHNEP Γ for an input word w ∈ V ∗ is
a sequence of configurations C

(w)
0 , C

(w)
1 ,C

(w)
2 , . . . , where C

(w)
0 is the

initial configuration of Γ, with C
(w)
0 (iI) = {w} and C

(w)
0 (x) = ∅, for

x ∈ G, x 6= iI , and C
(w)
2i =⇒ C

(w)
2i+1, C

(w)
2i+1 ` C

(w)
2i+2, for all i > 0.

A computation as above is said to be accepting if there exists a
configuration in which the set of words that can be found in the output
node io is non-empty. The language accepted by Γ is defined by

L(Γ) = {w ∈ V ∗ | the computation by Γ on w is an accepting one}.

2.5 Obligatory networks

The model of OHNEPs is obtained from the model of HNEPs by ex-
cluding the second case, i.e., ”{w},otherwise”, from (1)-(4). Hence, for
a string to remain in a node, it is obligatory for it to evolve via some
rule from SubV , DelV or InsV .

Notice that the definition of OHNEPs is thus simpler and more
uniform than that of HNEPs. In the same time, using the power of
the underlying graph, it makes it possible to even reach the computa-
tional completeness with nodes only having one operation, and without
filters, [3].

2.6 Basic model of NEPs

The concept of NEPs is simpler than that of HNEPs. We find it suit-
able here to define the former in terms of the latter, by modifying the
following:

• Only the ∗ mode exists for evolutionary processors.

• A permitting filter and a forbidden filter are combined into one
filter, which may be any regular language. A string passes the

14

Developments in Networks of Evolutionary Processors

filter iff it belongs to the corresponding regular language. The
filtering mode β loses its meaning.

3 Selected results

We would like to point out that there is no interaction, direct or indi-
rect, between the words of the network. Hence, the generated language
is a union of languages, generated by the same system, but starting
with only one word.

As for the replication, i.e., the possibility of applying multiple rules
or the same rule in multiple ways, producing many words from one
word, this could be viewed as a non-deterministic evolution of one word.
In this case, distributivity simply means assigning a state to the word.
Summing up, the language generated by a parallel deterministic word
rewriting system may be viewed as a (union of) language(s) generated
by a non-deterministic one-word rewriting system with states (without
any other parallelism or distributivity).

Furthermore, the nature of the model (except the obligatory vari-
ant) leads to many cases of the “shadow” computations, in the following
sense. If one carefully considers the definitions, and constructs a faith-
ful simulation of the model, one would notice that a lot of computation
in the system consists of repeatedly recomputing the same steps. This
is due to the fact that if some operation π ∈ SubV or ρ ∈ DelV of a
node is not applicable to some word w in that node, the result is w.
Taking the union over all operations of a node yields a set contain-
ing w, even if some other operation was applicable to w. Clearly, in
the next step, the words obtainable from w in the same node will be
recomputed. However, the system is deterministic, so nothing new is
obtained in this way.

A careful examination reveals that, in some circumstances, the
shadow computations can be avoided, modifying the definition while
yielding the same generated language! Indeed, preserving w is useless
(everything that is possible to derive from w in that node is derived
immediately) unless w exits the node. However, at least in the case of
complete networks, if w enters a node and exits it unchanged, this does

15

A. Alhazov

not do anything new either (if w is an initial word, it can be copied to
all nodes that it can reach unchanged in communication step).

The above reason lets us claim that, e.g., any result for complete
OHNEPs holds also for the usual complete HNEPs, and the associated
computational burden of the simulation may be greatly reduced. If
the network is not complete, then a heuristic still may be used by a
simulator, by preserving unchanged words only in case if they actually
move from a node into some different node.

3.1 NEPs with two nodes

Theorem 1 For any recursively enumerable language L, there are a
set T and a network N of evolutionary processors with exactly one
insertion node and exactly one deletion node such that L = L(N) ∩
T ∗.[9]

Proof. (sketch) We consider a type-0 grammar G = (N, T, P, S)
with L(G) = L. Then all rules of P have the form u → v with
u ∈ N+ and v ∈ (N ∪ T)∗. Let X = N ∪ T, X ′ = {a, a′ | a ∈
N ∪ T}, T ′ = {a, a′ | a ∈ T} and P ′ = {pi | p ∈ P, 1 ≤ i ≤ 4}.
We define a morphism µ : X∗ → (X ′)∗ by µ(a) = aa′ for a ∈ X
and set W = {µ(w) | w ∈ X∗}. We construct the following network
N = (V, (M1, A1, I1, O1), (M2, A2, I2, O2), E, 2) of evolutionary proces-
sors with

V = P ′ ∪X ′,
M1 = {λ → pi | pi ∈ P ′, 1 ≤ i ≤ 4} ∪ {λ → a | a ∈ X ′},
A1 = {µ(S)},
I1 = W \ (T ′)∗,
O1 = V ∗ \(WR1,1W),
M2 = {pi → λ | pi ∈ P ′, 1 ≤ i ≤ 4} ∪ {a → λ | a ∈ X ′ \ T},
A2 = ∅,
I2 = WR1,2W,

O2 = V ∗ \ (WR2,2W ∪ (T ′)∗),

16

Developments in Networks of Evolutionary Processors

E = {(1, 2), (2, 1)}, where

R1,1 =
⋃

p:u→v∈P

({p1µ(u), p1µ(u)p3, p1p2µ(u)p3, p1p2µ(u)p3p4}

∪ {p1p2µ(u)}PPref(µ(v)){p3p4})
\{p1p2µ(u)p3p4 | p : u → v ∈ P},

R1,2 = {p1p2µ(uv)p3p4 | p : u → v ∈ P},
R2,2 =

⋃

p:u→v∈P

({p1p2}PSuf(µ(u)){µ(v)p3p4}

∪ {p2µ(v)p3p4, p2µ(v)p4, µ(v)p4}).

