
Computer Science Journal of Moldova, vol.20, no.3(60), 2012

Basics of Intensionalized Data: Presets, Sets,

and Nominats

Mykola Nikitchenko, Alexey Chentsov

Abstract

In the paper we consider intensional aspects of the notion
of data. We advocate an idea that traditional set-theoretic plat-
form should be enhanced with new data structures having explicit
intensional component. Among such data we distinguish the no-
tions of preset and nominat. Intuitively, presets may be consid-
ered as collections of “black boxes”, nominats may be considered
as collections of “grey boxes” in which “white boxes” are names
and “black boxes” are their values, while sets may be treated as
collections of “white boxes”. We describe intensions and prop-
erties of the introduced notions. We define operations over such
data as functions computable in a special intensionalized sense.

Keywords: Set theory, alternative set theories, notion inten-
sion, intensionality, presets, nominats, computability, intension-
alized computability.

1 Introduction

Formal methods of software development require precise specifications
of the system under construction. Such specifications are usually
grounded on set-theoretic platform [1]. For example, well-known B
Method [2] and Z Notation [3] declare that they are based on Zermelo-
Fraenkel set theory (ZF theory).

The set-theoretic platform is understandable, elaborated, and pow-
erful formalism for describing systems and investigating their proper-
ties. Its expressive power is confirmed by the fact that main parts
of mathematics can be presented in a unified form within set theory

c©2012 by M. Nikitchenko, A. Chentsov

334



Basics of Intensionalized Data: Presets, Sets, and Nominats

[1]. But at the same time this power is often excessive and cumbrous.
Therefore there were various attempts to restrict classical set theory or
even to construct alternative set theories. These attempts were inspired
both by immanent development of set theory and by its application for
problem domains. Some of these proposals will be considered in section
5 devoted to related work.

Our approach for constructing modified set theory aims to support
the software development process which usually starts from abstract
system specification and proceeds to concrete implementation. At the
abstract levels many system components are described only partially
thus objects under investigation are underdetermined. In this case
many conventional properties of sets may fail. In particular this con-
cerns the extensionality principle. Recall that this principle is sup-
ported by the very first axiom of set theory – the extensionality axiom:
two sets are equal if they consist of the same elements [1]. But now
we can see more and more facts when a pure extensional orientation
becomes restrictive for further development of computer science, arti-
ficial intelligence, knowledge bases, and other disciplines dealing with
the notions of data, information, and knowledge. Therefore it seems
reasonable to enhance extensional definitions of the notion of set and
its derivatives (such as data and function) with intensional compo-
nents. In a broad sense the intension of a notion means properties
which specify that notion, and the extension means objects which fall
under the notion, i.e. have the properties specified by the notion in-
tension. The intension/extension dichotomy was studied primarily in
logic, semiotics, and linguistics; we advocate more active investigations
of this dichotomy in computer science too. In this paper we continue
our investigations on intensionality of basic computer science notions
initiated in [4]. Being oriented on computer science, we are inspired
by mathematical constructivism with its emphasis on finiteness of ob-
jects and constructions. Therefore we restrict our considerations to 1)
intensionalized data with finite structure, and 2) computable (in the
intensionalized sense) operations over such data.

The rest of the paper is structured in the following way. In section
2 we introduce the general idea of intensionalized data and intuitively

335



M. Nikitchenko, A. Chentsov

define intensions of objects which can be considered as collections of
elements. In section 3 intensions (properties and operations) of special
collections called presets, sets, and nominats, are described. In section
4 formal definitions of intensions of collections that have finite structure
are given. Based on these definitions, special computability of function
over intensionalized data with finite structure is defined; computable
functions over presets, sets, and nominates are specified. Section 5 is
devoted to related work. In conclusions we summarize obtained results
and discuss directions for future work.

2 Intensionalized data

Considering computer science notions in integrity of their intensional
and extensional aspects we obtain new possibilities to define more first-
level notions as basic notions of mathematical formalisms. Here we will
focus on the notion of data trying to transform set theory to a theory
of intensionalized data. Such data can be considered as certain objects
with prescribed intensions. This idea is similar to the notion of typed
data, but the latter is usually understood in the extensional sense while
we aim to emphasize intensional features of data. The first steps in
developing the notion of intensionalized data were made in [5, 6].

The main difficulty in constructing theories of intensionalized data
is concerned with the definition of data intension. We start with in-
tuitive understanding of intensions, and then construct their formal
explications. We will move from abstract understanding of data to
their more concrete representations.

At the most abstract level of consideration data are understood as
some objects. Objects can be considered as unstructured (as wholes
with intension IW ) or as structured (with parts, intension IP ). An
object with the intension IW can be regarded as a “black box” (in-
tuitively it means that nothing is “visible”, and therefore nothing is
known about the object, intension IWB) or as a “white box” (every-
thing is “visible” and recognizable, intension IWW ). An intermediate
intension is denoted by IWBW (“black” or “white box”).

To come to richer intensions we should treat objects as structured

336



Basics of Intensionalized Data: Presets, Sets, and Nominats

(with intension IP ). We start with simple structures: all parts of an
object are identified and fixed. In this case each part can be regarded
as a whole. Relations within the object are also identified and fixed.
The above specification of object structure permits to call it hard struc-
ture. Thus, we divide intension IP into two subintensions IPH and IPS

specifying objects with hard and soft structures respectively.
We continue with IPH concretization caused by possible relation-

ships between object parts. Such relationships are classified along the
line tight–loose. Loose relationships mean that parts are not connected
with each other (intension IPHL); tight relations mean that parts are
connected (intension IPHT ). In this paper we will primarily consider
objects with intension IPHL. In this case such objects are called col-
lections; their parts are called elements. Empty collection is denoted
in a traditional way as ∅.

Considering elements as unstructured wholes, we can treat them
with intensions of “black” and/or “white boxes”. Thus, three new
intensions stem from this: IPHLB, IPHLW , and IPHLBW .

Objects with intension IPHLB should be regarded as collections of
“black boxes”. Such objects we call presets. Collections of “white
boxes” (intension IPHLW ) are called explicit multisets; if repetition
of elements is not allowed then we obtain explicit sets. Collections
with intension IPHLBW contain “black” and “white” elements (mixed
presets).

A collection of playing cards is a good example for the introduced
notions. Each playing card has two sides: the face and the back. Nor-
mally, the backs of the cards should be indistinguishable (identical).
As to the faces of the cards, they may all be unique, or there can be
duplicates. If all cards of a collection are placed face down on the ta-
ble (are “black boxes”), then such collection is a preset. If some cards
are exposed (placed face up on the table) while others are not exposed
(placed face down), then we obtain a mixed preset. If all cards are
exposed (are “white boxes”), then we get an explicit multiset, or a set
if duplicates are not allowed.

We will make here one more concretization of intension IPHLB.
Under this concretization we treat each element as constructed of a

337



M. Nikitchenko, A. Chentsov

“white box” and “black box”. The “white box” is considered as a
name of the “black box”; thus, the “black box” is the value of this
name. We call such collections nominats (from Latin nomen – name)
and denote a corresponding intension as IND.

A good example of nominats is a collection of addressed envelopes.
The address (“white box”) written on an envelope may be considered as
a name of the letter (“black box”) inserted (placed) into the envelope.

