Computer Science Journal of Moldova, vol.20, no.3(60), 2012

P systems based on tag operations

Yurii Rogozhin Sergey Verlan

Abstract

In this article we introduce P systems using Post’s tag oper-
ation on strings. We show that the computational completeness
can be achieved even if the deletion length is equal to one.

1 Introduction

The tag operation was invented by E. Post during his Procter fellowship
at Princeton during the academic year 1920-21 [12, 13]. This operation
deletes first n letters of a word and appends an appendant depending on
the first deleted letter. Computational devices based on this operation,
the tag systems, are one of the simplest examples of universal devices [8,
3]. The number of deleted symbols, the deletion number, permits to
establish a frontier between decidability and undecidability — if it is
equal to two, then the corresponding class is undecidable, while if it
is equal to one, then the corresponding class is decidable. There exist
other interesting properties of tag systems, we refer to [7] for a review
on the recent results in this field.

P systems [10, 11] are distributed computational devices inspired
from the structure and the functioning of a living cell. The cell is con-
sidered as a set of compartments (membranes) nested one in another
and which contain objects and evolution rules. The base model does
not specify neither the nature of these objects, nor the nature of rules.
Numerous variants specify these two parameters by obtaining a lot of
different models of computing, see [15] for a comprehensive bibliogra-
phy.

In the case of P systems with tag operations the basic objects are
strings and the operations in membranes are tag operations. In a formal

(©2012 by Yu. Rogozhin, S. Verlan

366

P systems based on tag operations

way, an n-tag P systems can be considered like a graph, whose nodes
contain sets of strings and sets of tag rules with the deletion number
n. Every rule permits to perform a tag operation and to send the
result to some other node. Such an approach is close to the idea of
graph-controlled or programmed grammars, where a similar control
mechanism is used, but for rewriting rules. We show that using P
systems permits to strictly increase the power of the tag operation and
to achieve the universality with the deletion number equal to one.

2 Definitions

In this section we recall some very basic notions and notations we use
throughout the paper. We assume the reader to be familiar with the
basics of formal language theory. For more details, we refer to [14].

A tag system of degree m > 0, see [3] and [9], is the triplet T' =
(m,V, P), where V = {ay,...,an+1} is an alphabet and where P is a
set of productions (tag operations) of form a; — P;,1 <i <n, P, € V*.
We remark that for every a;, 1 < i < n, there is exactly one production
in P. The value m is also called the deletion number of T". The symbol
an11 is called the halting symbol. A configuration of the system T is
a word w. The application of the tag operation permits to pass from a
configuration w = a;, ...a;, w' to the next configuration z by erasing
the first m symbols of w and by adding P;, to the end of the word:
w= z,if z =w'P;,.

The computation of T" over the word x € V* is a sequence of config-
urations x = ... = y, where either y = ay 4144, ...a;, Yy, ory =y
and |y'| < m. In this case we say that T halts on z and that y’ is the
result of the computation of T" over x. We say that T' recognizes the
language L if there exist a recursive coding ¢ such that for all z € L,
T halts on ¢(z), and T halts only on words from ¢(L).

We note that tag systems of degree 2 are able to recognize the family
of recursively enumerable languages [3, 9]. Moreover, the construction
in [3] has non-empty productions and halts only by reaching the symbol
an+1 in the first position. It is also known that tag systems of degree 1
are decidable [6, 16]. It thus follows that the deletion number m is

367

Yu. Rogozhin, S. Verlan

one decidability criterion [5] for tag systems with m = 2 as the frontier
value.
Now we introduce the notion of the circular Post machine (CPM).

Definition 1 A circular Post machine (of type 0) is a tuple (X, Q, q1,
qy, R) with a finite alphabet ¥ where 0 € ¥ is the blank, a finite set of
states Q, the initial state q; € Q, the final state qy € Q, and a finite set
of instructions R with all instructions having one of the forms px — q
(erasing the symbol read by deleting a symbol), px — yq (overwriting
and moving to the right), p0 — yq0 (overwriting and inserting a blank
symbol), where x,y € ¥ and p,q € Q, p # dy.

We also refer to all instructions with qy in the right hand side as
halt instructions. The storage of this machine is a circular tape, the
read and write head moves only in one direction (to the right), and
with the possibility to delete a cell or to create and insert a new cell
with a blank.

Notice that a circular tape can be thought of as a finite string of
symbols (from the one following the state to the one preceding the
state in the circular representation). In this way, CPMO is a finite-
state machine, which reads the leftmost symbol of the string, possibly
consuming it, and uses the symbol+state information to change the
state, possibly writing a symbol on the right.