The output and input filters are defined in order to remove the garbage
and communicate the strings that should change the type of operation,
keeping only the strings that should continue to evolve by operations
of the same type. Since the morphism µ(a) = aa′ is introduced, the
strings obtained by applying rules to the left or to the right of the
place of application of the current rule are no longer kept in the node
by the filter, and are not accepted by either node (recall that W =
aa′|a ∈ {N ∪ T ∗), so they leave the system. Claim: L(N) \ T ∗ = L.
The correct simulation of an application of a production p : a1 · · · as →
b1 · · · bt to a sentential form αa1 · · · asβ and with x = µ(α) and y = µ(α)
has the following form. In N1 we have

xa1a
′
1 · · · asa

′
sy ⇒λ→p1 xp1a1a

′
1 · · · asa

′
sy

⇒λ→p3 xp1a1a
′
1 · · · asa

′
sp3y

⇒λ→p2 xp1p2a1a
′
1 · · · asa

′
sp3y

⇒λ→p4 xp1p2a1a
′
1 · · · asa

′
sp3p4y

⇒λ→b1 xp1p2a1a
′
1 · · · asa

′
sb1p3p4y

⇒λ→b′1 xp1p2a1a
′
1 · · · asa

′
sb1b

′
1p3p4y

⇒∗ xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btp3p4y

⇒λ→b′t xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y

17

A. Alhazov

and in N2 we have

xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y

⇒a1→λ xp1p2a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y

⇒a′1→λ xp1p2a2 · · · asa
′
sb1b

′
1 · · · btb

′
tp3p4y

⇒∗ xp1p2asa
′
sb1b

′
1 · · · btb

′
tp3p4y

⇒as→λ xp1p2a
′
sb1b

′
1 · · · btb

′
tp3p4y

⇒a′s→λ xp1p2b1b
′
1 · · · btb

′
tp3p4y

⇒p1→λ xp2b1b
′
1 · · · btb

′
tp3p4y

⇒p3→λ xp2b1b
′
1 · · · btb

′
tp4y

⇒p2→λ xb1b
′
1 · · · btb

′
tp4y

⇒p4→λ xb1b
′
1 · · · btb

′
ty.

Notice that if a production can be applied to the same sentential form
in different ways (multiple productions and/or multiple places to ap-
ply them), then the corresponding number of strings is produced in
the first step (inserting marker p1 associated to the production, to the
left of the application place). The rest of the simulation is determin-
istic in the following sense: starting from xp1a1a

′
1 · · · asa

′
sy, the result

xb1b
′
1 · · · btb

′
ty is obtained according to the derivations above, while all

other strings are discarded. The strings that leave one node and enter
another one belong to the sets O1 \ I2 = I2 and O2 \ I1 = I1. All other
strings that leave a node do not enter anywhere. With p ∈ P , a ∈ X ′

and A ∈ X ′ \T , the following tables illustrate the behaviour of a string
(the numbers give the situation which is obtained by using the rule in
question and n/a refers to nonapplicability of the rule).

n Shape in N1 λ → p1 λ → p3 λ → p2 λ → p4 λ → a

1 W 2 out out out out
2 Wp1µ(u)Wout 3 out out out
3 Wp1µ(u)p3W out out 4 out out
4 Wp1p2µ(u)p3W out out out 5 out
5 Wp1p2µ(u)·

PPref(µ(v))p3p4W out out out out 5,6

18

Developments in Networks of Evolutionary Processors

n Shape in N1 p1 → λ p3 → λ p2 → λ p4 → λ A → λ

6 Wp1p2·
NSuf(µ(u))µ(v)p3p4W out out out out 6,7

7 Wp1p2µ(v)p3p4W 8 out out out out
8 Wp2µ(v)p3p4W n/a 9 out out out
9 Wp2µ(v)p4W n/a n/a 10 out out
10 Wµ(v)p4W n/a n/a n/a 1,11 out
11 (T ′)∗ n/a n/a n/a n/a 11

These tables illustrate the fact that if a symbol is inserted or deleted
in a way that does not follow the “correct” simulation, than the string
leaves the system. Finally, consider L(N) ∩ (T ′)∗. It is the set of all
strings obtained in N2 without nonterminal symbols, without markers
and without pre-terminals (i. e., primed versions of terminals). Hence,
all of them are obtained from shape 5 of N2 by deleting the marker p4,
reaching shape 6 if the string only has terminals and pre-terminals. It
is easy to see that in several computation steps all pre-terminal symbols
will be deleted. This exactly corresponds to the set of terminal strings
w produced by the underlying grammar G, all letters being represented
by a double repetition, i. e., encoded by µ. Such strings remain in N2

and all pre-terminals are deleted, obtaining w from µ(w). 2

3.2 HNEPs with one node

The following theorem states the regularity result for GHNEPs with
one node. Although this has already been stated in [18], their proof is
certainly incomplete. They stated that while GHNEPs without inser-
tion only generate finite languages, GHNEPs with one insertion node
only generate languages I∗C0, C0I

∗, C0
∐∐

I∗, for the mode l, r, ∗, re-
spectively. In the theorem below we present a precise characterization
of languages generated by GHNEP with one node and consider the case
omitted in [18], when the underlying graph G has a loop.

Theorem 2 One-node GHNEPs only generate regular languages.[14]

Proof. As finite languages are regular, the statement holds for GH-
NEPs without insertion nodes. We now proceed with the case of one

19

A. Alhazov

insertion node. Consider such a GHNEP Γ = (V, G, N1, C0, α, β, 1),
where

N1 = (M,PI, FI, PO, FO).

Let us introduce a few notations. Inserting a symbol from I in a
language C yields a language insI(C). Depending on whether α = l,
α = r or α = ∗, insI(C) is one of IC, CI, C

∐∐
I, respectively. For

inserting an arbitrary number of symbols from a set I in a language C,
ins∗I(C) is one of I∗C, CI∗, C

∐∐
I∗. Clearly, ins∗I preserves regularity.

