
Computer Science Journal of Moldova, vol.20, no.3(60), 2012

Static and Dynamic Membrane Structures

Sergiu Ivanov

Abstract

While originally P systems were defined to contain multiset
rewriting rules, it turned out that considering different types of
rules may produce important results, such as increasing the com-
putational power of the rules. This paper focuses on factoring
out the concept of a membrane structure out of various P system
models with the goal of providing useful formalisations. Both
static and dynamic membrane structures are considered.

Keywords: Computing model, P system, membrane struc-
ture, semi-lattice, active membranes.

1 Introduction

P systems are computational models inspired from the structure of liv-
ing cells, introduced by Gh. Păun in 1998 [1]. The principal idea behind
this model is that the chemical reactions happening in a biological cell
can be interpreted as applications of rewriting rules to multisets of ob-
jects. Since formal grammars can be treated as computational devices,
a cell can be basically viewed as a collection of compartments, each
hosting computation. Further, communication between compartments
is allowed, which binds the computing devices into a network where
information is produced and consumed to be eventually combined into
the final result. For a more thorough introduction to the subject the
reader may turn to [2].

One of P systems types which is commonly brought about in ex-
amples is the transitional P systems [3]. In transitional P systems, the
compartments of P systems hold multiset rewriting rules. It has been
shown (see Chapter 4 of [4] for a summary) that membrane structure

c©2012 by S. Ivanov

374

Static and Dynamic Membrane Structures

does not add any computational power to what is already provided by
the class of multiset rewriting rules in use. The idea behind this result
is simple: since a membrane structure is finite and static in this case,
it can very well be dropped by considering “labelled” symbols: instead
of having a in compartment 1, have the symbol a1, for example. In
this way, one can simulate any communication between the computing
compartments which can happen in a transitional P system and which
could enhance the overall computational power.

While this conclusion may look rather disconcerting in what con-
cerns the utility of transitional P systems, static membrane structures
may actually be rather significant in certain situations. The authors
of [5] show that, if one places insertion-deletion rules in the compart-
ments of a membrane structure, one obtains a computational device
which is more powerful than the class of insertion-deletion rules in use.
In fact, this is not the only well-known example of placing other types
of rules in compartments of membrane structures; consider, for exam-
ple, splicing P systems (Chapter 8 of [4]) and P systems with string
objects (Chapter 7 of [4]). Note that in these cases, the rules placed
in the compartments of the membrane system do make sense outside
of the context of membrane structures. I find it necessary to explicitly
contrast this with communication P systems (Chapter 5 of [4]) and
P systems with active membranes (Chapter 11 of [4]), in which cases
the investigated rules seem to be very intimately connected with the
membrane structure itself.

The reasoning exposed in the previous paragraph brings attention
to the membrane structure, rather than to the P system that results
from combining a membrane structure and rules. Some basic formal
representations are widely used in which membrane structures are con-
sidered as rooted trees [3, 4]. However, as this paper shows, the un-
derlying tree of a membrane structure is a skeleton which, while being
essential, is far from covering all the features associated with the mem-
branes. Further note that, while formalising static membrane struc-
tures is an interesting and useful task in itself, it is the dynamic mem-
brane structures arising in different flavours of P systems with active
membranes that are the most attractive object of formalisation.

375

S. Ivanov

This paper focuses on studying membrane structures as separate
objects, apart from the containing context of P systems. An approach
to formalising static and dynamic membrane structures as algebraic
structures is suggested, and then applications of the obtained formali-
sation are shown.

2 Preliminaries

2.1 Multisets

Given a finite set A, by |A| one understands the number of elements in
A.

Let V be a finite alphabet; then V ∗ is the set of all finite strings of a
V , and V + = V ∗−{λ}, where λ is the empty string. By N one denotes
the set of all non-negative integers, by Nk – the set of all vectors of
non-negative integers.

Let V be a finite set, V = {a1, . . . , ak}, k ∈ N. A finite multiset
M over V is a mapping M : V → N. For each a ∈ V , M(a) indicates
the number of “occurrences” of a in M . The value M(a) is called the
multiplicity of a in M . The size of the multiset M is |M | = ∑

a∈V M(a),
i.e., the total count of the entries of the multiset. A multiset M over V
can also be represented by any string x which contains exactly M(ai)
instances of ai, 1 ≤ i ≤ k. The support of M is the set supp(M) =
{a ∈ V | M(a) ≥ 1}, which is the set which contains all elements of
the multiset. For example, the multiset over {a, b, c} defined by the
mapping {(a, 3), (b, 1), (c, 0)} can be written as a3b. The support of
this multiset is {a, b}.

Let x, y be two multisets over V . Then x is called a submultiset
of y, written as x ⊆ y, if and only if ∀a ∈ V . x(a) ≤ y(a). The
union of x and y, denoted by x] y is defined in the following way:
∀a ∈ V . (x] y)(a) = x(a) + y(a). The difference of x and y, denoted
by x\y, is defined similarly: ∀a ∈ V . (x\y)(a) = x(a)− y(a).

376

Static and Dynamic Membrane Structures

2.2 P Systems

A transitional membrane system is defined by a tuple (Chapter 1 of
[4])

Π = (O, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of m membranes, bijectively

labelled with 1, . . . , m,
wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region.

The rules have the form u → v, where u ∈ O+, v ∈ (O×Tar)∗. The
target indications from Tar = {here, out}∪{inj | 1 ≤ j ≤ m}, where j
are the labels of the corresponding inner membranes. The target here
is typically omitted. In case of non-cooperative rules, u ∈ O.

The rules are applied in a maximally parallel way: no further rule
should be applicable to the idle objects. In the case of non-cooperative
systems, all objects evolve by the associated rules in the corresponding
regions (except objects a in regions i such that Ri does not contain
any rule a → u, but these objects do not contribute to the result).
Rules are non-deterministically chosen at each moment in time when
a change occurs in the configuration of the P system. The process of
choosing which rules should be applied does not take any time.

