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Combinatorial Problems

Victor Ufnarovski

Abstract

We consider several simple combinatorial problems and dis-
cuss different ways to express them using polynomial equations
and try to describe the Gröbner basis of the corresponding ideals.
The main instruments are complete symmetric polynomials that
help to express different conditions in rather compact way.

Keywords: Gröbner basis, zero-dimensional ideal, finite con-
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1 Introduction

As far as it was found that Gröbner basis is a nice instrument to solve
polynomial systems of equations, there appear many ideas how to trans-
late problems that do not look as suitable object for the Gröbner basis
approach to non-trivial system of equations. A classical example is
graph coloring (see [1], where many other interesting problems can be
found). In this article we want to consider some elementary instru-
ments that can be applied for easy combinatorial problems. The main
of them is the complete symmetric polynomial.

2 How to describe a finite set?

Let us try Gröbner basis approach to some combinatorial problems in
order to understand when such approach can be useful.

We start from a magic square of size m. It can be described as m×m
matrix, elements of which are different integers between 1 and m2 and
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such that the sums in every row, column and two main diagonals are
the same. The sum conditions are nothing else than linear equations,
thus the only difficulty is to express the conditions that all elements
belong to the given finite set A and are different. Let us try to express
this condition in equations as well.

If A = {a1, a2, . . . , an} is an arbitrary finite set of different numbers,
then the condition x ∈ A is trivially expressed as the equation pA(x) =
0, where

pA(x) = (x− a1)(x− a2) · · · (x− an) = xn + A1x
n−1 + ... + An.

Note that the coefficients Ak are (up to sign (−1)k) elementary sym-
metric polynomials in a1, . . . , an.

If y is another element from A then, of course, p(y) = 0, but to
express the condition y 6= x we need the equation p2(x, y) = 0, where

p2(x, y) =
p(x)− p(y)

x− y
.

This already allows us to write all necessary equations for the magic
square, but we prefer a shorter way to express that {x1, . . . , xn} is the
set A.

Theorem 1. The conditions
∑

xk
i =

∑
ak

i , k = 1, . . . n.

are equivalent to condition that all xi are different and belong to A.

Proof. Obviously we have the similar equality for the elementary
symmetric polynomials and therefore xi are all different solutions of
the equation pA(x) = 0.

For example, it is easy now to find all magic squares of size 3 :

x1 x2 x3

x4 x5 x6

x7 x8 x9
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Simply write
x1 + · · ·+ x9 = 1 + 2 + · · ·+ 9,

x2
1 + · · ·+ x2

9 = 12 + 22 + · · ·+ 92,

· · ·
x9

1 + · · ·+ x9
9 = 19 + 29 + · · ·+ 99,

add all sum equations

x1 + x2 + x3 = x4 + x5 + x6 = x7 + x8 + x9 = x1 + x4 + x7 =

x2 + x5 + x8 = x3 + x6 + x9 = x1 + x5 + x9 = x3 + x5 + x7

and start Gröbner basis calculations! Here is the result.

[x9
4 − 20x9

3 + 140x9
2 − 400x9 + 384,

x8
2 + 2 x8x9 + 2 x9

2 − 20x8 − 30x9 + 115,

x7 + x8 + x9 − 15, x6 + x8 + 2 x9 − 20, x5 − 5, x4 − x8 − 2x9 + 10,

x3 − x8 − x9 + 5, x2 + x8 − 10, x1 + x9 − 10].

We see that we have four choices for x9 and two for x8 – the rest is
determined uniquely. Note that x5 = 5 in any magic square.

When returning to general case note that in fact some ai could be
equal – the equations still describe the set A but in this case with the
multiplicities.

The next step is to obtain the Gröbner basis for the ideal I, gen-
erated by the polynomials

∑
i x

k
i −

∑
i a

k
i . It is not an easy task for

computer for large n, thus the following result can replace the calcula-
tions.

Let hi(x1, . . . , xk) =
∑
|α1+···αk|=i x

α1
1 · · ·xαk

k be complete symmet-
ric functions in k variables. We put additionally A0 = h0 = 1.

Theorem 2. The set

gk(x1, . . . , xk) =
n−k+1∑

i=0

Aihn+1−k−i(x1, . . . , xk)

for k = 1, . . . , n describes the reduced Gröbner basis of the ideal I in
the lexicographical ordering xn > xn−1 > · · · > x1.
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Proof. First we need to show that gk = 0 is valid in K[x1, . . . , xn]/I.
As usual, the easiest way to prove is to use the generating function. If
we rewrite the evident equality

(1−tx1) · · · (1−txn) = (1−ta1) · · · (1−tan) = 1+A1t+A2t
2+· · ·+Antn

as

(1+h1(x1, . . . , xk)t+h2(x1, . . . , xk)t2+· · · )(1+A1t+A2t
2+· · ·+Antn) =

1
(1− tx1) · · · (1− txk)

(1+A1t+A2t
2 · · ·+Antn) = (1−txk+1) · · · (1−txn)

then the coefficient with tn+1−k is gk(x1, . . . , xk) at the beginning and
zero at the end.