Nominats are a special case of nominative data [7]. It is impor-
tant to admit that nominative data can model the majority of data
structures used in computer science [7, 8].

Thus, we propose to introduce additionally to the notion of set
the above specified notions: presets, mixed presets, and nominats as
the basic mathematical notions. These notions are enriched with in-
tensional components and are non-extensional. Please also note that
these notions are related with each other, say, sets and nominates can
be treated as concretizations of presets.

To realize the idea of introducing these notions we have to describe
their intensions in more detail.

3 Intensions of presets, sets, and nominats

Data intensions specify properties of corresponding data. Operations
over such data should be defined in such a way that they use only those
possibilities that are prescribed by the intension. In this paper we in-
troduce the notions of “weak” operation, operation with copying, and
“strong” operation. For weak operations it is allowed to construct the
result of these operations using only those data components that are
present in the input data; for operations with copying it is also allowed
to make copies of existing components; and for strong operations it is
additionally possible to generate new components. For example, the
card game players are not allowed to make copies of cards or generate
new cards; thus, they must use only weak operations. In computer
science we also meet situations when we usually do not have possibil-
ities to copy existing objects (say, for hardware components) or have
such possibilities (say, for software components) or even have tools to

338



Basics of Intensionalized Data: Presets, Sets, and Nominats

produce new objects. These situations correspond to weak operations,
operations with copying, and strong operations respectively.

3.1 Preset intension

Intuitively, presets can be understood as collections of externally undis-
tinguishable objects (elements) which have hidden content.

One more example of presets is a collection of tickets of an instant
lottery. The surfaces of tickets should be covered by opaque material
making them “black boxes” that hide the content of tickets.

Having this example in mind we can specify our understanding of
presets by the following intuitive properties:

• each element of a preset is some whole;

• elements are separated from one another;

• elements are independent of one another, i.e., close relations be-
tween them are absent;

• all elements “are available”, i.e., each element can be obtained
for processing;

• exhaustive processing of all elements of a preset is possible;

• elements do not vary until it is explicitly mentioned (the law of
identity of elements).

Let us admit that these properties are very weak and do not spec-
ify membership relation, so, given a preset and an element, it is not
possible to say whether this element belongs to the preset. Also the
equality relation is not specified. It is possible to have many hidden
equal elements (duplicates) in a preset, thus, extensionality axiom is
not valid. These properties of presets have a negative character re-
stricting possibilities for processing of presets. But what operations for
preset processing are available?

Analysis of the above formulated properties leads to the conclusion
that the following operations are allowed for presets with the intension
IPHLB:

339



M. Nikitchenko, A. Chentsov

• union ∪ which given presets pr1 and pr2 yields a new preset con-
sisting of elements of pr1 and pr2 ;

• nondeterministic choice ch which given a preset pr yields some
element e of pr;

• nondeterministic choice with deletion chd which given a preset pr
yields some element e of pr and a preset pr′ without this element;

• empty function ∅̄ which given a preset pr yields an empty preset
∅;

• cardinality operation card which given a preset pr yields the num-
ber of elements in pr.

The above defined operations conform to the intension (respect
the intesion) IPHLB (are preset-conforming operations). It means that
during their execution these operations will not require additional in-
formation hidden in “black boxes” thus they use only that information
which is prescribed by the intension. According to this, the intersection
of presets is not available, contrary to set theory.

Still, the idea of a preset says that elements contain some hidden
content; therefore operations working with this content are also re-
quired. The most natural of such operations is open operation. Given
a preset pr this operation constructs a multiset ms which consists of
“white box” elements that are content of the elements of the initial pre-
set. We use multisets here because cardinality of pr and ms are to be
the same. It means that duplicates should be preserved. The open oper-
ation does not conform to the intension IPHLB because it opens “black
boxes”. Therefore, theory of presets should contain two parts: one
part describes operations that conform to the intension IPHLB while
the other part specifies more powerful operations which can change
intensions of preset elements.

3.2 Set intension

The notion of set can be considered as the “final” concretization of
the notion of preset. The main new feature of sets is that their ele-

340



Basics of Intensionalized Data: Presets, Sets, and Nominats

ments are considered as “white boxes”, thus no hidden information is
present. From this follows that elements are “recognizable” and can be
compared upon distinction and equality. Therefore, to the previously
formulated properties of presets (to the preset intension) we add the
following new property:

• each element of a set is “recognizable” and can be checked upon
distinction and equality with any other element.

Usually this property is formalized via set membership relation ∈.
From this follows that we additionally have new operations for set pro-
cessing, for example, intersection and difference of sets. Still, the pow-
erset operation will be not considered here as it should have possibility
to construct copies of elements.

Set intension IPHLW will also be denoted as IST . As the notion of
set is well studied we will not go further into detail of set properties
and operations.

3.3 Nominat intension

Intuitively, a nominat can be considered as a concretization of a pre-
set in which each element consists of “white box” and “black box”.
To make this abstract consideration more concrete we should involve
practical observations which permit to say that the “white box” can be
considered as a name of the “black box”; and their relation is a naming
(nominative) relation. In Slavic languages the term ‘nominat’ has two
different meanings: a naming expression or a value of such expression;
thus our treatment unites these meanings, because nominat is a unity
of names and values. Nominats are also called flat nominative data [7].

Nominats have the dual nature: first, they may be considered as
certain collections of elements; second, they may be considered as func-
tions due to relation that connects names and their values.

Traditionally, notations of functional style are chosen to represent
nominats. For example, a nominat with names v1, . . . , vn and values
a1, . . . , an respectively, is denoted by [v1 7→ a1, . . . , vn 7→ an]. If values
themselves are nominats, then we get the notion of hierarchic nominats

341



M. Nikitchenko, A. Chentsov

(hierarchic nominative data); for example

[v1 7→ [u1 7→ b1, . . . , uk 7→ bk] , . . . , vn 7→ [t1 7→ c1, . . . , tm 7→ cm]]

is a 2-level nominat.
It is important to admit that nominats can model the major-

ity of data structures used in computer science [7]. For example, a
set {e1, . . . , em} can be represented as [1 7→ e1, . . . , 1 7→ em], where
1 is a standard name which has different values e1, . . . , em; a tu-
ple (e1, . . . , em) can be represented as [1 7→ e1, . . . , m 7→ em] with
1, . . . , m as standard names; a sequence 〈e1, . . . , em〉 can be represented
as [1 7→ e1, 2 7→ [. . . , 2 7→ [1 7→ em, 2 7→ ∅] . . . ]], where 1, 2 are standard
names.

The main new operations over nominats are the following:

• naming ⇒v (with name v ∈ V as a parameter) which given a
value a yields a nominat [v 7→ a];

• denaming v⇒ (partial multivalued operation with name v ∈ V
as a parameter) which given a nominat d yields a value of v in d
if it exists;

• checking v! (with name v ∈ V as a parameter) which given a
nominat d yields d if the value of v exists in d; or yields ∅ if such
a value does not exist;

• overriding ∇ which given two nominats d1 and d2 yields a new
nominat d consisting of named values of d2 and those of d1, the
names of which do not occur in d2.

These operations conform to the intension IND (are nominat-
conforming operations). Thus, these operations are allowed for nomi-
nats processing.