A P system with active membranes is defined by a tuple (Chapter
11 of [4]):

Π = (O, H, E, µ, w1, w2, . . . , wm, R, i0), where
O is a finite set of objects,
H is the alphabet of names of membranes,
E is the set of electrical charges,
µ is the initial hierarchical structure of m membranes,

bijectively labelled by 1, . . . ,m;

377

S. Ivanov

wi is the initial multiset in region i, 1 ≤ i ≤ m,

R is the set of rules,
i0 is the output region.

The rules in P systems with active membranes can be of the fol-
lowing five basic types:

(a) [a → v]eh, h ∈ H, e ∈ E, a ∈ O, v ∈ O∗;

(b) a[]e1
h → [b]e2

h , h ∈ H, e1, e2 ∈ E, a, b ∈ O;

(c) [a]e1
h → []e2

h b, h ∈ H, e1, e2 ∈ E, a, b ∈ O;

(d) [a]eh → b, h ∈ H\{s}, e ∈ E, a, b ∈ O;

(e) [a]e1
h → [b]e2

h [c]e3
h , h ∈ H\{s}, e1, e2, e3 ∈ E, a, b, c ∈ O.

It is often considered that E = {0,−, +}. The rules apply to elementary
membranes, i.e., membranes which do not contain other membranes
inside.

The rules are applied in the usual non-deterministic maximally par-
allel manner, with the following details: any object can be subject of
only one rule of any type and any membrane can be subject of only
one rule of types (b)–(e). Rules of type (a) are not counted as applied
to membranes, but only to objects. This means that when a rule of
type (a) is applied, the membrane can also evolve by means of a rule
of another type. If a rule of type (e) is applied to a membrane, and its
inner objects evolve at the same step, it is assumed that first the inner
objects evolve and then the division takes place, so that the result of
applying rules inside the original membrane is replicated in the two
new membranes.

2.3 Semilattices

A binary relation ≤ is a partial order if it is reflexive, symmetric, and
transitive. A set (S,≤) endowed with such a binary relation is called

378

Static and Dynamic Membrane Structures

a partially ordered set. If x, y ∈ S such that (x, y) 6∈≤, the elements x
and y are called incomparable; this is written as x 6≤ y. The interval
between two comparable elements x, y ∈ L, denoted by [x, y] is the set
of all elements in L which are “between” x and y:

∀x, y ∈ S . x ≤ y . [x, y]
def
= {a ∈ L | x ≤ a and a ≤ y}

An interval is called simple if it only includes its “endpoints”:

∀x, y ∈ L . [x, y] – simple
def⇐⇒ [x, y] = {x, y}.

In this case x is called the predecessor of y (or y – the successor of x),
which is denoted by x ≺ y.

A partially ordered set (S,≤) is a meet-semilattice, if for any x, y ∈
S the greatest lower bound x ∧ y (the meet) of the two exists:

∀x, y ∈ S . ∃x ∧ y ∈ S . ∀z ∈ S . (z ≤ x and z ≤ y) =⇒ z ≤ x ∧ y.

Dually, one defines the join-semilattice. A partially ordered set (S,≤)
is a join-semilattice, if for any x, y ∈ S the least upper bound x ∨ y
(the join) of the two exists:

∀x, y ∈ S . ∃x ∨ y ∈ S . ∀z ∈ S . (x ≤ z and y ≤ z) =⇒ x ∨ y ≤ z.

Any of these two can be defined as an algebraic structure. For
example, a meet-semilattice is the structure (S,∧) in which the binary
operation is idempotent, commutative, and associative:

(S,∧)– semilattice
def⇐⇒ ∀x, y, z ∈ S . x ∧ x = x

and x ∧ y = y ∧ x
and x ∧ (y ∧ z) = (x ∧ y) ∧ z.

3 Static Membrane Structures

3.1 Construction of Static Membrane Structures

Consider a finite meet-semilattice (L,∧) with the properties that the
semilattice includes the minimal element, denoted by 0:

∃0 ∈ L . ∀x ∈ L . 0 ≤ x, (1)

379

S. Ivanov

and that any element of L except 0 has only one predecessor:

∀x ∈ L\{0} . ∃!y ∈ L . y ≺ x. (2)

The following lemma shows that finite semilattices with these two prop-
erties are essentially trees.

Lemma 1. Let (L,∧) be a finite meet-semilattice. Consider the graph
G = (V, E) with vertexes all elements of L and edges all corresponding
simple intervals:

V = L, E = {(x, y) ∈ L× L | x ≺ y},
If (L,∧) has the properties (1) and (2), then G is a tree.

Proof. Let n = |L| = |V | be the number of elements in the set L = V .
Since any element a ∈ L\{0} has exactly one predecessor, the count
of edges in G is |E| = n − 1. Further, G is connected, because ∀x ∈
L = V . 0 ≤ x, which means that there exists a sequence of elements
(xi)m

i=1 ⊆ L, m ∈ N, such that

0 = x1 ≺ x2 ≺ . . . ≺ xm = x,

which gives the path in G connecting 0 and x. Since G is a connected
graph in which |E| = |V | − 1, G is a tree [7].

In particular, if L satisfies the properties (1) and (2), then L con-
tains no meets for any incomparable elements: ∀x, y ∈ L . x 6≤ y =⇒
x ∧ y 6∈ L.

For a set S and a set H, a mapping l : S → H will be called a
labelling of S with the label set H. Note that l is not required to be
injective, which means that several objects in S may have the same
label.

Definition 1. The following tuple will be called a membrane structure:

M = ((L,∧),H, l) , where
(L,∧) is a meet-semilattice with the properties (1) and (2),

H is a set of labels,
l is a labelling of L with H.

The elements of L will be called membranes.

380

Static and Dynamic Membrane Structures

It is easy to see that a membrane structure in this definition is
exactly the same thing as what is defined in numerous articles on P
systems (for example, Chapter 1 of [4]). The important part is that
the meet-semilattice (L,∧) was shown to be a tree. The set of labels
H and the corresponding labelling l obviously corresponds to the usual
labelling of membranes.