There are several other variants of CPM [4, 1] which differ in the
way the lengthening instructions work. All these variants are compu-
tationally equivalent, although their descriptional complexity can be
different.

Now we define P systems that use the tag operation.

An n-tag P system is the construct

nI=(0,T,pu,My,---,M,,Ry,---,Ry), where
e O is a finite alphabet,

e T C O is the terminal alphabet,

368

P systems based on tag operations

e 1 is the membrane (tree) structure of the system which has n
membranes (nodes) and it can be represented by a word over the
alphabet of correctly nested marked parentheses,

e M;, for each 1 < i < n is a finite language associated to the
membrane 1,

e R;, for each 1 <1i < nis a set of rules associated to membrane 7,
of the following forms: a — P,;tar, a € O where a — P, is a tag
rule and tar is the target indicator from the set {here,in;,out |
1 < j < n}, where j is a label of the immediately inner membrane
of membrane 1.

An n-tuple (Vy,---, Ny,,) of finite languages over O is called a con-
figuration of II. The transition between the configurations consists of
applying the tag rules (with the deletion length n) in parallel to all pos-
sible strings, non-deterministically, and following the target indications
associated with the rules.

More specifically, if w = aas . ..a,w’ € N; and r = a — P,;tar then
the word w’P, will go to the region indicated by tar. If tar = here,
then the string remains in N;, if tar = out, then the string is moved
to the region immediately outside the membrane i (maybe, in this way
the string leaves the system), if tar = inj,j = 1,...,n, then the string
is moved to the immediately below j-th region.

A sequence of transitions between configurations of a given insertion-
deletion P system II, starting from the initial configuration (M,...,
M,), is called a computation with respect to II. The result of a com-
putation consists of all strings over T" which are sent out of the system
at any time during the computation. We denote by L(II) the language
of all strings of this type. We say that L(II) is generated by II.

We denote by ELSPi(n — tag) the family of languages L(IT) gen-
erated by n-tag P systems with £ > 1 membranes.

3 Results

Theorem 1 Any CPMO0O M can be simulated by a 1-tag P system.

369

Yu. Rogozhin, S. Verlan

Proof. Consider a CPM0 M = (%,Q,q1,qs, R) with symbols 3 =
{a; | 0 < j < n}, where ap = 0 is the blank symbol, and states
Q ={q | 1<i<f}, where ¢ is the initial state and the only terminal
state is ¢y € Q; let Q" = Q \ {qr}.

Consider the following 1-tag P system

O= (V% p, My oo s My, Rigy oo Ry)

s?*

V = XuQ,
po= 1 I (1) Js s
gia;EQXE
M; =), i # ms, and the rules are given and explained below.

Hence the membrane structure of II consists of the skin membrane m
and inner membranes m;;, 1 < i < f,0 < j < n. The set of rules is
defined as follows:

Ry, = {lij:q—emi|[1<i<f-1 0<j<n}
U {2.j:a; — a;;here|a; € ¥}
U {3:qr — & out},

Rpm,;, = {4.ij:aj — apq;out | gja; — arq € R,j > 0}
U {5.4j5:a; — q;out | ga; — q € R,j >0}

U {6.i:ag — arqaop;out | giag — arqiao € R}.

A configuration v = ¢;a;W of M describes that M in state ¢; € Q
considers symbol a; € ¥ to the left of W € ¥*. This configuration is
encoded by the string v in the skin membrane mg of II.

The machine M starts a computation from a configuration ¢ya;W
and II starts computation from the corresponding string gia;W in
membrane ms (other regions of II are empty). We shall show now
how the rules of M are simulated in II.

Consider rule qia; — axq1 € R, ¢; € Q', 1 € Q. aj,a, € X of M. Tt
is simulated in II as follows.

370

P systems based on tag operations

iaj—aKql

Let gia;W Bl e qW be a computation step in M, i.e., rule
gia; — agq is applied to configuration ¢;a;W yielding ¢Way, (W €
).

This rule is simulated in II as follows. One of rules 1.ip is non-
deterministically applied to string g;a;WW and the resulting string a,; W
moves to region m;,. We denote this action as follows:

1.2
(ms, gia; W) == (myp, a;W).

If p # 7, then the corresponding string cannot evolve anymore as there
is no applicable rule in membrane m;,. If p = j, then the following
evolution is possible yielding Wagq; in the skin membrane:

4.4
(mij, a;W) == (mg, Warq).

Next, the only possibility to continue is to apply the group of rules
2.7 until string ¢;Way, is obtained:

2.7 2.9
(ms, Wagq) =2 ... =5 (msqWay).

Thus we showed that II correctly simulates rule g;a; — argq; of M.