We denote the set of symbols inserted in N1 by I = {a | λ → a ∈
M}. The configuration of N1 after one step is C1 = insI(C0). Assume
that β = 2 (a case, when β = 1, can be considered analogously),
then the conditions of passing permitting and forbidding output filter
can be specified by regular languages π = V ∗POV ∗ and ϕ = (V −
FO)∗, respectively. For instance, the set of words of C1 that pass the
forbidding output filter but do not pass the forbidding input filter is
C ′

1 = C1 ∩ ϕ \ π. Notice that inserting symbols that belong to neither
PO nor FO does not change the behavior of the filters; we denote the
corresponding language by B = ins∗I\(PO∪FO)(C1).

Consider the case when the graph G consists of one node and no
edges. Then, Γ generates the following language

L1 = L1(Γ) = C0 ∪ C1 ∪ ins∗I(C1 \ ϕ) ∪B

∪insI∩PO\FO(B) ∪ ins∗I(insI∩FO(B)), (7)
B = ins∗I\(PO∪FO)(C1),

C1 = insI(C0).

Indeed, this is a union of six languages:

1. initial configuration,

2. configuration after one insertion,

3. all words that can be obtained from a word from C1 if it is trapped
in N1 by the forbidding filter,

4. B represents the words that pass the forbidding filter but not the
permitting filter,

20

Developments in Networks of Evolutionary Processors

5. words obtained by inserting one permitting and not forbidden
symbol into B, and

6. words obtained by inserting one forbidden symbol into B, and
then by arbitrary insertions.

Consider the case when the graph G has a loop. The set of words
leaving the node (for the first time) is D = (C1∩ϕ∩π)∩insI∩PO\FO(B).
The conditions of the permitting and forbidding input filters can be
specified by regular languages π′ = V ∗PIV ∗ and ϕ′ = (V − FI)∗,
respectively. Some of words from D return to N1, namely D ∩ π′ ∩ ϕ′.
Notice that further insertion of symbols that belong neither to FO nor
to FI causes the words to continuously exit and reeenter N1. The
associated language is B′ = ins∗I\(FO∪FI)(D ∩ π′ ∩ ϕ′). Finally, we give
the complete presentation of the language generated by Γ in this case:

L′1 = L1(Γ) = L1 ∪B′ ∪ ins∗I(insI∩FO(B′)) ∪ insI∩FI\FO(B′), (8)
B′ = ins∗I\(FO∪FI)(D ∩ π′ ∩ ϕ′),
D = (C1 ∩ ϕ ∩ π) ∩ insI∩PO\FO(B),
C1 = insI(C0).

Indeed, this is a union of four languages:

1. words that never reenter N1, as in the case when G has no edges,

2. B′ represents the words that once leave and reenter N1, and keep
doing so after subsequent insertions,

3. words obtained by inserting a symbol from FO into B′, and then
by arbitrary insertions,

4. words obtained by inserting a symbol from FI \ FO into B′.

2

21

A. Alhazov

3.3 HNEPs with 7 nodes

Theorem 3 Any recursively enumerable language can be generated by
a complete HNEP of size 7. [7, 8]

Proof. Let L ⊆ T ∗ be a language generated by a type-0 grammar
G = (N, T, S, P) in Kuroda normal form.

We construct a complete HNEP Γ = (V, H,N , C0, α, β, 7) of size 7
which simulates the derivations in G and only that, by using the so-
called rotate-and-simulate method. The rotate-and-simulate method
means that the words in the nodes are involved in either the rotation
of their leftmost symbol (the leftmost symbol of the word is moved to
the end of the word) or the simulation of a rule of P . In order to indicate
the end of the word when rotating its symbols and thus to guarantee
the correct simulation, a marker symbol, #, different from any element
of (N ∪ T) is introduced. Let N ∪ T ∪ {#} = A = {A1, A2, . . . An},
I = {1, 2, . . . , n}, I ′ = {1, 2, . . . , n − 1}, I ′′ = {2, 3 . . . , n}, I0 =
{0, 1, 2, . . . , n}, I ′0 = {0, 1, 2, . . . , n − 1}, B0 = {Bj,0 | j ∈ I},
B′

0 = {B′
j,0 | j ∈ I}, # = An, T ′ = T ∪ #. Let us define the al-

phabet V of Γ as follows:

V = A ∪B ∪B′ ∪ C ∪ C ′ ∪D ∪D′ ∪ E ∪ E′ ∪ F ∪G ∪ {ε′},
B = {Bi,j | i ∈ I, j ∈ I0}, B′ = {B′

i,j | i ∈ I, j ∈ I0},
C = {Ci | i ∈ I}, C ′ = {C ′

i | i ∈ I}, D = {Di | i ∈ I0},
D′ = {D′

i | i ∈ I},
E = {Ei,j | i, j ∈ I}, E′ = {E′

i,j | i, j ∈ I},
F = {Fj | j ∈ I}, G = {Gi,j | i, j ∈ I}.

Let H be a complete graph with 7 nodes, let N , C0, α, β be presented
in Table 1, and let node 7 be the output node of HNEP Γ.

A sentential form (a configuration) of grammar G is a word w ∈
(N ∪ T)∗. When simulating the derivations in G, each sentential form
w of G corresponds to a string of Γ in node 1 and having one of the
forms wBn,0 or w′′Anw′Bi,0, where An = #, w,w′, w′′ ∈ (N ∪ T)∗ and
w = w′Aiw

′′. The start symbol S = A1 of G corresponds to an initial

22

Developments in Networks of Evolutionary Processors

word A1#, represented as A1Bn,0 in node 1 of HNEP Γ, the other nodes
do not contain any word. The simulation of the application of a rule of
G to a substring of a sentential form of G is done in several evolution
and communication steps in Γ, through rewriting the leftmost symbol
and the two rightmost or the rightmost symbol of strings. This is the
reason why we need the symbols to be rotated.