Example 1. Consider the structure

[[[]3]2[]4]1,

in which the membrane with label 1 contains a membrane with label 4
and a membrane with label 2, which, in its turn, contains a membrane
with label 3, will be translated to the membrane structure M = ((L =
{a, b, c, d},∧),H = {1, 2, 3, 4}, l,∅), where l(a) = 1, l(b) = 2, l(c) = 3,
l(d) = 4, and the partial order on L is given by the following set of
pairs:

≤= {(a, b), (a, d), (a, c), (b, c)} .

(L,∧) satisfies the properties (1) and (2). Indeed, ∀x ∈ L . a ≤ x,
thus a = 0 in the terminology introduced in this section. Further, it
is easy to check that each element in L, except for a, has exactly one
predecessor. Thus, M is a valid membrane structure.

It should be clear now that, if x, y ∈ L and x ≺ y, then x is the
parent membrane of y.

Note that while the definition given in this paper generalises the
majority of other definitions of tree-like membrane structures, it does
not cover much more than what is covered by the said definitions. Thus,
the notion of membrane structure as introduced in the present paper
is sufficiently narrow.

Remark that there has not been any mentioning of the environment,
which is sometimes considered as a compartment with some limitations
(Chapter 1 of [4]). It is easy, however, to extend the semi-lattice (L,∧)
by adding an element 0′ with the property that ∀x ∈ L . 0′ ≤ x to
represent the environment.

Also note that a join-semilattice could have been chosen instead of a
meet-semilattice. Obviously, any reasoning about membrane structures

381

S. Ivanov

considered as meet-semilattices can be converted to join-semilattices
by substituting the word “meet” for “join”, ∧ for ∨ and reversing the
direction of comparisons.

Finally, I would like to discuss the usefulness of the new formal-
isation. While it has been shown that the principal component of a
membrane structure, the semilattice (L,∧), is always a tree, the ad-
vantage of this approach is that a membrane structure is defined as an
algebraic structure, which makes it easier to define morphisms, as will
be shown in the concluding sections of this paper.

3.2 Construction of P Systems with Static Membrane
Structures

Consider a finite set O and a set of rules R over this alphabet. No other
restrictions on the two sets are imposed, i.e., any type of rules over O
is allowed. Define the application σ : R×O → O ∪ {⊥}, ⊥6∈ O, in the
following way: if a rule r ∈ R is applicable to an object o ∈ O, then
σ(r, o) is the result of application of r to o. If r is not applicable to o,
σ(r, o) is defined to be ⊥. The terms “applicable” and “application”
are expected to be defined during the construction of the sets O and
R. For the purposes of this article, the inner structure of the rules and
objects is inessential, as long as some basic statements can be asserted
about either of them.

Consider a membrane structure M = ((L,∧),H, l, A, a) and two
labellings of L: object : L → O and rules : L → 2R, where 2X is the
set of all subsets (the power set) of X. Setting up such labellings can be
intuitively perceived as creating a system of nested compartments, with
an object and rules in each compartment. Note that since no restriction
has been imposed on O, an object may be anything, including a set, a
multiset, a string, a set of strings, etc.

Further, introduce the function outer : L → L ∪ {⊥}, which yields
the containing membrane for the given membrane, or ⊥ if the argument
is 0:

m ∈ L\{0} =⇒ outer(m)
def
= p, p ≺ m;

outer(0)
def
=⊥ .

382

Static and Dynamic Membrane Structures

Similarly, the function inner : L → 2L yields the immediately inner
membranes of the given membrane:

inner(m)
def
= {c ∈ L | m ≺ c}.

To simplify further expressions, the convenience function adjacent :
L → 2L will be introduced:

m ∈ L\{0} =⇒ adjacent(m)
def
= inner(m) ∪ outer(m);

adjacent(0)
def
= inner(0).

Now define two applications iLabels, oLabels : L× R → 2H in the
following way: if m ∈ L and r ∈ rules(m), then iLabels(m, r) is the
set of input labels for the rule r in membrane m, and oLabels(m, r) is

the set of output labels for r. If r 6∈ rules(m), then iLabels(m, r)
def
=

oLabels(m, r)
def
= ∅. These functions annotate a rule with the informa-

tion about the labels of the membranes whose contents it may use or
modify. To ensure the validity of the labels in the context of the mem-
brane structure, one defines the function validLabels : L × 2H → 2H

in the following way:

validLabels(m,H ′) def
= H ′ ∩ {l(b) | b ∈ adjacent(m)}.

Thus, validLabels insures that a set of labels only contains the labels of
the outer and inner membranes of m, enforcing the well-known pattern
of communication along the tree in P systems.

Finally, define the applications

buildInput : L×R → O ∪{⊥},
outputBuilder : L×R → homSet(O × L, O) ∪{⊥}.

where homSet(A,B) is the set of applications between the sets A and
B.

To understand the meaning of the last two applications, consider
again a membrane m ∈ L, and a rule r in the associated set of rules

383

S. Ivanov

rules(m). buildInput(m, r) constructs the objects belonging to the
compartments the rule r depends on:

{object(m) | m ∈ adjacent(r) and l(m) ∈ iLabels(m, r)},

then “combines” these objects and object(m). The meaning of the verb
“combine” should be defined in the description of the rules R and how
they act on the objects in O.

The value outputBuilder(m, r) is a function f : O×O → O which,
for an object o and a membrane b ∈ adjacent(m), returns the “combi-
nation” of the object o with object(b), or produces other modifications
to object(b). Again, the term “combination” should be defined in the
description of the rules R and of how they act on the objects in O.

In the case when r does not belong to the set of rules associated
with m, the last two applications take the value ⊥:

r 6∈ rules(m) =⇒ buildInput(m, r)
def
=⊥

and outputBuilder(m, r)
def
=⊥

If some input conditions are not satisfied in buildInput, this func-
tion should take the value ⊥.

Definition 2. The following construction will be referred to as a P
system with static (tree-like) membrane structure:

Π = (M,O, R, σ, object, rules, iLabels,
oLabels, buildInput, outputBuilder, i0),

where i0 ∈ H is the label of the output membrane (s).

Similarly to the usual definition, a configuration C : L → O of
Π is the collection of the contents of the compartments, indexed by
membranes: C(m) = object(m).

Before proceeding to extending the formalisation to the semantics of
the P systems, an example would be helpful in showing how the static
structure of familiar constructs of P systems maps to the definition
given in the current paper.