It is not difficult to see that rules of type qia; — qi, ¢ € Q',q €
Q,a; € X, resp. qjap — axqiag, ¢ € Q,q € Q,a; € X, can be
simulated in a similar manner replacing 4.5 by 5.ij, resp. 6.ij.

We observe that for a string that reached a halting configuration
qfW in M, only rule 3 is applicable on the corresponding string g;W
of II. This leads to the word W that is sent out of the system.

Hence we obtain that for any transition w = w’ in M there
is a unique sequence of tramsitions (ms,w) = (M, wi)... =
(ms, wi) = (ms,w’) in II, for some w; € O* and k > 0. O

Corollary 1 There exists a universal 1-tag P system with 78 instruc-
tions.

Proof. Consider the universal CPMO from [2]. It has 6 states and 6
symbols. By applying Theorem 1 to this machine we obtain a universal
1-tag P system with 73 rules. g

371

Yu. Rogozhin, S. Verlan

4 Conclusion

In this article we considered the tag operation in the context of P sys-
tems. The obtained variant is universal even with the deletion num-
ber equal to one. Moreover, the obtained system has 73 instructions
while best actually known constructions for universal tag systems have
around 480 [7]. An open problem is if this number can be decreased.

P systems framework for the tag operation can be considered as
a particular variant of the graph-controlled derivation using the tag
operation. We observe that the particular structure of the graph from
Theorem 1 corresponds to a matrix control with the depth (size of the
matrices) equal to two. Hence Corollary 1 also holds for matrix tag
systems. It could be interesting to consider other control mechanisms
like random-context control with the tag operation.

References

[1] A. Alhazov, A. Krassovitskiy, Yu.Rogozhin. Circular Post Ma-
chines and P Systems with Ezxo-insertion and Deletion. Lecture
Notes in Computer Science, 7184 (2011), pp. 73-86.

[2] A. Alhazov, M. Kudlek, Yu. Rogozhin. Nine Universal Circular
Post Machines. Computer Science Journal of Moldova, 10, no.3
(2002), pp. 247-262.

[3] J. Cocke, M. Minsky. Universality of tag systems with p=2. Jour-
nal of the ACM, 11, 1, (1964), pp. 15-20.

[4] M. Kudlek, Yu. Rogozhin. Small Universal Circular Post Ma-
chines. Computer Science Journal of Moldova, 9(1) (2001), pp.
34-52.

[5] M. Margenstern. Frontier between decidability and undecidability:
A survey, Theoretical Computer Science, 231(2) (2000), pp. 217—
251.

[6] S. Maslov. On E. L. Posts Tag problem., (In Russian) Trudy
Matematicheskogo Instituta imeni V.A. Steklova (1964b), no. 72,
pp. 5-56, English translation in: American Mathematical Society
Translations Series 2, 97, pp. 1-14, 1971.

372

P systems based on tag operations

[7]

L. De Mol. On the complex behavior of simple tag systems — An
experimental approach. Theoretical Computer Science, 412(1-2)
(2011), pp. 97-112.

M. Minsky. Recursive unsolvability of Posts problem of tag and
other topics in the theory of Turing machines, Annals of Mathe-
matics, 74 (1961), pp. 437-455.

M. Minsky. Computations: Finite and Infinite Machines. Pren-
tice Hall, Englewood Cliffts, NJ (1967).

G. Paun. Membrane Computing. An Introduction. Springer, 2002.
G. Paun, G. Rozenberg, A. Salomaa (Eds.): The Ozford Hand-
book of Membrane Computing. Oxford University Press, 2010.
E. Post. Formal reductions of the general combinatorial decision
problem, American Journal of Mathematics, 65(2) (1943), pp.
197-215.

E. Post. Absolutely unsolvable problems and relatively undecidable
propositions — account of an anticipation, The Undecidable. In
Martin Davis, ed., Basic papers on undecidable propositions, un-
solvable problems and computable functions, Raven Press, 1965,
pp. 340-433.

G. Rozenberg, A. Salomaa. Handbook of Formal Languages, 3
volumes. Springer Verlag, Berlin, Heidelberg, New York (1997).
The P systems Web page. http://ppage.psystems.eu/

H. Wang. Tag systems and lag systems, Mathematische Annalen,
152 (1963a), pp. 65-74.

Yu. Rogozhin', S. Verlan®*, Received July 9, 2012

! Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chiginau, MD-2028, Moldova

2 LACL, Departement Informatique

UFR Sciences et Technologie

Universite Paris Est — Créteil Val de Marne
61, av. Gérieral de Gaulle

94010 Creteil, France

E-mails:
Dr.hab. Yurii Rogozhin: rogozhin@math.md,
Dr.hab. Sergey Verlan: verlan@Quniv-paris12.fr,

373