Now we will describe briefly the distinctions between the notions
of set and nominat as mathematical primitives. To do this, various
criteria can be used. First, nominats, contrary to sets, have hidden
content. This permits to make their further concretizations not possible

342



Basics of Intensionalized Data: Presets, Sets, and Nominats

for sets. Second, nominats have functional “spirit” of naming relation
simplifying nominat processing. We will illustrate this statement by
the following observations. We start with the notion of ordered pair
(a, b) that can be defined as nominat [1 7→ a, 2 7→ b] where 1 and 2 are
standard names. The notion of ordered pair in set theory has many
definitions:

• (a, b) = {{{a}, ∅}, {{b}}} – Norbert Wiener, 1914;

• (a, b) = {{a, 1}, {b, 2}} – Felix Hausdorff, 1914 (1 and 2 are two
distinct objects different from a and b);

• (a, b) = {{a}, {a, b}} – Kuratowski, 1921;

• etc.

It seems that these definitions do not look fully adequate to the in-
tuitive notion of ordered pair, because they require detailed analysis of
bracket structure (Wiener’s definition), or are restrictive (Hausdorff’s
definition), or collapse to singleton {{a}} when a = b (Kuratovski’s def-
inition). It is interesting to admit that in Principia Mathematica the
notion of ordered pair was considered as primitive, and even N. Bour-
baki took the same position. So, introduction of special primitives like
ordered pairs (and nominats in our case) is not a new idea.

Concerning further relationships of ordered pairs and tuples with
nominats, we would like to emphasize that nominats are more adequate
to computer science practice than tuples. To make this claim more
understandable, let us consider questions of operating with tuples and
nominats. Indeed, given two tuples (a1, . . . , am) and (b1, . . . , bn) we can
combine them practically only as concatenation (a1, . . . , am, b1, . . . , bn)
or (b1, . . . , bn, a1, . . . , am). But concatenation is a coarse operation that
ignores possible coincidence of some values from {a1, . . . , am, b1, . . . , bn}
representing the same attributes. Thus, we are forced to make finer
combinations of (a1, . . . , am) and (b1, . . . , bn) manually that complicates
processing of such data. Instead of this data structure (tuples) we pro-
pose to consider nominats. In this case we have more natural combin-
ing operations, for example, given nominats [x 7→ 7, y 7→ 5, z 7→ 8] and

343



M. Nikitchenko, A. Chentsov

[t 7→ 7, u 7→ 5, x 7→ 8] we obtain [y 7→ 5, z 7→ 8, t 7→ 7, u 7→ 5, x 7→ 8] as
their overriding combination (cf. with combination of tuples (7, 5, 8)
and (7, 5, 8)). Also, other combining operations can be defined. This
richness of combining operations simplifies processing of nominats com-
pared with tuples. The reason of this is that the abstraction level of
“position” in a tuple is lower than that of “name” in a nominat since po-
sition depends more strongly on other positions than a name depends
upon other names. Thus, operating with names (with nominats) is
more “soft” with respect to data transformations. The above consid-
erations shortly argue in favour of using nominats as one more basic
data structure in computer science.

Properties of intensionalized data and operations over them were
discussed in this section informally. To make the proposed approach
more precise we need formal definitions of these notions.

4 Formal definitions of intensionalized data

To give formal definitions of intensionalized data we will use reduction
methods. Roughly speaking it means that given data class D with
intension ID, we construct a reduction procedure to some data class D′

that has an understandable and well studied intension. Also, operations
over D will be reduced to operations over D′. In our case we will use
several reduction steps.

Still, this idea is difficult to be realized if no restrictions are imposed
on intension ID. Taking into consideration that computer science is the
intended application domain for intensionalized data, we restrict our-
selves to data having finite structures (intension IPHF ) and to opera-
tions that are computable in a special intensionalized sense. Note that
this intension is subintension of IPH ; thus, data with intension IPHF

can have loose relations between their components (intension IPHL),
or can have tight relations (intension IPHT ), for example, in finite lists
their components are tightly related.

In the sequel we will use the following notations for classes of func-
tions from D to D′:

344



Basics of Intensionalized Data: Presets, Sets, and Nominats

• D
p−→ D′ – the class of partial single-valued functions;

• D
b−→ D′ – the class of total single-valued bijective functions;

• D
m−→ D′ – the class of partial multi-valued functions. Func-

tion f is multi-valued (non-deterministic) if being applied to the
same input data d it can yield different results during different
applications to d (and possibly be also undefined);

• D
t−→ D′ – the class of total functions. Function f is total if the

value f on d is always defined;

• D
i−→ D′ – the class of injective functions. A multi-valued func-

tion is injective, if it yields different values on different arguments.
The inverse of injective function is a single-valued function;

• D
ν−→ D′ – the class of total multi-valued injective functions.

4.1 Intensionalized data with finite structures

Let D be a class of data with intension ID. Assume that we treat data
of D as finite structured data. Our intuitive understanding of such a
data is the following: any such data d consists of several basic (atomic)
components b1, . . . , bm, organised (connected) in a certain way. If there
are enumerably many different forms of organisation, each of these data
can be represented in the (possibly non-unique) form (k, 〈b1, . . . , bm〉),
where k is the data code and the sequence 〈b1, . . . , bm〉 is the data base.
Data of this form are called natural data [9]. More precisely, if B is any
class and Nat is the set of natural numbers, then the class of natural
data over B is the class Nat(B) = Nat×B∗. An implicit assumption
is that the code represents 1) all information that can be “extracted”
from those elements of B which are contained in d, and 2) interrelations
between such elements. (This will be discussed in more detail in the
next subsection.) These properties specify a fixed intension of natural
data: they have the form (k, 〈b1, . . . , bm〉) where k is a natural number
and 〈b1, . . . , bm〉 is a list of elements treated as “black boxes”. As finite

345



M. Nikitchenko, A. Chentsov

structured data can have different representations, we should use total
multi-valued injective functions for constructing such representations.

Note that we use the term ‘class’ for collections of intensionalized
data; term ‘set’ is used for collections, the intensions of which are
subintensions of sets.

Now we are ready to give the formal definition of a class of in-
tensionalized data with some intension ID which is a subintension of
IPHF . A class D is called a class of finite structured data, if a class
B and a total multi-valued injective mapping nat : D

ν−→ Nat(B) are
given. This mapping nat is called the naturalization mapping. Nat-
uralization mapping is actually an analysing mapping: it finds in a
data d its components and their interrelations according to the prop-
erties of data prescribed by its intension. Dually to nat we introduce
denaturalization mapping denat which reconstructs (synthesizes) data
of class D from natural data. For simplicity’s sake we assume that
denat = nat−1. Denaturalization mapping is a partial single-valued
mapping. Naturalization and denaturalization mapping are also called
concretization and abstraction mappings respectively.

Example 1 (naturalization mapping for a class B of basic elements).
As nothing is known about elements of B, we treat such elements as
“black boxes”; therefore B is a preset with intension IPHLB. Thus, we
define natB : B

t−→ Nat(B) to be such mapping that natB(b) = (0, 〈b〉)
for any b of B. It means that nothing is known about b (its code is 0)
and b has no parts except itself (its base is 〈b〉).