384

Static and Dynamic Membrane Structures

Example 2. Consider a transitional P system

Π′ = (O′, µ, w1, w2, . . . , wn, R1, R2, . . . , Rn, i0).

In the previous sections it has already been shown how µ maps to the
semilattice (L,∧). The set of labels H is the set of numbers 1 through
n: H = {i ∈ N | 1 ≤ i ≤ n} and the (bijective) labelling l is defined in
the obvious way.

The set of objects O is the set of multisets over O′′ = O′ ∪ {(o, t) |
o ∈ O′ and t ∈ Tar}. The set of rules R contains all multiset rewriting
rules over the alphabet O′′, whose left-hand sides do not include target
indications:

R = {u → v | u ∈ O′∗ and v ∈ O′′∗},

where X∗ was used to denote the set of multisets over X. The applica-
tion σ carries out the usual application of a multiset rewriting rule to a
multiset. The labelling object associates to the membrane labelled with
i, 1 ≤ i ≤ m, the multiset wi. Similarly, the labelling rules associates
to the membrane with label i, 1 ≤ i ≤ n, the set of rules Ri.

The application iLabels takes the value ∅ for any valid combination
of arguments. For m ∈ L and r ∈ rules(m), the function oLabels(m, r)
is the set of labels mentioned in target indications of the right-hand side
of the rule r, excluding the label of m. The application buildInput is
trivially defined as buildInput(m, r) = object(m).

The value f : O × L → O of outputBuilder(m, r) is defined in the
following way. For every b ∈ {b ∈ L | b ∈ adjacent(m) and l(b) ∈
oLabels(m, r)}, and an object o ∈ O, f(o, b) will result in multi-
set union of object(b) and the multiset of all objects of o with tar-
get indications l(b). The value f(o,m) will result in constructing a
multiset o′ by subtracting the left-hand side of r from object(m) and
then performing multiset union of o′ and the multiset of objects of o
which have no target indications or have the indication here. For all
other membranes x, the value of the function is trivially defined as
f(o, x) = object(x). Thus, buildObject distributes the symbols across
the corresponding membranes.

385

S. Ivanov

3.3 Computation in P Systems with Static Membrane
Structure

With the necessary tools set up, it is now possible to completely de-
scribe how a P system with static membrane structure, as defined in
this paper, transitions from one configuration into another configura-
tion. This will eventually make it possible to define computation.

The reasoning exposed in this section is loosely based on the con-
siderations in [8], which provides a different approach to generalising P
systems with static membrane structures, whereby the tree-like mem-
brane structure is almost wholly dismissed.

Consider a P system Π, as defined in the previous section. Re-
mark that different configurations of Π are given by different mappings
C = object. To avoid confusion, as well as to specify the origin of the
corresponding functions, subscripts will be henceforth supplied which
show which P system and which configuration thereof is being consid-
ered.

Define the function applyRuleΠ,C : L×R → homSet(L,O) ∪ {⊥}.
Its purpose is to produce a new configuration by applying a rule asso-
ciated to a membrane. For m ∈ L, r ∈ rulesΠ(m), under the condi-
tions that buildInputΠ,C(m, r) 6=⊥ and σ(r, buildInputΠ, C(m, r)) 6=⊥,
applyRuleΠ,C is defined as follows:

applyRuleΠ,C(m, r)(b)
def
= doOutput(result, b), where

result
def
= σ(r, buildInputΠ,C(m, r)),

doOutput
def
= outputBuilderΠ,C(m, r).

If the enumerated conditions are not satisfied, applyRuleΠ,C(m, r) =⊥.
According to this definition, applyRuleΠ,C(m, r) is a function which

maps every membrane to the objects contained within, after the appli-
cation of the rule r ∈ rulesΠ(m). If applying the rule is not possible,
applyRuleΠ,C(m, r) takes the special signal value ⊥.

Note that, while the description of the process of applying a rule by
σ is done rather generally and informally, quite a bit of effort is invested
into specifying the modifications induced by the associated membrane
structure in as detailed a way as possible.

386

Static and Dynamic Membrane Structures

Definition 3. A rule r ∈ rulesΠ(m), for an m ∈ L, is said to be
applicable in the configuration C if applyRuleΠ,C(m, r) 6=⊥.

In a given configuration given by the mapping C = object, the set
of applicable rules is defined as

applicableRules(Π, C)
def
= {r ∈ rulesΠ(m) | m ∈ L

and applyRuleΠ,C(m, r) 6=⊥}.

It is would now be desirable to construct the analog of the marking
algorithm introduced in [8]. To do this, it should be remarked that an
application of a rule r ∈ R is made possible because certain “premises”
are satisfied. The action of applying r may entail removal of some of
these premises. To account for this, define the application

premisesEraserΠ,C : L×R → homSet(O × L,O) ∪ {⊥},

which, in parallel to outputBuilderΠ,C , produces a function which re-
moves, if possible, the premises which made the rule r ∈ rulesΠ(m),
m ∈ L, applicable. These considerations lead to the definition of the
application erasePremisesΠ,C : L × R → homSet(L, O) ∪ {⊥}, in
parallel to applyRuleΠ,C :

erasePremisesΠ,C(m, r)(b)
def
= doErase(result, b), where

result
def
= σ(r, buildInputΠ,C(m, r)),

doErase
def
= premisesEraserΠ,C(m, r).

This definition is valid when r ∈ rulesΠ(m), m ∈ L. If this does not
hold, or if buildInputΠ,C(m, r) =⊥, or if σ(r, buildInputΠ,C(m, r)) =⊥,

then erasePremisesΠ,C
def
=⊥.

The are now sufficient instruments to construct the marking al-
gorithm. Consider a multiset ρ of pairs rules and the corresponding
membranes:

ρ = {((m, r), n) | m ∈ L and r ∈ rulesΠ(m) and n ∈ N}.