In the following we describe how the rotation of a symbol and the
application of an arbitrary rule of grammar G are simulated in HNEP
Γ.

Rotation.
Let Ai1Ai2 . . . Aik−1

Bik,0 = Ai1wBik,0 be a word found at node
1, and let w,w′, w′′ ∈ A∗. Then, by applying rule 1.1 we obtain
Ai1Ai2 . . . Aik−1

Bik,0 = Ai1wBik,0
1.1−→ {C ′

i1
wBik,0, Ai1w

′C ′
it
w′′Bik,0}.

We note that during the simulation symbols C ′
i should be trans-

formed to ε′, and this symbol can only be deleted from the left-hand
end of the string (node 6). So, the replacement of Cit by its primed
version in a string of the form Ai1w

′Citw
′′Bik,0 results in a word that

will stay in node 6 forever; thus, in the sequel, we will not consider
strings with C ′

i not in the leftmost position. In the communication
step following the above evolution step, string C ′

i1
wBik,0 cannot leave

node 1 and stays there for the next evolution step:

C ′
i1wBik,0

1.5−→ C ′
i1wB′

ik,0.

Observe that rules 1.1 and 1.5 may be applied in any order. After
then, string C ′

i1
wB′

ik,0 can leave node 1 and can enter only node 2. In
the following steps of the computation, in nodes 1 and 2, the string is
involved in evolution steps followed by communication:

Ci1−twBik,t
1.4−→ C ′

i1−(t+1)wBik,t
1.6−→ C ′

i1−(t+1)wB′
ik,t+1 (in node 1),

C ′
i1−twB′

ik,t
2.1−→ Ci1−(t+1)wB′

ik,t
2.2−→ Ci1−(t+1)wBik,t+1 (in node 2).

23

A. Alhazov

N, α, β, C0, M, PI, FI, PO, FO

1, ∗, (2), {1.1 : Ai → C′i | i ∈ I} ∪ {1.2 : Ai → ε′ | i ∈ I ′, Ai → ε} ∪
{A1Bn,0} {1.3 : Bj,0 → Bs,0 | Aj → As, j, s ∈ I ′}

{1.4 : Ci → C′i−1, 1.5 : Bj,0 → B′
j,0,

1.6 : Bj,k → B′
j,k+1 | i ∈ I ′′, j ∈ I, k ∈ I ′} ∪

{1.7 : C1 → ε′} ∪ {1.8 : E′
j,k → Ej,k−1, 1.9 : D′

i → Di+1,
1.10 : E′

j,1 → Fj | i ∈ I ′, j ∈ I, k ∈ I ′′}
PI = {An, Bn,0} ∪ C ∪ E′

FI = C′ ∪ E ∪D ∪ F ∪G ∪ {ε′}
PO = C′ ∪B′ ∪D ∪ F ∪ {ε′}
FO = B ∪ C ∪D′ ∪ E′

2, ∗, (2), ∅ {2.1 : C′i → Ci−1, 2.2 : B′
j,k → Bj,k+1 | i ∈ I ′′, j ∈ I, k ∈ I ′0} ∪

{2.3 : C′1 → ε′} ∪ {2.4 : Ej,k → E′
j,k−1, 2.5 : Di → D′

i+1,
2.6 : Ej,1 → Fj | i ∈ I ′0, j ∈ I, k ∈ I ′′} ∪ {2.7 : An → ε′} ∪
{2.8 : Bj,0 → Aj | Aj ∈ T}
PI = {Bj,0 | Aj ∈ T} ∪ C′ ∪ E
FI = {B \Bj,0 | Aj ∈ T} ∪ C ∪ D′ ∪ E′ ∪ F ∪G ∪ {ε′}
PO = C ∪D′ ∪ F ∪ {ε′}
FO = {Bj,0 | Aj ∈ T} ∪B′ ∪ C′ ∪ E ∪D

3, r, (2), ∅ {3.1 : ε → D0}
PI = B \B0 ∪B′ \B′

0 ∪G
FI = C ∪ C′ ∪B0 ∪ {D0}, PO = {D0}, FO = ∅

4, ∗, (2), ∅ {4.1 : Bj,k → Ej,k, 4.2 : B′
j,k → Ej,k | j, k ∈ I} ∪

{4.3 : Bj,k → Es,t,
4.4 : B′

j,k → Es,t | j, k, s, t ∈ I ′, AjAk → AsAt} ∪
{4.5 : Gj,k → Ej,k | j, k ∈ I ′}
PI = {D0}, F I = E, PO = E
FO = B ∪B′ ∪G

5, ∗, (2), ∅ {5.1 : Dj → Bj,0, 5.2 : D′
j → Bj,0 | j ∈ I} ∪

{5.3 : Fj → Aj | j ∈ I} ∪ {5.4 : Dj → Gs,t,
5.5 : D′

j → Gs,t | Aj → AsAt, j, s, t ∈ I ′}
PI = D \ {D0} ∪D′

FI = E ∪ E′ ∪ {D0} ∪ C ∪ C′ ∪ {ε′}
PO = ∅, FO = D ∪D′ ∪ F

6, l, (2), ∅ {6.1 : ε′ → ε}
PI = {ε′}
FI = B \B0 ∪B′ ∪ C ∪ C′ ∪ F ∪ (D \ {D0})
PO = ∅, FO = {ε′}

7, ∗, (2), ∅ ∅
PI = T, FI = V \ T, PO = ∅, FO = T

Table 1.

24

Developments in Networks of Evolutionary Processors

We note that during this phase of the computation rules 1.2: Ai →
ε′ or 2.7: An → ε′ may be applied in nodes 1 and 2. In this case, the
string leaves node 1 or 2, but cannot enter any node. So, this case will
not be considered in the sequel.