Example 2 (naturalization mapping for the set Nat of natural num-
bers). These numbers are treated as “white boxes” without parts.
Thus, we define natNat : Nat

t−→ Nat(B) to be such mapping that
natNat(n) = (n, 〈〉) for any n of Nat. It means that n is known (its
code is n) and n has no parts (its base is empty sequence 〈〉).

Example 3 (naturalization mapping for an enumerated set S). The
set S is considered as enumerated set (has the intension of enumerated
set) if a bijective mapping u : Nat

b−→ S is given. In this case we define

346



Basics of Intensionalized Data: Presets, Sets, and Nominats

natS : S
t−→ Nat(B) to be such mapping that natS(e) = (u−1(e), 〈〉)

for any e of S.

Example 4 (naturalization mapping for the class B∗ of finite sequences
over preset B). For any element 〈b1, . . . , bn〉 of B∗ we know its structure
(which is a list of length n), but we know nothing about elements of
B. Thus, we define natB∗ : B∗ t−→ Nat(B) to be such mapping that
natB∗(〈b1, . . . , bn〉) = (n, 〈b1, . . . , bn〉).

The above given definitions may be considered as a special formal
definition of intension ID: given a finite structured data class D a pair
(B,nat) is called naturalized intension of D; a tuple (D, (B, nat)) is
called a naturalized class of intensionalized data.

Still, these definitions which reduce intuitive understanding of data
of D to Nat(B) lack precise description of their intensions because we
did not define operations over D and over Nat(B); in other words,
we do not have complete description of the intensions of these classes.
As mentioned earlier, we are oriented on mathematical constructivism,
thus, we will treat operations over D and over Nat(B) as computable in
a special sense. Computabillity considered here is called weak natural
computability.

4.2 Weak natural computability over intensionalized
data

To formalize operations that conform to data intensions we will use a
special computability called intensionalized computability. This com-
putability will be reduced in several steps to traditional computability
of n-ary functions defined on integers or strings. Traditional com-
putability may be called Turing computability. In the light of our in-
vestigations traditional computability does not pay much attention to
the variety of data intensions, because it concentrates on computability
over integers (or strings) which have fixed intensions.

The idea behind intensionalized computability is the following: for
data processing it is allowed to use only those operations that conform

347



M. Nikitchenko, A. Chentsov

to their intensions. Thus, intensionalized computability is intension-
ally restricted computability. In fact, such computability is a relative
computability – relative to data intensions.

Defining this computability we follow [5] with several modifications:
1) we define computability for functions of the type D

m−→ D′ instead of
D

m−→ D, 2) we consider weak computability (without copying) instead
of computability with copying.

Introduction of naturalization mapping is a crucial moment for
defining intensionalized computability. This mapping is regarded as
a formalization of data intension; and this enables us to explicate an
intuitive notion of intensionalized computability over D with inten-
sion ID via formally defined weak natural computability over D. The
latter is then reduced to a new special computability over Nat(B)
called weak code computability. To define this type of computability we
should recall that natural data has a fixed intension under which the
code collects all known information about data components and their
interrelations, and the base is treated as a list of “black boxes”. Thus,
weak code computability should be independent of any specific manip-
ulation (processing) operations of the elements of B and can use only
information that is explicitly exposed in the natural data. The only
explicit information is the data code and the length of the data base.
Therefore in code computability the data code plays a major role, while
the elements of the data base virtually do not affect the computations.
These elements may be only used to form the base of the resulting
data. To describe the code of the resulting data and the order in which
elements of the initial base are put into the base of resulting data, a
special function of type Nat2

m−→ Nat×Nat∗ should be defined. Such
a function is called weak index-computable. These considerations lead
to the following definition.

A multi-valued function g : Nat(B) m−→ Nat(B) is called weak
code-computable if there exists a weak index-computable multi-valued
function h : Nat2

m−→ Nat × Nat∗ such that for any k, m from Nat,
b1, . . . , bm from B, m ≥ 0, we have g(k, 〈b1, . . . , bm〉) = (k′, 〈bi1 , ..., bil〉)
if and only if h(k,m) = (k′, 〈i1, . . . , il〉), 1 ≤ i1 ≤ m, . . . , 1 ≤ il ≤ m,
l ≥ 0, and all indexes i1, . . . , il are distinct. If one of the indexes

348



Basics of Intensionalized Data: Presets, Sets, and Nominats

i1, . . . , il lies outside the interval [1,m], or there are equal indexes in
the sequence i1, . . . , il, or h(k, m) is undefined, then g(k, 〈b1, . . . , bm〉)
is also undefined.

In other words, in order to compute g on (k, 〈b1, . . . , bm〉), we have
to compute h on (k,m), generate a certain value (k′, 〈i1, . . . , il〉), and
then try to form the value of the function g by selecting the components
of the sequence 〈b1, . . . , bm〉 pointed to by the indexes i1, . . . , il.

This definition actually completes our formalization of the natural
data intension because it specifies operations over natural data as weak
code-computable.

Note that weak computability defined here differs from the com-
putability with copying defined in [4, 5] by the requirement that all
evaluated indexes should be distinct.

It is clear that index computability of h : Nat2
m−→ Nat×Nat∗ may

be reduced by traditional methods of recursion theory to conventional
computability of a certain function r : Nat

m−→ Nat.
We are ready now to give the formal definition of a weak natural

computable function.
Let (D, (B, nat)) and (D′, (B, nat′)) be naturalized classes of in-

tensionalized data (w.l.o.g. we treat these classes as based on one
class B). A function f : D

m−→ D′ is called weak natural computable
(with respect to naturalized intensions (B,nat) and (B,nat′)) if there
is a weak code-computable function g : Nat(B) m−→ Nat(B) such that
f = denat′ ◦ g ◦ nat.

This definition completes our formalization of the data intension of
the class D because it gives possibility to formalize operations over D
as weak natural computable.

Thus, intensionalized computability has been defined via a sequence
of the following reductions: intensionalized computability – weak natu-
ral computability – weak code computability – weak index computabil-
ity – partial recursive computability. Analysing the definitions we can
also conclude that weak natural computability is a generalization (rel-
ativization) of enumeration computability. In fact, for B = ∅ weak
code computability is reduced to partial recursive computability on
Nat, and weak natural computability is reduced to enumeration com-

349



M. Nikitchenko, A. Chentsov

putability [10]. Therefore, the notions of weak code and weak natural
computability defined above are quite rich.

In the sequel weak natural computability will also be denoted as
wn-computability.

Example 5 (wn-computability over preset B). The naturalization
mapping natB was defined in Example 1. To define the complete
class of wn-computable functions over (B, (B,natB)) of type B

m−→ B,
we have to describe all weak index-computable function of the type
h : Nat2

m−→ Nat×Nat∗. It is easy to understand that under the nat-
uralization mapping natB we need to know the results of weak index-
computable function only on the element (0, 1). On this input data a
weak index-computable function can 1) yield (0, 〈1〉), 2) yield a value
distinct from (0, 〈1〉), or 3) be undefined. For cases 2) and 3) the denat-
uralization mapping will be undefined. This induces the following func-
tions of type B

m−→ B: 1) the identity function id, 2) the everywhere
undefined function und, and 3) the multi-valued (non-deterministic)
function und-id such that und-id(d) is equal to d or is undefined. Ac-
tually it means that the following result was proved: the complete class
of weak natural computable partial multi-valued functions over preset
B consists of functions und, id, and und-id. In other words, the three
functions defined above are the only computable functions over “black
box” intensionalized data.