387

S. Ivanov

Define the function

isApplicableMultisetΠ : homSet(L,O)× (L×R)∗ → {true, false}
to be true if all rules in ρ can be applied the corresponding number of
times in the supplied configuration and to be false otherwise:

isApplicableMultisetΠ(C, λ)
def
= true

(m, r) ∈ ρ =⇒
isApplicableMultisetΠ(C, ρ)

def
= r ∈ applicableRules(Π, C)

and isApplicableMultisetΠ(C ′, ρ′),

where C ′ def
= erasePremisesΠ,C(m, r),

ρ′ def
= ρ\{(m, r)}.

Here λ was used to denote the empty multiset.
The function isApplicableMultisetΠ essentially performs the same

procedure as does the marking algorithm in [8]. It checks the appli-
cability of every rule in the multiset ρ and removes the rules found
applicable one by one. If the multiset becomes empty, the conclusion
is drawn that all rules in ρ can be applied the corresponding number of
times in the current configuration. Otherwise, the function is false.

Once the multiset of membranes and rules ρ has been decided to
be applicable, the rules in ρ may obviously be applied one by one, by
invoking applyRuleΠ,C for all of them. Thus, the basic semantics has
been constructed. Further definitions provided in [8] like, for example,
derivation modes, halting conditions, etc., can be easily adapted to the
algorithms described in this section, which eventually completes the
formalisation of P systems with static (tree-like) membrane structure.

4 Dynamic Membrane Structures

4.1 Construction of P systems with Dynamic Membrane
Structure

In this section the definition of a membrane structure will be extended
to cover the dynamic membrane structures arising in P systems with
active membranes, for example.

388

Static and Dynamic Membrane Structures

Definition 4. The following tuple will be called a (dynamic) membrane
structure:

M = ((L,∧),H, l, A, a) , where
(L,∧) is a meet-semilattice with the properties (1) and (2),

H is a set of labels,
l is a labelling of L with H,

A is a set of attributes,
a is a labelling of L with A.

If A = ∅, by convention, the last two components of the tuple will
not be written. Thus, the definition introduced in Subsection 3.1 can
be regarded as a special case of this definition.

The need for the set of attributes arises from the fact that, in
P systems with active membranes, the membranes sometimes carry
charge (Chapter 11 of [4]). To model this feature, one can define
A = {0,−, +}; then, for a membrane m ∈ L, a(m) ∈ A will give
the charge.

In the previous parts of the paper it has been shown how the
membrane structure M , together with the sets yielded by iLabels and
oLabels, directs the way rule applications happen. However, as it can
be seen in Subsection 2.2, rules that influence the membrane structure
itself are in very tight connection with the membranes, which makes
it quite difficult to construct the parallel to the mappings iLabels and
oLabels which would indicate how a rule acts on the membrane struc-
ture. A possible solution is to even further decouple the action of a
rule on a membrane structure for the nature of the rule itself. More
concretely, a rule in a P system with dynamic membrane structure
will be written as two rules: a rule which works as described in the
Subsection 3.3, and another rule, acting on the membrane structure.
The coming paragraphs will provide further details, as well as a formal
explanation.

In order to better describe the semantics of dynamic membrane
structure, the reasoning will start in the frame of a P system with the
(yet static) membrane structure M , as defined in Subsection 3.2. Thus,

389

S. Ivanov

consider the P system

Π = (M, O, R, σ, object, rules, iLabels,
oLabels, buildInput, outputBuilder).

To benefit from the attributes in M , for a membrane m ∈
L and an associated rule r ∈ rules(m), define the application
contextChecker : L×R → homSet(A, {true, false}) in the following
way: contextChecker(m, r) is a function, which checks the attributes
of the membrane r, and decides whether the context is “suitable” or
not. The meaning of this function will become clearer in the next
section.

Fix a membrane m ∈ L and a rule r ∈ rules(m) associated with it.
Consider the set of pairs of labels and attributes, valid in the context
of the membrane m:

labsAttrs(m)
def
=

{(
l(m′), attr)

) | m′ ∈ adjacent(m) and attr ∈ A
}

.

Definition 5. A membrane structure rule in the context of a mem-
brane m is a multiset rewriting rule of the form u → v, where
u, v ∈ labAttrs(m)∗, where X∗ was used to denote the set of all multi-
sets over X.

The set of membrane structure rules valid in the context of a
given membrane m is given by the application validMSRules : L →
labAttrs(m)∗ naturally defined as

validMSRules(m)
def
= {u → v | u, v ∈ labAttrs(m)∗}.

The set of all valid membrane structure rules is defined in the following
way:

allMSRules
def
=

⋃

m∈L

validMSRules(m).

What a membrane structure rule is should become clear from an
informal example.

390

Static and Dynamic Membrane Structures

Example 3. Consider the construction [[]+2 []−3]+1 . Then

(2, +)(3,−) → (2, +)(3,−)(2,−)

is a valid membrane structure rule for the membrane with label 1. From
the notation, it should be intuitively understood that this rule produces a
new membrane with label 2 and charge “−” if the membrane 1 contains
a membrane 2 with charge “+” and a membrane 3 with charge “−”.
What exactly is the action of such a rule, in particular, how it acts upon
the inner membranes of the involved membrane and the corresponding
rules and objects, will be defined in the next section.

A conclusion to this subsection is the definition of a P system with
dynamic (tree-like) membrane structure.

Definition 6. The following construct will be referred to as P system
with dynamic (tree-like) membrane structure:

Π = (M, O,R, σ, object, rules, iLabels, oLabels, buildInput,
outputBuilder, contextChecker,msRule, λO, i0),

where λO ∈ O is a “default” object to be attached to newly created
membranes, i0 ∈ H is the label of the output membrane, and msRule :
L × R → allMSRules ∪ {⊥} is defined to be the membrane structure
rule associated with the rule r associated in its turn with a membrane
m.

If r 6∈ rules(m), then msRule(m, r)
def
=⊥. If the rule r does not

influence the membrane structure, msRule(m, r)
def
=⊥.

4.2 Computation in P Systems with Dynamic Mem-
brane Structure

It is now possible to describe the computation in P systems with dy-
namic membrane structures.