Second, note that the leading monomial of gk is xn+1−k
k which gives

n! different solutions for the system of equations gk = 0, k = 1, . . . , n.
Thus this set should be a minimal Gröbner basis and it is easy to check
that this Gröbner basis is reduced as well.

For n = 3 we have

g1(x1) = x3
1 − (a1 + a2 + a3)x2

1 + (a1a2 + a1a3 + a2a3)x1 − a1a2a3,

g2(x1, x2) = x2
1+x1x2+x2

2−(a1+a2+a3)(x1+x2)+a1a2+a1a3+a2a3 =

x2
2− (a1 +a2 +a3−x1)x2 +(a1a2 +a1a3 +a2a3− (a1 +a2 +a3)x1 +x2

1),

g3(x1, x2, x3) = x1+x2+x3−(a1+a2+a3) = x3−(a1+a2+a3−x1−x2).

Note that if we take the elements gk with k ≥ l we get the reduced
Gröbner basis for the ideal Il, generated by polynomials

∑
i x

k
i −

∑
i a

k
i

with k ≤ l. This follows from the fact that the terms of higher degrees
do not influence the reduction process. Naturally, I1 = I but for l > 1
we have infinitely many solutions of the corresponding system.

More interesting are the remaining equations.

Theorem 3. The condition that m different numbers x1, . . . , xm be-
long to A is expressed as a system of equations:

gk(x1, · · · , xk) = 0, k = 1, . . . , m.
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Proof. We already know that the conditions are valid. It remains
to note that the equations have n(n− 1) · · · (n−m + 1) solutions and
this exactly the number of ways to choose m ordered elements from n.

Note that for m = 2 we get our familiar conditions pA(x1) = 0,
p2(x1, x2) = 0, but we do not need the condition pA(x2) = 0, which
follows from them. More generally it follows from the proof that the
polynomials gk form the reduced Gröbner basis of the corresponding
ideal.

If some ai are equal, the theorem is still valid if we allow the equality
of xi up to multiplicity (e.g. if xi = xj = xk = a, then a should appear
at least three times in A). For example, if a1 = a2 = 0, a3 = a4 = 1,
then our equation is x4−2x3+x2 = 0 and the condition that x1, x2, x3 ∈
A looks as

x4
1−2x3

1+x2
1 = 0, x3

1+x2
1x2+x1x

2
2+x3

2−2(x2
1+x1x2+x2

2)+(x1+x2) = 0,

x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3 − 2(x1 + x2 + x3) + 1 = 0.

The last equation does not allow x1 = x2 = x3 = 0, but x1 = x2 = 0,
x3 = 1 is a perfect solution.

If A = {0, 1, . . . , n − 1} then a standard way to simplify the equa-
tions (see [1]) is to replace this set by B = {1, ε, . . . , εn−1} with εn = 1.
In this case g1(x1) = xn

1 − 1 and gk(x1, . . . , xk) = hk(x1, . . . , xk) for
k > 1.

If the size of A is not too large the equations are rather robust – we
can easily create bounds δk such that if all |gk| < δk, then |xi− aj | < ε
for some j. Thus the equations have some practical applications. For
large A the number of terms makes this approach impractical and the
equations from Theorem 1 are probably more convenient.

It would be interesting to understand how to obtain the intersec-
tions. If B is another finite set we can create the similar equations.
Together two systems of equations describe the intersection A

⋂
B, but

it is rather unclear how these two Gröbner bases cooperate to form the
Gröbner basis , which describes A

⋂
B. Understanding this probably

could open new ways to optimize Gröbner basis calculations.

308



GB Approach to Some Combinatorial Problems

One possible application of this approach is sudoku. The experi-
ments on sudoku examples show that the computations are much less
efficient than direct combinatorial searching of the solution. Again, we
need the correct interpretation of the elimination process to improve
the efficiency of Gröbner basis approach.

Another remark. As we will see later, it is possible to express even
more difficult conditions, e.g. x > y. One way to do it is to write that
x−y belongs to the known finite set S of differences, thus pS(x−y) = 0.
But what is the Gröbner basis interpretation of transitivity law:

x > y, y > z ⇒ x > z?

Why such trivial things are so difficult to obtain?

3 Points on the plane

Suppose now that we have a set S consisting of n different points
(aj , bj) in the plane and want to describe the conditions that m given
points Pk = (xk, yk) belong to S. The simplest case is when we deal
with real numbers. Then it is sufficient to introduce complex numbers
wj = aj + ibj and use Theorem 3 to get necessary equations in the
complex form. Of course, using their real and imaginary parts we can
get the equations in the real form as well. For example, to describe
that P1, P2 are different and belong to the set (0, 0), (0, 1), (1, 0), (1, 1)
we introduce first four complex numbers w1 = 0, w2 = 1, w3 = i,
w4 = 1 + i. The corresponding equation having wi as roots is

w4 − (2 + 2 i) w3 + 3 iw2 + (1− i)w = 0.