Example 6 (wn-computability over the set Nat of natural numbers).
The naturalization mapping natNat was defined in Example 2. Under
this naturalization we are interested in weak index-computable func-
tions defined on the sets of elements of the form (n, 0). This set is
isomorphic to Nat. Thus (as expected), the set of all wn-computable
functions over Nat is exactly the set of all partial recursive functions.

Example 7 (wn-computability over the enumerated set S). The nat-
uralization mapping natS was defined in Example 3. Under this natu-
ralization we are again interested in weak index-computable functions
defined on the sets of elements of the form (n, 0), n ∈ Nat. This set is
isomorphic to Nat. Thus (as expected), the wn-computability over S
coincides with the enumeration computability over S [10].

350



Basics of Intensionalized Data: Presets, Sets, and Nominats

Example 8 (wn-computability over the class B∗). The naturalization
mapping natB∗ was defined in Example 4. Under this naturalization
we are again interested in weak-index computable functions defined
on the sets of elements of the form (n, n) with results of the form
(k, 〈i1, · · · , ik〉), where k ∈ Nat, k ≤ n, 1 ≤ i1 ≤ n, . . . , 1 ≤ ik ≤ n,
and all indexes i1, · · · , ik are distinct. One among such functions is
a function htail such that htail(n, n) = (n − 1, 〈2, . . . , n〉). It means
that tail operation (such that tail(〈b1, . . . , bn〉) = 〈b2, . . . , bn〉, n > 0)
is wn-computable. Note that doubling operation doubl(〈b1, . . . , bn〉) =
(〈b1, . . . , bn, b1, . . . , bn〉) is not wn-computable.

Having defined the notion of natural computability, we can now
check whether operations over intensionalized data (presets, sets, and
nominats) intuitively defined in the previous section indeed conform to
the corresponding intensions.

As domains and ranges of operations can be constructed with the
help of Cartesian product, now we will give definition of the intension
for such a product. Let (D1, (nat1, B)), . . . , (Dn, (natn, B)) be nat-
uralized classes of intensionalized data. Then naturalization mapping
natD1×···×Dn : D1 × · · · ×Dn

ν−→ Nat(B) is defined as follows (d1 is of
D1, . . . , dn is of Dn):

natD1×···×Dn(d1, . . . , dn) =
(c(n, c(c(k1, l1), c(. . . c(c(kn−1, ln−1), c(kn, ln)) . . . )))),
〈b11, . . . , b1l1 , . . . , bn1, . . . , bnln〉),

where natj(dj) = (kj ,
〈
bj1, . . . , bjlj

〉
), 1 ≤ j ≤ n; c is a pairing func-

tion that uniquely encodes two natural numbers into a single natural
number, say, the Cantor pairing function.

The idea behind this definition is simple: given a tuple (d1, . . . , dn)
we first find naturalizations natj(dj) = (kj ,

〈
bj1, . . . , bjlj

〉
), then con-

struct the code of the resulting natural data by encoding codes and
lengths of tuple components, and at last we construct the base by con-
catenating components’ bases.

351



M. Nikitchenko, A. Chentsov

4.3 Computability of preset operations

First, we should define naturalization mapping for presets. Let B be a
class of elements and PreF (B) be a class of finite presets with elements
of B. Naturalization mapping natPS : PreF (B) ν−→ Nat(B) is defined
as follows: given a preset pr with elements e1, . . . , en function natPS

on pr can yield any natural data of the form (n, 〈ei1 , . . . , ein〉), where
ei1 , . . . , ein is a permutation of e1, . . . , en.

Example 9 (wn-computability of choice function ch : PreF (B) m−→ B).
The naturalization mapping natPS was defined in this section and
the mapping natB was defined in Example 1. For choice operation
ch a weak index-computable multi-valued function hch : Nat2

m−→
Nat × Nat∗ is defined by the formula: hch(n, n) = (0, 〈i〉), where
1 ≤ i ≤ n. This function is obviously Turing computable; therefore
ch is wn-computable.

Example 10 (wn-computability of union ∪ : PreF (B)2 t−→ PreF (B)).
Let preset pr1 of PreF (B) consists of elements b1, . . . , bn and pre-
set pr2 of PreF (B) consists of elements e1, . . . , em; natPS(pr1) =
(n, 〈bi1 , . . . , bin〉) and natPS(pr2) = (m, 〈ej1 , . . . , ejm〉), where bi1 , . . . ,
bin and ej1 , . . . , ejm are permutations of b1, . . . , bn and e1, . . . , em

respectively. According to the definition of naturalization of Carte-
sian product, we obtain the following natural data for the pair
(pr1, pr2): (c(2, c(c(n, n), c(m,m))), 〈bi1 , . . . , bin , ej1 , . . . , ejm〉). Index-
computable function h∪ such that

h∪(c(2, c(c(n, n), c(m,m))), n + m) = (n + m, 〈1, 2, . . . , n + m〉)

is partial recursive and determines wn-computable binary function. It
is clear that the result does not depend on permutations of b1, . . . , bn

and e1, . . . , em, thus obtained union function is single-valued.

In the same way we can prove that other operations over presets
defined in section 3 are computable. Thus, the following statement is
valid.

352



Basics of Intensionalized Data: Presets, Sets, and Nominats

Proposition 1. The following operations over presets: union ∪, choice
ch, nondeterministic choice with deletion chd, empty function ∅̄, and
cardinality card, are weak natural computable.

It means that these operations conform to preset intension.
Actually, using such techniques we can formally describe all preset-

conforming operations of different types. For example, any preset-
conforming operation op of type PreF (B) m−→ Nat can be represented
as a composition of a certain multi-valued partial recursive function
na : Nat

m−→ Nat and a cardinality operation card, thus, op = na ◦
card.

We can also prove that some operations, say, intersection of two
presets, are not preset-conforming operations.

4.4 Computability of set operations

Set intensions assume that elements of sets are “white boxes”. The
naturalization approach requires that such elements can be encoded.
It means that we should consider B as an enumerated set B =
{b0, b1, . . . }. Thus, bijective enumeration function u : Nat

b−→ B is
given. Let SetF (B) be a class of finite sets with elements of enumer-
ated set B.

We can define two naturalization mappings: weak and strong.
The weak naturalization mapping natSFW : SetF (B) ν−→ Nat(B)

is defined as follows: given a set s with elements e1, . . . , en, mapping
natSF on s, can yield any natural data of the form (k, 〈ei1 , . . . , ein〉),
where k = c(n, c(k1, . . . c(kn, 0) . . . )), u(k1) = ei1 , . . . , u(kn) = ein ; and
ei1 , . . . , ein is a permutation of e1, . . . , en.

The idea behind this definition is very simple: we encode the car-
dinality of s and numbers of its elements according to the enumeration
function; as to the base we include in it all elements of s. (The definition
may be simpler if we take into account ordering of elements induced
by enumeration function, cf. with definitions in the next subsection.)