The process continues in nodes 1 and 2 until subscript i of Ci or
that of C ′

i is decreased to 1. In this case, either rule 1.7 : C1 → ε′

in node 1 or rule 2.3 : C ′
1 → ε′ in node 2 will be applied and the ob-

tained string ε′wB′
ik,i1

or ε′wBik,i1 is communicated to node 3. (Notice
that the string is able to leave the node either if both C and B are
primed or both of them are unprimed.) Then, in node 3, depending on
the form of the string, either evolution step ε′wB′

ik,i1

3.1−→ ε′wB′
ik,i1

D0

or evolution step ε′wBik,i1
3.1−→ ε′wBik,i1D0 is performed. Strings

ε′wB′
ik,i1

D0 or ε′wBik,i1D0 can enter only node 4, where (depend-

ing on the form of the string) either evolution step ε′wBik,i1D0
4.1−→

ε′wEik,i1D0 or evolution step ε′wB′
ik,i1

D0
4.2−→ ε′wEik,i1D0 follows. The

obtained word, ε′wEik,i1D0, can enter only node 6, where evolution
step ε′wEik,i1D0

6.1−→ wEik,i1D0 is performed. Then the string leaves
the node and enters node 2.

Then, in nodes 2 and 1, a sequence of computation steps is per-
formed, when the string is involved in evolution steps followed by com-
munication as follows:

wEik,i1−tDt
2.4−→ wE′

ik,i1−(t+1)Dt
2.5−→ wE′

ik,i1−(t+1)D
′
t+1 (in node 2).

wE′
ik,i1−tD

′
t

1.8−→ wEik,i1−(t+1)D
′
t

1.9−→ wEik,i1−(t+1)Dt+1 (in node 1),

The process continues in nodes 1 and 2 until the second subscript
of E′

i,j or that of Ei,j is decreased to 1. In this case, either rule 1.10 :
E′

ik,1 → Fik in node 1 or rule 2.6 : Eik,1 → Fik in node 2 is applied and
the new string, wFikDi1 or wFikD′

i1
, will be present in node 5. Notice

that applying rules 1.1, 1.2 and 2.7 we obtain strings that cannot
enter nodes 3 – 7 and stay in nodes 1 or 2.

The next evolution steps that take place in node 5 are as follows:

wFikDi1(wFikD′
i1

)
5.1(5.2)−→ wFikBi1,0

5.3−→ wAikBi1,0.

25

A. Alhazov

In the following communication step, string wAikBi1,0 can enter
either node 1 or node 2 (if Ai1 ∈ T). In the first case, the rotation of
symbol Ai1 has been successful. Let us consider the second case. Then
string wAikBi1,0 appears in node 2.

• Suppose that the word wAikBi1,0 does not contain any nonter-
minal symbol except An. Let wAikBi1,0 = Anw′AikBi1,0, where
w = Anw′. So, w′AikAi1 is a result and it appears in node 7. No-
tice that if w = w′Anw′′ and w′ 6= ε, then word w′Anw′′AikBi1,0

leads to a string which will stay in node 6 forever (if rule 2.7
was applied). So, we consider the following evolution of the word
wAikBi1,0 = Anw′AikBi1,0: Anw′AikBi1,0

2.7−→ ε′w′AikBi1,0
2.8−→

ε′w′AikAi1 . Then, string ε′w′AikAi1 will appear in node 6, where
symbol ε′ will be deleted by rule 6.1. Finally, the resulted word
w′AikAi1 will enter node 7. This is a result.

• Suppose now that the word wAikBi1,0 contains at least one non-
terminal symbol different from An and Ai1 ∈ T .

Consider the evolution of the word wAikBi1,0 = w′Anw′′AikBi1,0

in node 2:

w′Anw′′AikBi1,0
2.8−→ w′Anw′′AikAi1

2.7−→ w′ε′w′′AikAi1 .

Now, string w′ε′w′′AikAi1 will enter node 6 and either it will not
be able to leave it (if w′ 6= ε) or it will not be able to enter any
of the other nodes (if w′ = ε).

In the following we will explain how the application of the rules of
G are simulated in Γ.
Rule Ai −→ ε. Suppose that string AiwBj,0 is in node 1 and let
w, w′, w′′ ∈ A∗. Then, by evolution, we obtain AiwBj,0

1.2−→ ε′wBj,0 or
Atw

′Aiw
′′Bj,0

1.2−→ Atw
′ε′w′′Bj,0 which can enter only node 6. String

Atw
′ε′w′′Bj,0 will stay in node 6 forever. By evolution ε′wBj,0

6.1−→
wBj,0 and the resulting string, wBj,0, enters in node 1 (and node 2,
if Aj ∈ T). Thus, the application of rule Ai −→ ε in G was correctly
simulated.

26

Developments in Networks of Evolutionary Processors

Rule Ai −→ Aj. The evolution step performed at node 1 is wBi,0
1.3−→

wBj,0. Since string wBj,0 is in node 1, the simulation of the rule Ai −→
Aj of grammar G was done in a correct manner.
Rule Aj −→ AsAt. At the end of the simulation of the rotation of
a symbol, in node 5 instead of applying rule Dj → Bj,0 (D′

j → Bj,0)
a rule Dj → Gs,t (D′

j → Gs,t) is applied. That is, in node 5, either

evolution step wDj
5.4−→ wGs,t or evolution step wD′

j
5.5−→ wGs,t is

performed. The new string wGs,t can enter only node 3, where, by
evolution, wGs,t

3.1−→ wGs,tD0. String wGs,tD0 can enter only node
4, where evolution step wGs,tD0

4.5−→ wEs,tD0 follows. The process
continues as above, in the case of simulating rotation, and in several
computation steps the string wFsDt or wFsD

′
t will enter node 5. After

evolution in this node, the resulting string wAsBt,0 will enter node 1
(and node 2, if At ∈ T). Thus, the application of rule Aj −→ AsAt of
G is correctly simulated.
Rule AiAj −→ AsAt. The evolutionary processor in node 4 has rules
4.3 : Bi,j → Es,t or 4.4 : B′

i,j → Es,t. As in the case of simulating
rotation, above, we will obtain string wAsBt,0 in node 1 (and in node
2, if At ∈ T).