Among the first things, the exact semantics of membrane structure
rules should be described. Consider a P system Π with dynamic mem-
brane structure as defined in the previous section, a membrane m ∈ L,

391

S. Ivanov

a rule r ∈ rulesΠ(m), and the corresponding membrane structure rule
g = msRuleΠ(m, r) (assume that it exists, for the purposes of this ex-
planation). Define the utility functions lhsΠ, rhsΠ : allMSRulesΠ →
(H ×A)∗ as lhsΠ(u → v) = u and rhsΠ(u → v) = v.

Before making this visible from the formal description of seman-
tics, it will be helpful to state that a configuration of P system with
dynamic membrane structure includes the mappings between mem-
branes and objects, labels, attributes, as well as the relations between
the membranes

C = (object, (L,∧), l, a).

Next define the function labAttrsMultisetΠ,C : L → (H × A)∗ to
return the pairs of labels and attributes the number of times they occur
in inner membranes of a given membrane a:

labAttrsMultisetΠ,C(m)
def
= buildMultiset(innerΠ(m)),

where buildMultiset(∅)
def
= λ,

b ∈ adj =⇒ buildMultiset(adj)
def
= (l(m), a(m))

]buildMultiset(adj′),

adj′ def
= adj\{b}.

Here] was used to denote multiset union. Note the similarity between
this function and the notation labsAttrs, introduced in the previous
section.

Proceed now with defining the function msRuleApplicableΠ,C :
L × allMSRules → {true, false} to decide whether a membrane
structure rule g is applicable to the membrane m or not:

msRuleApplicableΠ,C(m, g)
def
= lhsΠ(g) ⊆ labAttrsMultisetΠ,C(m),

where ⊆ was used to denote multiset inclusion.
Now that applicability of a membrane structure rule can be de-

cided, it is time to describe how such a rule is applied. Define the
function labelMembranesMapΠ,C : L × H → homSet(H, 2L) to pro-
duce a mapping between some labels in H and the corresponding inner

392

Static and Dynamic Membrane Structures

membranes of a membrane:

labelMembranesMapΠ,C(m,H ′)(h)
def
= l−1(h) ∩ inner(m),

where l−1 : H → 2L provides the set of membranes labelled with a
given label: l−1(h)

def
= {m ∈ L | l(m) = h}.

Again, consider a membrane m ∈ L, one of its rules r ∈ rulesΠ(m),
and the corresponding membrane structure rule g ∈ msRuleΠ(m, r).
Define the function involvedMembranesΠ,C : L × allMSRules → 2L

to produce the set of membranes involved by the labels in left-hand
side of the membrane structure rule:

involvedMembranes(m, g)
def
=

⋃
(h,attr)∈I

map(h), where

map
def
= labelMembranesMap(m, labels),

labels
def
= {h ∈ H | ∃attr ∈ A . (h, attr) ∈ I},

I
def
= lhsΠ(g).

If g is not a membrane structure rule associated with one of the rules
of the membrane m, the function is defined to take the value ⊥:

(@r ∈ rulesΠ(m) . g = msRule(r))=⇒
involvedMembranesΠ,C(m, g)

def
=⊥ .

Suppose msRuleApplicableΠ,C(m, g) = true. In this case, define
the function applyMSRuleΠ,C(m, g) in the following way:

applyMSRuleΠ,C(m, g)
def
= (object′, (L′,∧′), l′, a′) = C ′.

If msRuleApplicableΠ,C(m, g) = false, or @r ∈ rulesΠ(m) . g =

msRule(r), applyMSRuleΠ,C(m, g)
def
=⊥.

The underlying set L′ of the new semilattice (L′, wedge) is obtained
by removing first all the membranes involved in the left-hand side of
the rule g, and all their inner membranes:

L′1
def
= L\ ({b ∈ L | ∃b′ ∈ I . b′ ≤ b}) ,

∧′1
def
= ∧\{(b′, b′′) | b′ ∈ I or b′′ ∈ I}, where

I
def
= involvedMembranesΠ,C(m, g).

393

S. Ivanov

The symbol removeMSRuleLHS will be used to refer to this opera-
tion, i.e.,

(L′1,∧′1) = removeMSRuleLHS((L,∧)).

Now, define the function reAddMembranes in the following way:

reAddMembranes(λ, i, (P,∧))
def
= (P,∧),

and the value i ∈ N is not used in this case. If the first argument α of
the function is not an empty multiset and (h, a) ∈ α, then

reAddMembranes(α, i, (P,∧))
def
=

reAddMembranes(α′, i + 1, (P ′,∧′)), where

α′ def
= α\((h, a), 1),

P ′ def
= P ∪ S′,

∧′ def
= ∧ ∪ {(m′, b) ∈ L× S | m′ ≤ m},

S′ def
= {b′i ∈ L | ∃b ∈ S . b ≤ b′},

S
def
= l−1(h) ∪ inner(m).

Thus, according to the definition,

(L′2,∧′2) = reAddMembranes(rhsΠ(g), 0, L′1)

reintroduces to the membrane structure all those membranes which
have been removed during the construction of L′1 and which are men-
tioned in the right-hand side of g, together with all their inner mem-
branes. However, in the process, unique labels are attached to each of
the new membranes, which makes it possible to actually duplicate a
membrane together with all its inner membranes.

To keep the new labellings synchronised, along with all other iden-
tities in reAddMembranes, consider the following included among the

394

Static and Dynamic Membrane Structures

definitions in this function:

bi ∈ S =⇒ l′(bi)
def
= h

and l′(bi)
def
= a,

bi ∈ S′\S =⇒ l′(bi)
def
= l(bi)

and a′(bi)
def
= a(bi),

object′(bi)
def
= object(b).

Thus, reAddMembranes also updates the labellings for the immedi-
ately inner membranes of m which are involved with the membrane
structure rule, but leaves the labellings intact for the membranes fur-
ther down the tree.

Lastly, define the function addMembranes in the following way:

addMembranes(λ, (P,∧))
def
= (P,∧)

(h, a) ∈ α =⇒
addMembranes(α, (P,∧))

def
= addMembranes(α′, (P ′,∧′)),

where α′ def
= α\{((h, l), 1)},

P ′ def
= P ∪ {mh},

∧′ def
= ∧ ∪ {(m′,mh) | m′ ∈ L

and m′ ≤ m},
mh 6∈ P.