Thus the equations

z1
4 − (2 + 2 i) z1

3 + 3 iw2 + (1− i) z1 = 0,

z1
3 + z1

2z2 + z1z2
2 + z2

3 − (2 + 2 i)
(
z1

2 + z1z2 + z2
2
)
+

+3 i (z1 + z2) + 1− i = 0
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describe the situation. Converting this to real equations does not look
attractive, as we already can see in the case of the first equation:

x1
4−6x1

2y1
2+y1

4−2x1
3+6 x1

2y1+6 x1y1
2−2 y1

3−6x1y1+x1+y1 = 0,

6x1y1
2−6x1

2y1+y1−2x1
3−4x1y1

3+2y1
3−x1+3x1

2+4x1
3y1−3y1

2 = 0.

The situation is more difficult when the numbers are not real. Nev-
ertheless in the generic case we can also find some approach, though
not so obvious. As in the previous section we can easy describe the
conditions that x1, . . . , xm belong to A = {a1, . . . , an} and similarly
that y1, . . . , ym belong to B = {b1, . . . , bn}. The trouble is to coordi-
nate the choices. In the generic case we have an easy solution: because
all the numbers ai + bj are different, all that we need to say is that the
numbers xk + yk belong to the set C = {a1 + b1, a2 + b2, . . . , an + bn}
and we can express this according to the previous section.

We illustrate this in the following case. Suppose that the set S
consists of two different points (a, b), (c, d) with the “generic” coordi-
nates. We need to describe the conditions that two given points (x, y)
and (z, t) belong to S and are different. We use Theorem 1 to describe
the corresponding elements in the ideal shorter. Here the first line de-
scribes the condition that coordinates belong to A and B and the last
ones that x + y and z + t belong to C:

{
x2 + z2 − a2 − c2, x + z − a− c, y2 + t2 − b2 − d2, y + t− b− d,

x + y + z + t− a− b− c− d, x2 + 2 xy + y2 + z2 + 2 zt

+t2 − a2 − 2 ab− b2 − c2 − 2 cd− d2
}

.

We can easily obtain Gröbner basis using the generic condition:

[t2 + (−b− d) t + bd, (−d + b) z + (c− a) t− cb + ad,

y + t− b− d, (−d + b) x + (−c + a) t− ab + cd].

Note that this is a Gröbner basis so long as b 6= d.
In the case b = d the Gröbner basis is different:

[t− d, z2 + (−a− c) z + ac, y − d, x + z − a− c],

but this is obviously not a generic case.
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4 Small combinatorial problem

In this section we want to so consider very small combinatorial example
to illustrate some ways to translate other conditions on the Gröbner
basis language.

The problem is to find a word, consisting of 5 different letters
A,B, C,D, E and satisfying the following conditions:

1. Exactly one consonant is written between two vowels.

2. Every vowel is placed on an odd place.

3. The letter C is placed before D, which itself is placed before A.

4. The letter B is placed before E.

5. The number of letters between C and E is odd.

No one condition looks as an equation, but we want to find the
equations that equivalently describe the problem.

First of all we have a permutation of letters, which means that we
can suppose that every letter has some value – its place in the word.
From the first section we know how to describe this shortly:

Ak + Bk + Ck + Dk + Ek = 1k + 2k + 3k + 45 + 5k

for k = 1, . . . 5.
The first condition now can be expressed as

|A−E| = 2 ⇔ (A− E)2 = 22.

The second condition we could express using Theorem 3, but if we note
that it is equivalent with the condition that the third letter is a vowel,
we get a trivial equation (A− 3)(E − 3) = 0.

How to express the condition D > C as an equation? A possible
way is to say that D − C belongs to the set {1, 2, 3, 4} and this is an
equation. Similarly we express the remaining conditions (note that the
last one means that |C −E| = 2 or |C −E| = 4.)
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Now we are ready to start Maple session to implement this. The
only difficulty is that the letter D is reserved in Maple and we replace it
by T . To see the result directly we use the command solve, that (with
the help of Gröbner basis ) finds the solution of the system. The last
two lines we need to print our nice result using the found substitution.

> S := {X − T + B, Y − T + C, Z −A + T,
A + B + C + T + E − (1 + 2 + 3 + 4)− 5,
A2 + B2 + C2 + T 2 + E2 − 12 − 22 − 32 − 42 − 52,
A3 + B3 + C3 + T 3 + E3 − 13 − 23 − 33 − 43 − 53,
A4 + B4 + C4 + T 4 + E4 − 14 − 24 − 34 − 44 − 54,
A5 + B5 + C5 + T 5 + E5 − 15 − 25 − 35 − 45 − 55,
expand((A− 3) ∗ (E − 3)), expand((C − E + 2)2 ∗ (C − E + 4)2),
expand((Y −1)∗(Y −2)∗(Y −3)), expand((Z−1)∗(Z−2)∗(Z−3)),
expand((X−1)∗(X−2)∗(X−3)∗(X−4)), expand((A−E)2−4)} :
> R := solve(S);

R := {A = 5, B = 2, C = 1, E = 3, T = 4, X = 2, Y = 3, Z = 1}
> f := (x, y) − > subs(R, x) < subs(R, y):
> sort([A, B, C, T, E], f);

[C, B, E, T, A]
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