We have demonstrated how the rotation of a symbol and the ap-
plication of rules of G are simulated by Γ. By the constructions, the
reader can verify that G and Γ generate the same language. 2

3.4 Obligatory HNEPs

As described in the second section, obligatory operations were consid-
ered in HNEPs. The result of the evolution step now consists of all
strings produced from the current ones by the operations of insertion,
deletion and substitution (the current strings are no longer preserved,
even if some operation is not applicable to them). Not only this yields
a simpler and a more uniform definition, but also the following result
is obtained.

Theorem 4 Any CPM0 P can be simulated by an OHNEP P ′, where

27

A. Alhazov

obligatory evolutionary processors are with empty input and output fil-
ters and only insertion and obligatory deletion operations in right and
left modes are used (without obligatory substitution operations). [3, 2]

Proof. Let us consider a CPM0 P with symbols aj ∈ Σ, j ∈ J =
{0, 1 . . . , n}, a0 = 0 is the blank symbol, and states, qi ∈ Q, i ∈ I =
{1, 2, . . . , f}, where q1 is the initial state and the only terminal state
is qf ∈ Q. We suppose that P stops in the terminal state qf on every
symbol, i.e., there are instructions qfaj → Halt, aj ∈ J . (Notice that
it is easy to transform any CPM0 P into a CPM0 P ′ that stops on
every symbol in the final state.)

So, we consider CPM0 P with the set R of instructions of the
forms qiaj −→ ql, qiaj −→ akql, qi0 −→ akqm0, qfaj −→ Halt, where
qi ∈ Q \ {qf}, ql, qm ∈ Q, aj , ak ∈ Σ. We do not consider case qm = qf

in instruction qi0 −→ akqm0. Notice that it is easy to modify the
program of P such that it only halts by instructions of other types.

A configuration w = qiajW of CPM0 P describes that P in state
qi ∈ Q considers symbol aj ∈ Σ to the left of W ∈ Σ∗.

Now we construct an OHNEP P ′ simulating P. To simplify the
description of P ′, we use 〈qfaj〉 and 〈qfaj〉1, j ∈ J as aliases of 〈out〉.
Let v take values from Q and let u take values from ∈ Q ∪Q · {0}.

P ′ = (V,G, N,C0, α, β, i0),
V = {q1} ∪ Σ,

G = (XG, EG),
XG = {〈init〉, 〈out〉}

∪ {〈qiaj〉 | (qiaj → v) ∈ R}
∪ {〈qiaj〉1 | (qiaj → aku) ∈ R},

EG = {(〈init〉, 〈q1aj〉) | j ∈ J}
∪ {(〈qiaj〉, 〈qlak〉) | (qiaj → ql) ∈ R, k ∈ J}
∪ {(〈qiaj〉, 〈qiaj〉1) | (qiaj → aku) ∈ R}
∪ {(〈qiaj〉1, 〈qlas〉) | (qiaj → akql) ∈ R, s ∈ J}
∪ {(〈qi0〉1, 〈ql0〉1) | (qi0 → akql0), (ql0 → asu) ∈ R, s ∈ J},

28

Developments in Networks of Evolutionary Processors

∪ {(〈qi0〉1, 〈qpas〉) | (qi0 → akql0), (ql0 → qp) ∈ R, s ∈ J},

C0(x) = {q1W}, if x = 〈init〉,
where W is the input of P,

C0(x) = ∅, x ∈ XG \ {〈init〉},
β(x) = 2, x ∈ XG,

N(x) = (Mx, ∅, ∅, ∅, ∅), x ∈ XG,

Mx = {q1 → ε}, x = 〈init〉,
Mx = {aj → ε}, x = 〈qiaj〉,
Mx = {ε → ak}, x = 〈qiaj〉1,

where (qiaj → aku) ∈ R,

α(x) = l, if Mx = {a → ε},
α(x) = r, if Mx = {ε → a}, or Mx = ∅.

OHNEP P ′ will simulate every computation step performed by
CPM0 P by a sequence of computation steps in P ′.

Let q1ajW0 be the initial configuration of CPM0 P . We rep-
resent this configuration in node 〈init〉 of OHNEP P ′ as a word
q1ajW0. Obligatory evolutionary processor associated with this node
is N(〈init〉) = ({(q1 → ε)l}, ∅, ∅, ∅, ∅). Since all other nodes also have
empty filters, in the following we will skip the complete description of
obligatory evolutionary processors, and will present only their obliga-
tory evolutionary operations. The word ajW0 will be passed from node
〈init〉 to nodes 〈q1aj〉, j ∈ J .

If the computation in P is finite, then the final configuration qfW
of P will appear at node 〈out〉 of P ′ as a string W , moreover, any string
W that can appear at node 〈out〉 corresponds to a final configuration
qfW of P. In the case of an infinite computation in P , no string will
appear in node 〈out〉 of P ′ and the computation in P ′ will never stop.

Now we describe nodes of OHNEP P ′, connections between them
and obligatory evolutionary operations, associated with these nodes.
Let I ′ = I \ {f}.

29

A. Alhazov

1. Node 〈qiaj〉 with operation (aj → ε)l, i ∈ I ′, j ∈ J .
Let word atW, t ∈ J, W ∈ Σ∗ appear in this node. If j 6= t, then
this word atW will be discarded, and in the next communication
step node 〈qiaj〉 will send nothing. If j = t, then the node sends
W to nodes {〈qlak〉 | k ∈ J} or 〈qiaj〉1.
• Instruction of P is qiaj −→ ql, i ∈ I ′, j ∈ J, l ∈ I. Node
〈qiaj〉 is connected with nodes {〈qlak〉 | k ∈ J}.

• Instructions of P are qiaj −→ akql or qi0 −→ akql0, i ∈
I ′, j, k ∈ J, l ∈ I. Node 〈qiaj〉 is connected with node
〈qiaj〉1.