This function adds a new symbol mh for each new label h in the right-
hand side of the membrane structure rule g. Consequently,

(L′,∧′) = addMembranes(newMems, (L′2,∧′2))
is the new semilattice, representing the underlying tree of the dynamic
membrane structure.

Again, to update the labellings of the membrane structure, the fol-
lowing definitions should be added to the definition of addMembranes:

l′(mh)
def
= h,

a′(mh)
def
= a,

object′(mh)
def
= λO.

395

S. Ivanov

Thus, the newly added membranes are labelled with default objects,
specified in the definition of the P system.

Finally, to complete the definitions of the new labellings of the
membrane structures, the following is stated:

m ∈ L0 =⇒ l′(m)
def
= l(m) and a′(m)

def
= a(m)

and object′(m)
def
= object(m).

The conclusion at this point is that applyMSRuleΠ,C formally de-
scribes the semantics of a membrane structure rule by constructing a
new configuration C ′ in the context of a P system with dynamic mem-
brane structure Π and a reference configuration C of it.

No types have been provided for applyMSRuleΠ,C and utilities used
to construct it, because it returns functions whose domains belong to
proper classes (for example, the function object′ whose domain is a
lattice) and the notations introduced in this paper are insufficient to
express this fact. This is irrelevant to the present formalisation, though.

It is now possible to move to defining an evolution step of a P system
with dynamic membrane structure. As in Subsection 3.3, only the
marking algorithm and one step of evolution will be described in detail.
This will create sufficient foundation for continuing the reasoning along
the lines shown in [8] and presents little interest in the context of this
paper.

Before describing the marking algorithm itself, note that the set of
rules employed in P system with dynamic membrane structure is par-
titioned into two sets: the rules that do not have membrane structure
rules associated, and the rules that have:

R¬µ
def
= {r ∈ R | ∃m ∈ L . r ∈ rulesΠ(m) and msRuleΠ(r) =⊥},

Rµ
def
= {r ∈ R | ∃m ∈ L . r ∈ rulesΠ(m) and msRuleΠ(r) 6=⊥}.

These two types of rules will always be treated in certain order: the
rules in R¬µ will always be analysed first.

Consider a multiset ρ of pairs rules and the corresponding mem-
branes:

ρ = {((m, r), n) | m ∈ L and r ∈ rulesΠ(m) and n ∈ N}.

396

Static and Dynamic Membrane Structures

According to the classification of rules above, split ρ into two multisets:

ρ¬µ
def
= {((m, r), n) ∈ ρ | r ∈ R¬µ},

ρµ
def
= {((m, r), n) ∈ ρ | r ∈ Rµ}.

While it is tempting to declare that the function
isApplicableMultisetΠ,C can be used to decide the applicability
of ρ¬µ, it is not exactly so since, in P systems with dynamic membrane
structures, the attributes of the membrane a rule is associated with
must also be checked. Therefore, define the following simple function
ruleApplicableΠ,C : L×R → {true, false}:

ruleApplicableΠ,C(m, r)
def
=
applyRuleΠ,C(m, r) 6= ⊥

and contextChecker(m, r)(a(m)) = true.

As usual, for r 6∈ rules(m), ruleApplicableΠ,C(m, r) =⊥. Now, if
one redefines isApplicableMultisetΠ to use ruleApplicableΠ,C instead
of checking the condition r ∈ applicableRules(Π, C), one may use
isApplicableMultisetΠ to check the applicability of ρ¬µ in a P system
with dynamic membrane structure.

The current question is how to decide the applicability of ρµ.
The answer to this question is constructed pretty much along
the same line as is isApplicableMultisetΠ,C . Define the function
ruleApplicableGΠ,C : L × R → {true, false} to return true if, for
a membrane m ∈ L and its rule r ∈ rulesΠ(m), both r and msRule(r)
are applicable (here G stands for “generalised”):

ruleApplicableGΠ,C(m, r)
def
= msRuleApplicable(m,msRule(r))

and ruleApplicableΠ,C(m, r).

As usually defined in the situations when r is not a rule associated with
the membrane m:

r 6∈ rules(m) =⇒ ruleApplicableGΠ,C(m, r)
def
=⊥ .

397

S. Ivanov

Further, if msRule(r) =⊥, for consistency,

ruleApplicableGΠ,C
def
= ruleApplicableΠ,C(m, r).

Now define the function erasePremisesG which, quite in parallel to
erasePremises and applyMSRule, produces a configuration without
the premises which made the rule r and the corresponding msRule(r)
applicable:

erasePremisesGΠ,C(m, r)
def
= (objects′, (L′,∧′), l, a), where

objects′ def
= erasePremisesΠ,C(m, r),

and (L′,∧′) is defined as follows:

(L′,∧′) def
= removeMSRulesLHSΠ,C(m, msRule(r)).

Again, r 6∈ rules(m) =⇒ erasePremisesGΠ,C(m, r)
def
=⊥.

Now, define isApplicableMSMultisetΠ to decide whether ρµ is ap-
plicable in the supplied configuration. For an empty multiset, the def-
inition is trivial:

isApplicableMSMultisetΠ(C, λ)
def
= true.

For a nonempty multiset ρµ and (m, r) ∈ ρµ:

isApplicableMSMultisetΠ(C, ρµ)
def
=

ruleApplicableGΠ,C(m, r) and isApplicableMSMultisetΠ(C ′, ρ′µ),

where C ′ def
= erasePremisesGΠ,C(m, r), ρ′µ

def
= ρµ\{(m, r)}.

Finally, the function isApplicableMultisetGΠ,C decides whether
the multiset of rules ρ is applicable in the given configuration:

isApplicableMultisetGΠ,C(ρ)
def
=

isApplicableMultisetΠ(C, ρ¬µ)
and isApplicableMSMultisetΠ(C ′, ρµ),

398

Static and Dynamic Membrane Structures

where C ′ = (object′, (L,∧), l, a) and object′ is the labelling of the mem-
brane structure with objects at which isApplicableMultisetΠ(C, λ) has
arrived.