The strong naturalization mapping natSFS : SetF (B) ν−→ Nat(B)
is defined as follows: given a set s with elements e1, . . . , en, mapping
natSFS on s, can yield any natural data of the form (k, 〈〉), where

353



M. Nikitchenko, A. Chentsov

k = c(n, c(k1, . . . c(kn, 0) . . . )), u(k1) = ei1 , . . . , u(kn) = ein ; and ei1 ,
. . . , ein is a permutation of e1, . . . , en. The base of the obtained natural
data is empty.

The difference between these naturalization concerns the possibility
of producing new elements. In the first case this is not allowed because
code-computable functions construct the base of result using only the
base of initial natural data. In the second case we can evaluate any
code and then (using denaturalization mapping) produce any elements
of S.

These naturalization mappings define different intensions of the
class SetF (B).

Example 11 (wn-computability of intersection ∩ : SetF (B)2 t−→
SetF (B)). Let set s1 of SetF (B) consists of elements b1, . . . , bn and set
s2 consists of elements e1, . . . , em; natSFW (s1) = (q1, 〈bi1 , . . . , bin〉) and
natSFW (s2) = (q2, 〈ej1 , . . . , ejm〉), where q1 = c(n, c(k1, . . . c(kn, 0) . . . )),
u(k1) = bi1 , . . . , u(kn) = bin ; q2 = c(m, c(r1, . . . c(rm, 0) . . . )),
u(r1) = ej1 , . . . , u(rm) = ejm ; bi1 , . . . , bin and ej1 , . . . , ejm are per-
mutations of b1, . . . , bn and e1, . . . , em respectively. According to the
definition of naturalization of Cartesian product, we obtain the follow-
ing natural data for the pair (s1, s2):

(c(2, c(c(q1, n), c(q2,m))), 〈bi1 , . . . , bin , ej1 , . . . , ejm〉).
How to define an index-computable function h∩? The following

algorithm can be proposed. First, the code c(2, c(c(q1, n), c(q2,m)))
should be analyzed and all pairs (ki, rj) such that ki = rj should be
identified. Then a list of their positions (say, in s1) should be formed
(this list is a list of indexes in the result of index-computable function).
At last, a code of the result should be evaluated; in this code we include
the numbers (under naturalization mapping) of the elements of the
intersections and its cardinality. Defined function is partial recursive,
the results do not depend on permutations of the elements of the initial
sets. So, intersection is wn-computable.

In the same way we can prove that conventional operations over
sets are computable. Thus, the following statement is valid.

354



Basics of Intensionalized Data: Presets, Sets, and Nominats

Proposition 2. The following operations over sets: union ∪, intersec-
tion ∩, difference \, choice ch, nondeterministic choice with deletion
chd, empty function ∅̄, and cardinality card are weak natural com-
putable.

So, we have proved that these operations conform to set intension.
But some operations over sets, say powerset operation, are not wn-
computable. Still, this operation is natural computable with copying.

4.5 Computability of nominat operations

Nominat intensions assume that elements of a nominat are constructed
of names (“white boxes”) and their values (“black boxes”). Thus, nat-
uralization mapping of nominats is constructed of naturalizations for
names and values. We assume that the set of names V = {v0, v1, . . . }
is enumerated by bijective enumeration function u (see the previous
subsection). It is also reasonable to choose a strong naturalization
mapping natSFS because normally any name can be generated. As to
values, we assume that they are elements of a preset (with intension
IPHLB).

Let NomF (V, B) be a class of finite nominats constructed over
V and B and nm = [v1 7→ b1, . . . , vn 7→ bn] be a nominat of this
class. W.l.o.g. we can assume that names are ordered according to
their numbers with respect to enumeration mapping, that is u−1(v1) <
u−1(v2) < · · · < u−1(vn). Under this assumption weak (with respect
to B) naturalization mapping natNMW : NomF (V,B) t−→ Nat(B) is
defined as follows: given a nominat nm = [v1 7→ b1, . . . , vn 7→ bn] map-
ping natNMW on nm yields natural data of the form (k, 〈b1, . . . , bn〉),
where k = c(n, c(k1, . . . c(kn, 0) . . . )), u(k1) = v1, . . . , u(kn) = vn.

Example 12 (wn-computability of denaming v⇒ : NomF (V, B) m−→
B). The naturalization natNMW has been defined just now and the
mapping natB was defined in Example 1. For denaming function v ⇒
a weak index-computable multi-valued function hv⇒ : Nat2

m−→ Nat×
Nat∗ is defined by the formula: hv⇒(c(n, c(k1, . . . c(kn, 0) . . . )), n) =
(0, 〈ki〉), where 1 ≤ i ≤ n, u(ki) = v; in other cases the value is

355



M. Nikitchenko, A. Chentsov

undefined. This function is obviously Turing computable; therefore
v⇒ is wn-computable.

In the same way we can prove that other operations over nominats
defined in the previous section are computable. Thus, the following
statement is valid.

Proposition 3. The following operations over nominats: naming ⇒v,
denaming v⇒, checking v!, and overriding ∇ are weak natural com-
putable.

As to computability with copying, in [4, 9] several theorems were
proved that may be considered as descriptions of complete classes of
natural computable (with copying) functions over various kinds of in-
tensionalized data, and hierarchic nominats, in particular.

Summing up, we can say that proposed naturalization approach
permits to define preset-, set-, and nominat-conforming operations (for
finite collections), thus giving possibility for further development of the
theory of intensionalized data.

5 Related work

The notion of data, being one the main notion of computer science,
has many aspects, definitions, and explications. The analysis of such
diversity of data concepts is worth a special investigation the authors
plan to fulfill in forthcoming papers. In this paper, oriented on en-
hancement of the notion of set, we will consider only those works that
are related to set theory variations.

Set theory, being a primary foundation for mathematical research,
has been debated for decades. Paradoxes, controversies and inconsis-
tencies with mathematical practice in some areas have led to multi-
plicity of set theories as well as rise of quite uncommon alternative
theories. The approaches used by different “schools of thoughts” can
be classified by many criteria like extensionality, kind of logic employed,
intensionality, finiteness, well-foundedness, characteristics of member-
ship relation, predicativity, incompleteness of knowledge, information

356



Basics of Intensionalized Data: Presets, Sets, and Nominats

hiding, etc. Most “radical” departures from standard set theory con-
cern base logic. Less radical ones modify or reject some principle of
ZFC through system of axioms or more informally.

We start with variations caused by set theory paradoxes. If U is a
set-theoretic universe then it should satisfy equation that can be stated
in the abstract form as P∗(U) ' U . In order to avoid paradoxes, P∗(U)
cannot be powerset of U but rather collection of some distinguished
subsets of U . The solution of this equation U = 〈U, f〉, where f : U '
P∗(U), is called Frege structure. It determines abstract set-theoretic
universe where membership relation is interpreted as follows: u ∈U v
iff u ∈ f(v).

Conventional remedy to paradoxes was in limitation of the cardinal-
ity of the sets. This limitation was quite restrictive turning ZF theory
(with axiom of foundation) into the theory of small and iterative sets
[11]. Some alternative theories do not reject ZF completely but rather
look for extensions of ZF that avoid paradoxes by other means than
limitation of size.

In [12] class of subsets P∗(U) is selected from topological consid-
erations to be either open or closed subsets of topological space U .
Moreover bijection in this case can be required to be homeomorphism.