2. Node 〈qiaj〉1, i ∈ I ′, j ∈ J with operation (ε → ak)r receives
word W and sends word Wak to nodes {〈qlas〉 | s ∈ J} or 〈ql0〉1.
• Instructions of P are qiaj −→ akql, i ∈ I ′, j, k ∈ J, l ∈ I.

Node 〈qiaj〉1 is connected with nodes {〈qlas〉 | s ∈ J}.
• Instruction of P is qi0 −→ akql0, i ∈ I ′, k ∈ J, l ∈ I. Node
〈qi0〉1 is connected with nodes {〈qpas〉 | s ∈ J} if there exists
an instruction of P ql0 −→ qp, p ∈ I; and with node 〈ql0〉1
in other cases.

We repeat that in all cases, we mean 〈out〉 whenever we write 〈qfaj〉
or 〈qfaj〉1, j ∈ J .

Now we describe simulation of instructions of CPM0 P by OHNEP
P ′.
Instruction qiaj −→ ql: qiajW

P−→ qlW .

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qiaj〉.
If t 6= j, string atW will be discarded; if t = j, string W will be passed
to nodes {〈qlas〉 | s ∈ J}. If l = f , the final configuration qfW of P
will appear in the output node 〈out〉 as W . This is the result. So, we
simulated instruction qiaj −→ ql in a correct manner.

Instruction qiaj −→ akql: qiajW
P−→ qlWak.

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qiaj〉.
If t 6= j, string atW will be discarded; if t = j string W will be passed

30

Developments in Networks of Evolutionary Processors

to node 〈qiaj〉1. Node 〈qiaj〉1 receives this word and sends word Wak

to nodes 〈qlas〉, s ∈ J . If l = f , the final configuration qfWak of P
will appear in the output node 〈out〉 as Wak. This is the result. So,
we simulated instruction qiaj −→ akql in a correct manner.

Instruction qi0 −→ akql0: qi0W
P−→ ql0Wak.

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qi0〉.
If at 6= 0, string atW will be discarded; if at = 0, string W will be
passed to node 〈qi0〉1. It receives this word and sends word Wak to
nodes 〈qpas〉, s ∈ J if there is instruction of P ql0 −→ qp, p ∈ I ′. If
there are instructions ql0 −→ asqp or ql0 −→ asqp0, then node 〈qi0〉1
is connected with node 〈ql0〉1. Thus, word Wak will be passed to node
〈ql0〉1, which corresponds to the configuration of P which has “just
read” symbol 0 in state ql. So, we simulated instruction qi0 −→ akql0
in a correct manner.

So, CPM0 P is correctly modeled. We have demonstrated that the
rules of P are simulated in P ′. The proof that P ′ simulates only P
comes from the construction of the rules in P ′, we leave the details to
the reader. 2

4 Conclusion

We have described the networks of evolutionary processors, their mod-
els and variants, together with the associated results. A few selected
results were presented in more details. For instance, NEPs with two
nodes are already computationally complete modulo the terminal al-
phabet. HNEPs with one node are given the precise regular charac-
terization, HNEPs with two nodes are not computationally complete,
while seven nodes are enough to reach the computational completeness
of HNEPs, even with a complete graph. We should mention that a net-
work over a complete graph (with loops, although it is not important
for the last proof) may be viewed as number of agents in a common
environment, acting “independently” without explicitly enforcing any

31

A. Alhazov

transition protocol, where a computationally complete behavior still
emerges.

A particularly interesting variant is obligatory HNEPs (OHNEPs).
Using a power of the underlying graph, computational completeness is
obtained even without the filters. In case of a complete graph, OHNEPs
are still computationally complete. Moreover, it suffices that the sum
of numbers of symbols in filters of each node does not exceed one. The
last proof has been obtained in [1], using a variant of circular Post
machines, CPM5, introduced in [11].

References

[1] A. Alhazov, G. Bel-Enguix, I. Epifanova, Yu. Rogozhin. About
Two Models of Complete Obligatory Hybrid Networks of Evolu-
tionary Processors. In preparation.

[2] A. Alhazov, G. Bel-Enguix, Yu. Rogozhin. About a New Variant
of HNEPs: Obligatory Hybrid Networks of Evolutionary Proces-
sors. In: G. Bel-Enguix, M. D. Jiménez-López (Eds), Bio-Inspired
Models for Natural and Formal Languages, Cambridge Scholars
Publishing, 2011, pp.191–204.

[3] A. Alhazov, G. Bel-Enguix, Yu. Rogozhin. Obligatory Hybrid Net-
works of Evolutionary Processors. International Conference on
Agents and Artificial Intelligence, Porto, 2009, INSTICC Press,
pp.613–618.

[4] A. Alhazov, G. Bel-Enguix, A. Krassovitskiy, Yu. Rogozhin.
About Complete Obligatory Hybrid Networks of Evolutionary Pro-
cessors without Substitution. Advances in Computational Intelli-
gence, 11th International Work-Conference on Artificial Neural
Networks, IWANN 2011, Málaga, Lecture Notes in Computer Sci-
ence, 6691, 2011, pp.441–448.

[5] A. Alhazov, G. Bel-Enguix, A. Krassovitskiy, Yu. Rogozhin.
Complete Obligatory Hybrid Networks of Evolutionary Processors.

32

Developments in Networks of Evolutionary Processors

Highlights in Practical Applications of Agents and Multiagent Sys-
tems, Salamanca, Advances in Intelligent and Soft Computing, 89,
2011, pp.275–282.

[6] A. Alhazov, E. Csuhaj-Varjú, C. Mart́ın-Vide, Yu. Rogozhin.
About Universal Hybrid Networks of Evolutionary Processors of
Small Size. Pre-Proceedings of the 2nd International Conference
on Language and Automata Theory and Applications, LATA 2008,
GRLMC report, 36/08, University Rovira i Virgili, Tarragona,
2008, pp.43–54. Also in: Lecture Notes in Computer Science,
5196, Springer, 2008, pp.28–39.