Now, the application of an applicable multiset of rules ρ to config-
uration of P system with dynamic membrane structure is performed
in two stages. First, the multiset of rules ρ¬µ is applied as described
in Subsection 3.3. Then, the rules in ρµ are applied one by one, using
the function applyRuleGΠ,C(m, r), defined in the following way. For
r ∈ rules(m) and g = msRule(r) 6=⊥,

applyRuleGΠ,C(m, r)
def
= applyRuleΠ,C′(m, r), where

C ′ def
= applyMSRuleΠ,C(m, g).

When msRule(r) =⊥, applyRuleGΠ,C = applyRuleΠ,C . For r 6∈
rules(m), applyRuleGΠ,C

def
=⊥.

4.3 P Systems With Active Membranes

This section will show how the five types of rules in P systems with
active membranes are translated into the suggested formalism.

The rules of type (a), [a → v]eh, will be translated to rules in R¬µ,
whose context checkers will assure check the charge of the containing
membrane.

The rules of type (b), a[]e1
h → [b]e2

h , will be modelled in the following
way. All parent membranes of h will have a rule which will take an
instance of a and will place it into the membrane h: a → (a, h). The
corresponding membrane structure rule will be (h, e1) → (h, e2).

Similarly, for the rules of type (c), [a]e1
h → []e2

h b, the parent mem-
brane of h will contain a rule (a, h) → b, with the corresponding mem-
brane structure rule being again (h, e1) → (h, e2).

For the dissolution rules of type (d), [a]eh → b, the system will
include a rule a → b, for which buildInput will fetch the whole mul-
tiset contained in the inner membrane h, so that the contents of this
membrane get merged with the contents of the parent membrane. The
associated membrane structure rule will be (h, e) → λ.

399

S. Ivanov

Finally, for the division rules of type (e), [a]e1
h → [b]e2

h [c]e3
h , the

parent membrane of h will contain a rule (a, h) → (b, h)(c, h) with the
corresponding membrane structure rule (h, e1) → (h, e2)(h, e3). The
function provided by outputBuilder for such a rule will take care of
distributing the symbols b and c across the compartments in the correct
order.

Note that, in this setup, the rules which do not have membrane
structure rules associated, are applied first, just required by the defini-
tion of a P system with active membranes (Chapter 11 of [4]).

5 Conclusion

Instead of focusing on certain kinds of P systems, constructed by com-
bining membrane structures with a certain type of rules, this paper has
brought attention to the membrane structures themselves, as separate
objects of study. This approach was motivated by the observation that
it has become quite popular with researchers in the domain of com-
putational devices to combine a known type of rules with membrane
structures. A generalisation of membrane structures was provided in
terms of algebraic structures and mappings and a number of known
concrete P systems models were shown to be covered by the introduced
formalisation.

Importantly enough, the constructs suggested in this paper do not
focus on the nature of the rules on which the membrane structure acts.
In fact, only some basic statements are made about the rules and the
objects placed in the compartments of the membrane structure. This
makes it possible to fit the majority of known P system models in the
suggested formalisation.

Even more importantly, it turns out that membrane structures can
indeed be quite easily separated from the rules associated with the
membranes. Static membrane structures turned out to be simpler to
factor out than dynamic membrane structures, a lot less additional
constructions are required in the former case. However, as visible in
Subsection 4.3, actually fitting a P system model with active mem-
branes in the suggested formalisation is fairly straightforward. In fact,

400

Static and Dynamic Membrane Structures

the majority of rules shown in [9] can be fit into the constructions
shown in this paper.

A remarkable feature of the formalised models suggested in the
present work is that they are rather considerably narrowed down to
cover as little as possible extra capabilities. As different from the pow-
erful, generalised interaction rules shown in [8], the constructions in
this paper only allow for tree-like membrane structures, with commu-
nication limited to the parent membranes and the immediately inner
membranes.

While the formalisations exposed in this paper may not themselves
come to know wide usage, the point of view will hopefully make more
researchers consider membrane structures without the context of con-
crete P system models. There are two major reasons motivating such
a shift of perspective. The first reason is that membrane structures are
not just trees, as it has been shown in this paper, and have the full
right to be studied on their own. The second reason is that such a view
on membrane structures opens further possibilities for placing different
types of rules in compartments and thus obtaining a potential plethora
of results.

References

[1] Gh. Păun. Computing with membranes. TUCS Report 208, Turku
Center for Computer Science, 1998.

[2] Gh. Păun. Membrane Computing. An Introduction. Springer-
Verlag, 2002.

[3] M. J. Pérez-Jiménez, F. Sancho-Caparrini. A formalization of
transition P Systems. Fundamenta Informaticae – Membrane com-
puting, Volume 49 Issue 1, January 2002.

[4] Gh. Păun, G. Rozenberg, A. Salomaa, Eds. The Oxford Handbook
of Membrane Computing. Oxford University Press, 2010.

401

S. Ivanov

[5] A. Krassovitskiy, Yu. Rogozhin, S. Verlan. Computational power
of insertion-deletion (P) systems with rules of size two. Journal
Natural Computing, Volume 10 Issue 2, June 2011.

[6] B. A. Davey, H. A. Priestley. Introduction to Lattices and Order
(second ed.). Cambridge University Press, 2002.

[7] Eric W. Weisstein. Tree. From MathWorld – A Wolfram Web Re-
source, http://mathworld.wolfram.com/Tree.html.

[8] R. Freund and S. Verlan. A Formal Framework for Static (Tissue)
P Systems. G. Eleftherakis, P. Kefalas, G. Paun, G. Rozenberg,
A., Salomaa, eds., 8th International Workshop on Membrane Com-
puting, WMC2007. vol 4860 of LNCS, 2007.

[9] E. Csuhaj-Varjú, A. Di Nola, Gh. Păun, M. J. Pérez-Jiménez, G.
Vaszil. Editing Configurations of P Systems. Fundamenta Infor-
maticae, Volume 82 Issue 1-2, July 2008.

[10] The P systems web page. http://ppage.psystems.eu/

Sergiu Ivanov, Received July 6, 2012

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E–mail: sivanov@math.md

University of Academy of Sciences of Moldova
Faculty of Real Sciences
Academiei 3/2, MD-2028 Chişinău, Republic of Moldova

402