A few alternatives (in order to avoid Russell’s paradox) are based
on modification of the concept of (co-)extension. Formalizing notion
of ‘partial information’ in [13] a concept of partial set was proposed.
Though partial set extension and coextension are disjoint, they do not
necessarily cover the universe. The theory of partial sets introduces new
primitive operators 6∈, 6=. Construction of sets and abstraction axioms
are allowed only for formulas without negations – positive formulas.
Extensionality principle cannot be used to identify partial sets (it is
possible to express positively negative properties). Intensionality can
be used instead implying some sort of set naming and pure term models
[14].

Positive sets can be seen as simplification of partial sets (though
have their own motivation) [15]. In this case operators 6∈, 6= and ab-
stractors are dropped while extensionality is restored. This theory has
models known as ‘hyperuniverses’ constructed using topological set-

357



M. Nikitchenko, A. Chentsov

theoretic structures [16]. [17, 18] studied the first-order generalization
of positive sets theory known as GPK+∞. In this theory additionally
axiom of infinity and existence of least set that contains “extension” for
given (arbitrary) formula (closure principle) are postulated. This the-
ory disproves axiom of choice and class of its hereditary well-founded
sets interprets ZF. Some peculiar constructions are possible in GPK+

models like self containing singleton (auto-singleton) [19].
Paradoxical set theory is another consistent theory without exten-

sionality. It is dual to theory of partial sets. In it set extension and
coextension are not necessarily disjoint but cover the universe [20].
Analogously set theory HF (Hyper-Frege) is counterpart to the GPK+

[21]. Its models are built on the same bases as GPK. Stronger theory
HF∞ (with axiom of infinity) is capable of interpreting ZF.

In double extension set theory to avoid classical paradoxes the con-
cept of extension was bifurcated [22]. There are two membership re-
lations ∈, ∈′. Extensionality axiom for this theory is formulated as
follows: ∀z(z ∈ x ↔ z ∈′ y) → x = y. Some analog of infinite or-
dinal is possible to construct in this theory without explicitly stating
axiom of infinity. Also it is possible to interpret ZF in some form in
the theory [23]. Serious shortcoming of this theory is lack of proof of
its consistency.

Rough set theory [24] presumes incomplete knowledge which is for-
malized using equivalence relation of indiscernibility. Based on this ap-
proach, [11] proposed generalized Proximal Frege Structures which are
universes of sets with additional modal operators. This gives prospects
for axiomatic modal set theory.

Another line of research is related to category theory. Category the-
ory emphasizes external properties of objects. Concept of morphism or
function is abstract and primitive in category theory and is not reduced
to sets. Typically objects of a category are instances of the structure of
certain kind, and morphisms are structure-preserving functions [25, 26].
Structure of objects and properties of morphisms are described in terms
of other objects and morphisms only.

Sets together with functions between sets form a category. It is
possible to give purely category-theoretic characterization to this cat-

358



Basics of Intensionalized Data: Presets, Sets, and Nominats

egory which leads to a concept of elementary topos. Toposes can be
provided with internal language which is very similar to that of set the-
ory and can be interpreted inside the topos in category-theoretic terms
[27]. Thus topos may be regarded as a mathematical domain of dis-
course or “world” in which mathematical concepts can be interpreted
and mathematical constructions performed [28]. This idea was further
developed in local set theory [28].

Frege structure can be considered in categorical framework. In
Heyting categories (some generalization of toposes) it is possible to
introduce the notion of “smallness” defining sets. If such category has
a powerclass functor of subsets then its free algebras are models of set
theory [29, 30]. Membership relation in these models is determined
algebraically. Field, known as algebraic set theory, researches some
aspects of set theory through these models. Primarily intuitionistic ZF
theory is targeted. But models of other set theories can be constructed
by the same algebraic method simply varying particular category and
notion of “smallness”.

As a contrary Lawere advocates that set theory should not be based
on membership but rather on isomorphism-invariant structures. He
proposed an Elementary Theory of the Category of Sets (ETCS) for this
purpose [31, 32]. Objects of ETCS are abstract sets. In short, abstract
set is an assemblage of featureless but distinct “dots”. From technical
standpoint ETCS is non-degenerate well-pointed topos with natural
numbers object for which axiom of choice holds. It is argued that
strong case can be made for ETCS logical and conceptual autonomy
[33].

Martin-Löf type theory emphasizes constructivity [34]. It follows
Curry-Howard correspondence to represent propositions as sets thus
interpreting predicate logic. Sets also can be seen as problem descrip-
tions. The equality between sets is intensional which means it is def-
initional or syntactical. Theory has formal language that is used as
programming language, specification language and programming logic.
Axiom of choice is provable in Martin-Löf type theory [35] while in
constructive or intuitionistic set theory it implies the law of excluded
middle.

359



M. Nikitchenko, A. Chentsov

The admissible set theory [36] aims to present a weaker axiomatic
system more adequate for processing of finite domains. Additionally
this theory includes basic elements (praelements).

Now we would like to say a few words about the term ‘preset’.
Probably Bishop [37] was the first who introduced this term. Toby
Bartels explains that for Bishop a preset is like a set without an equality
relation; conversely, a set is a preset equipped with an equality relation.
This understanding stems from Bishop’s three steps definition of a set:
you should first state how to construct an element of the set; then you
should describe how to prove that two elements are equal; and at last
you should prove that this (equality) relation is reflexive, symmetric,
and transitive. If you only do the first step, then you don’t have a
set, according to Bishop; you only have a preset. A given preset may
define many different sets, depending on the equality relation. From
this follows that a membership relation is defined for Bishop’s presets,
but extensionality axiom fails. Thus, our understanding of presets is
weaker and different from Bishop’s treatment.

Such numerous examples (of course, not exhaustive) of set theory
variations give good evidence that many scientists are aware of restrict-
edness of traditional set theory. We argue for intensional approach to
constructing set theory variants. We also emphasize constructiveness
of such variants through explicit computability aspects.

Summing up, we would like to admit that the proposed notions of
preset and nominat differ from the conventional notion of set in sev-
eral aspects: from the one side, theories of presets and nominats are
weaker than conventional set theory, in particular, extensionality fails,
also membership relation and equality are not definable; but on the
other hand, these notions seem to be more adequate to computer sci-
ence domain because operations are defined as computable in a special
intensionalized sense, presets and nominats are constructed over ba-
sic elements (praelements) which may have hidden content, from this
stems a possibility to change levels of abstraction of data consideration
(up to non-wellfoundedness). Still, investigation on the topic should be
continued in order to establish more precise relations between theories
under investigations.

360



Basics of Intensionalized Data: Presets, Sets, and Nominats

6 Conclusions

Set theory is the main formal system that is used for construction of
problem domain models. Being well-developed and studied, it gives
a powerful mathematical instrument for investigations of models con-
structed on the set-theoretic platform. But at the same time more and
more examples demonstrate that in certain cases set theory is not ad-
equate to problem domain formalization especially when only partial
information about domain is available. The reason of this inadequacy
lies in the fundamentals of set theory, in particular, in membership
relation and extensionality principle. For problem domains with in-
complete information a membership relation cannot be defined, also
the extensionality principle fails. We propose to consider a weaker
“set” theory with explicit intensional component. Such a theory may
be called theory of intensionalized data. The first-level notions of this
theory are notions of preset, set, and nominat. Presets may be consid-
ered as collections of “black boxes”, sets may be treated as collections
of “white boxes”, and nominats are collections of “grey boxes” in which
“white boxes” are names and “black boxes” are their values. In the pa-
per we have defined these notions and described their main properties.
Being oriented on mathematical constructivism we have defined oper-
ations over such data as computable in a special intensionalized sense.
Obtained computability has been called weak natural computability. It
has been defined via several steps of reduction to conventional Turing
computability.