[7] A. Alhazov, E. Csuhaj-Varjú, C. Mart́ın-Vide, Yu. Rogozhin.
Computational Completeness of Hybrid Networks of Evolution-
ary Processors with Seven Nodes. In: C. Campeanu, G. Pighizzini
(Eds.), Descriptional Complexity of Formal Systems, DCFS 2008
Proceedings, University of Prince Edward Island, Charlottetown,
2008, pp.38–47.

[8] A. Alhazov, E. Csuhaj-Varjú, C. Mart́ın-Vide, Yu. Rogozhin. On
the Size of Computationally Complete Hybrid Networks of Evolu-
tionary Processors. Theoretical Computer Science, 410, 35, 2009,
pp.3188–3197.

[9] A. Alhazov, J. Dassow, C. Mart́ın-Vide, Yu. Rogozhin, B. Truthe.
On Networks of Evolutionary Processors with Nodes of Two Types.
Fundamenta Informaticae, 91, 1, 2009, pp.1–15.

[10] A. Alhazov, M. Kudlek, Yu. Rogozhin. Nine Universal Circular
Post Machines. Computer Science Journal of Moldova, 10(3),
2002, pp.247–262.

[11] A. Alhazov, A.Krassovitsiy, Yu.Rogozhin. Circular Post Machines
and P Systems with Exo-insertion and Deletion. Lecture Notes in
Computer Science, 7184, Springer, 2012, pp.73–86.

[12] A. Alhazov, C. Mart́ın-Vide, Yu. Rogozhin. On the Number of
Nodes in Universal Networks of Evolutionary Processors. Acta
Informatica, 43(5), 2006, pp.331–339.

33

A. Alhazov

[13] A. Alhazov, C. Mart́ın-Vide, Yu. Rogozhin. Networks of Evo-
lutionary Processors with Two Nodes Are Unpredictable. Pre-
Proceedings of the 1st International Conference on Language and
Automata Theory and Applications, LATA 2007, GRLMC report,
35/07, Rovira i Virgili University, Tarragona, 2007, pp.521–528.
Also in: Technical Report, 818, Turku Centre for Computer Sci-
ence, Turku, 2007.

[14] A. Alhazov, Yu. Rogozhin. About Precise Characterization of Lan-
guages Generated by Hybrid Networks of Evolutionary Processors
with One Node. The Computer Science Journal of Moldova, 16(3),
2008, pp.364–376.

[15] J. Castellanos, P. Leupold, V. Mitrana. On the Size Complexity
of Hybrid Networks of Evolutionary Processors. Theoretical Com-
puter Science, 330(2), 2005, pp.205–220.

[16] J. Castellanos, C. Mart́ın-Vide, V. Mitrana, J. Sempere. Networks
of Evolutionary processors. Acta Informatica, 38, 2003, pp.517-
529.

[17] J. Castellanos, C. Mart́ın-Vide, V. Mitrana, J. Sempere. Solving
NP-complete Problems with Networks of Evolutionary Processors.
In: J. Mira, A. Prieto (Eds.), IWANN 2001, Lecture Notes in
Computer Science, 2084, Springer, 2001, pp.621–628.

[18] E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana. Hybrid Networks
of Evolutionary Processors are Computationally Complete. Acta
Informatica, 41(4-5), 2005, 257–272.

[19] E. Csuhaj-Varjú, A. Salomaa. Networks of Parallel Language Pro-
cessors. In: Gh. Păun, A. Salomaa, (Eds.), New Trends in for-
mal Language Theory Lecture Notes in Computer Science, 1218,
Springer, 1997, pp.299-318.

[20] J. Dassow, B. Truthe. On the Power of Networks of Evolutionary
Processors. In: J. O. Durand-Lose, M. Margenstern (Eds.), MCU
2007, Lecture Notes in Computer Science, 4667, Springer, 2007,
pp.158–169.

34

Developments in Networks of Evolutionary Processors

[21] M. Kudlek, Yu. Rogozhin. Small Universal Circular Post Ma-
chines. Computer Science Journal of Moldova, 9(1), 2001, pp.34–
52.

[22] M. Kudlek, Yu. Rogozhin. New Small Universal Circular Post Ma-
chines. In: R. Freivalds (Ed.), Proc. FCT 2001, Lecture Notes in
Computer Science, 2138, Springer, 2001, pp.217–227.

[23] R. Loos, F. Manea, V. Mitrana. Small Universal Accepting Hy-
brid Networks of Evolutionary Processors. Acta Informatica, 47,
2, 2010, pp.133–146.

[24] F. Manea, C. Mart́ın-Vide, V. Mitrana. On the Size Complexity
of Universal Accepting Hybrid Networks of Evolutionary Proces-
sors. Mathematical Structures in Computer Science, 17(4) 2007,
pp.753–771.

[25] F. Manea, C. Mart́ın-Vide, V. Mitrana. All NP-problems can be
Solved in Polynomial Time by Accepting Hybrid Networks of Evo-
lutionary Processors of Constant Size. Information Processing Let-
ters, 103, 2007, pp.112–118.

[26] M. Margenstern, V. Mitrana, M.-J. Pérez-Jiménez. Accepting Hy-
brid Networks of Evolutionary Processors. in: C. Ferretti, G.
Mauri, C. Zandron (Eds.), DNA 10, Lecture Notes in Computer
Science, 3384, Springer, 2005, pp.235–246.

[27] C. Mart́ın-Vide, V. Mitrana, M. Pérez-Jiménez, F. Sancho-
Caparrini. Hybrid Networks of Evolutionary Processors. In: E.
Cantú-Paz et al. (Eds.), Proc. of GECCO 2003, Lecture Notes
in Computer Science, 2723, Springer, 2003, pp.401-412.

[28] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

Artiom Alhazov Received April 9, 2013

Dr. Artiom Alhazov
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova
E–mail: artiom@math.md

35