The results presented in the paper can be considered as the initial
steps in developing the theory of intensionalized data.

In the forthcoming papers we plan to construct complete classes of
weak/strong natural computable functions over classes with different
intensions and demonstrate how these notions can be used for describ-
ing intensionalized semantics of specification languages and program
logics.

361



M. Nikitchenko, A. Chentsov

References

[1] N. Bourbaki. Theory of Sets. Berlin: Springer-Verlag, 2004.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[3] J.M. Spivey. The Z Notation: A Reference Manual, 2nd ed. Pren-
tice Hall, 1992.

[4] N.S. Nikitchenko. Intensional aspects of the notion of program.
Problems of Programming, No. 3–4 (2001), pp. 5–13. [In Russian]

[5] M.S. Nikitchenko. Gnoseology-based Approach to Foundations of
Informatics. In: Ermolayev, V. et al. (eds.) Proc. 7-th Int.
Conf. ICTERI 2011, Kherson, Ukraine, May 4-7, 2011, CEUR-
WS.org/Vol-716, ISSN 1613-0073, pp. 27–40.

[6] M.S. Nikitchenko. Intensional aspects of main mathematical no-
tions. In: Contemporary problems of mathematics, mechanics
and computing sciences: N.N. Kizilova, G.N. Zholtkevych (eds).
Kharkov: Apostrophe Publ. (2011), pp. 183–191.

[7] N.S. Nikitchenko. A Composition-nominative approach to program
semantics. Technical Report IT-TR 1998-020, Technical Univer-
sity of Denmark, ISSN 1396-1608, 1998.

[8] I.A. Basarab, N.S. Nikitchenko, V.N. Redko. Composition
Databases. Kiev: Lybid Publ., 1992. [In Russian]

[9] N.S. Nikitchenko. Abstract computability of non-deterministic pro-
grams over various data structures. In: Perspectives of System In-
formatics. LNCS, vol. 2244, Berlin: Springer (2001), pp. 471–484.

[10] Yu. L. Ershov. Enumeration Theory. Nauka Publ., Moscow, 1977.
[In Russian]

[11] P. Apostoli, R. Hinnion, A. Kanda, T. Libert. Alternative set the-
ories. In: Philosophy of Mathematics: Irvine A.D. (ed.). Elsevier
(2009), pp. 461–491.

362



Basics of Intensionalized Data: Presets, Sets, and Nominats

[12] O. Esser and T. Libert. On topological set theory. Mathematical
Logic Quarterly, vol. 51 (2005), pp. 263–273.

[13] P. C. Gilmore. The consistency of partial set theory without exten-
sionality. In: Axiomatic Set Theory: Jech, Th., (ed.). American
Mathematical Society (1974), pp. 147–153.

[14] R. Hinnion. Intensional solutions to the identity problem for partial
sets. Reports on Mathematical Logic, 42 (2007), pp. 47–69

[15] R.J. Malitz. Set theory in which the axiom of foundation fails.
Ph.D. thesis, UCLA, 1976.

[16] M. Forti, R. Hinnion. The consistency problem for positive com-
prehension principles. Journal of Symbolic Logic, 54 (1989), pp.
1401–1418.

[17] O. Esser. On the consistency of a positive theory. Mathematical
Logic Quarterly, 45, No. 1 (1999), pp. 105–116.

[18] O. Esser. Une theorie positive des ensembles. Cahiers du Centre
de Logique, 13, Academia-Bruylant, Louvain-la-Neuve (Belgium),
2004.

[19] R. Hinnion. Stratified and positive comprehension seen as super-
class rules over ordinary set theory. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik, 36 (1990), pp. 519–534.

[20] M. Crabbé. Soyons positifs: la complétude de la théorie näive des
ensembles. Cahiers du Centre de Logique, vol. 7 (1992), pp. 51–68.

[21] T. Libert. ZF and the axiom of choice in some paraconsistent set
theories. Logic and Logical Philosophy, vol. 11 (2003), pp. 91–114.

[22] A. Kisielewicz. Double extension set theory. Reports on Mathe-
matical Logic, 23 (1989), pp. 81–89.

[23] M. Holmes. The structure of the ordinals and the interpretation of
ZF in double extension set theory. Studia Logica, vol. 79 (2005),
pp. 357–372.

363



M. Nikitchenko, A. Chentsov

[24] Z. Pawlak. Rough sets. International Journal of Computer and
Information Sciences, vol. 11, No. 5 (1982), pp. 341–356.

[25] S. Awodey. Category theory. Oxford: Clarendon Press, 2006.

[26] J. Goguen. A categorical manifesto. Mathematical Structures in
Computer Science, 1 (1991), pp. 49–67.

[27] P. Johnstone. Topos theory. London Mathematical Society Mono-
graphs, vol. 10, Academic Press, London, New York, San Fran-
cisco, 1977.

[28] J. L. Bell. Toposes and local set theories: An introduction. Oxford:
Clarendon Press, 1988.

[29] A. Joyal and I. Moerdijk. Algebraic Set Theory. Cambridge Uni-
versity Press, 1995.

[30] S. Awodey. A brief introduction to algebraic set theory. Bulletin of
Symbolic Logic, 14, No. 3 (2008), pp. 281–298.

[31] F. W. Lawvere, R. Rosebrugh. Sets for Mathematics. Cambridge
University Press, 2003.

[32] J. L. Bell. Abstract and Variable Sets in Category Theory. In:
What is Category Theory? Polimetrica Publisher, Italy (2006),
pp. 9–16.

[33] Ø. Linnebo, R. Pettigrew. Category Theory as an Autonomous
Foundation. Philosophia Mathematica, vol. 19, No. 3 (2011), pp.
227–254.

[34] B. Nordström, K. Petersson, J. M. Smith. Programming in Martin-
Löf ’s Type Theory. Oxford University Press, 1990.

[35] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli,
1984.

[36] J.Barwise. Admissible sets and structures. Perspectives in Mathe-
matical Logic, Volume 7. Berlin: Springer-Verlag, 1975.

364



Basics of Intensionalized Data: Presets, Sets, and Nominats

[37] E. Bishop. Foundations of Constructive Analysis. New York:
McGraw-Hill, 1967.

Mykola Nikitchenko, Alexey Chentsov, Received July 5, 2012

Mykola Nikitchenko
Taras Shevchenko National University of Kyiv
01601, Kyiv, Volodymyrska st, 60
Phone: +38044 2590519
E–mail: nikitchenko@unicyb.kiev.ua

Alexey Chentsov
Taras Shevchenko National University of Kyiv
01601, Kyiv, Volodymyrska st, 60
Phone: +38044 2590511
E–mail: chentsov@ukr.net

365


