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Computation of Difference Gröbner Bases

Vladimir P. Gerdt, Daniel Robertz

Abstract

This paper is an updated and extended version of our note
[1] (cf. also [2]). To compute difference Gröbner bases of ideals
generated by linear polynomials we adopt to difference polyno-
mial rings the involutive algorithm based on Janet-like division.
The algorithm has been implemented in Maple in the form of
the package LDA (Linear Difference Algebra) and we describe
the main features of the package. Its applications are illustrated
by generation of finite difference approximations to linear partial
differential equations and by reduction of Feynman integrals. We
also present the algorithm for an ideal generated by a finite set
of nonlinear difference polynomials. If the algorithm terminates,
then it constructs a Gröbner basis of the ideal.

1 Introduction

Being invented 47 years ago by Buchberger [3] for algorithmic solving
of the membership problem in the theory of polynomial ideals, the
Gröbner basis method has become a powerful universal algorithmic
tool for solving various mathematical problems arising in science and
engineering.

Though the overwhelming majority of Gröbner basis applications
is still found in commutative polynomial algebra, over the last two
decades a substantial progress has also been achieved in applications
of Gröbner bases to noncommutative polynomial algebra, to algebra
of differential operators and to linear partial differential equations (cf.,
for example, the book [4]). As to the difference algebra, i.e. algebra of
difference polynomials [5], in spite of its conceptual algorithmic similar-
ity to differential algebra, only a few efforts have been made to extend
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the theory of Gröbner bases to difference algebra and to exploit their
algorithmic power [5, 6, 7].

Recently, three promising applications of difference Gröbner bases
were revealed:

• Generation of finite difference approximations to PDEs [8, 9].

• Consistency analysis of such approximations [10, 11].

• Reduction of multiloop Feynman integrals to the minimal set of
basis integrals [12].

In this note we describe an algorithm (Section 4) for constructing
Gröbner bases for linear difference systems that is an adaptation of
the polynomial algorithm [13] to linear difference ideals. In so doing,
we construct a Gröbner basis in its Janet-like form (Section 3), since
this approach has shown its computational efficiency in the polynomial
case [13, 14]. We briefly outline these efficiency issues in Section 5.
The difference form of the algorithm exploits some basic notions and
concepts of difference algebra (Section 2) as well as the definition of
Janet-like Gröbner bases and Janet-like reductions together with the
algorithmic characterization of Janet-like bases (Section 3). Exten-
sion of the notion of Gröbner basis to nonlinear difference polynomials,
which has not been addressed in [1], [2], is briefly described in Sec-
tion 6 where we also present the algorithm [11] for construction of such
bases. In Section 7 we present our Maple package LDA for computing
Gröbner bases of linear difference ideals, i.e. ideals generated by linear
difference polynomials. The package is a modified version of our ear-
lier package [17] oriented towards commutative and linear differential
algebra and based on the involutive basis algorithm [14]. The modified
version is specialized to linear difference ideals and uses both Janet and
Janet-like divisions [13] adopted to linear difference polynomials [15].
In Sections 8 and 9 we illustrate LDA by simple examples of its appli-
cation to the construction of finite difference approximations to linear
systems of PDEs and to the reduction of Feynman integrals.
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2 Elements of difference algebra

Let {y1, . . . , ym} be the set of indeterminates, e.g., m functions of n
variables x1, . . . , xn, and {θ1, . . . , θn} be the set of mutually commuting
difference operators (differences), i.e.,

(θi ◦ yj)(x1, . . . , xn) = yj(x1, . . . , xi + 1, . . . , xn).

A difference ring R with differences θ1, . . . , θn is a commutative ring R
such that for all f, g ∈ R, 1 ≤ i, j ≤ n,

θiθj = θjθi, θi ◦ (f + g) = θi ◦ f + θi ◦ g,
θi ◦ (f g) = (θi ◦ f)(θi ◦ g) .

Similarly, one defines a difference field.
LetK be a difference field, andR := K{y1, . . . , ym} be the difference

ring of polynomials over K in variables

{ θµ ◦ yk | µ ∈ Zn
≥0, k = 1, . . . , m } .

Hereafter, we denote by RL the set of linear polynomials in R and use
the notations:

Θ = { θµ | µ ∈ Zn
≥0 }, degi(θµ ◦ yk) = µi,

deg(θµ ◦ yk) = |µ| = ∑n
i=1 µi .

A difference ideal is an ideal I ⊆ R closed under the action of any
operator from Θ. For F ⊂ R, the smallest difference ideal containing
F will be denoted by Id(F ). If for an ideal I there is F ⊂ RL such
that I = Id(F ), then I is a linear difference ideal.

A total orderingÂ on the set of θµ◦y j is a ranking if for all i, j, k, µ, ν
the following hold:

θiθ
µ ◦ y j Â θµ ◦ y j ,

θµ ◦ y j Â θν ◦ yk ⇐⇒ θiθ
µ ◦ y j Â θiθ

ν ◦ yk .

If |µ| > |ν| implies θµ ◦ y j Â θν ◦ yk for all j, k, then the ranking is
orderly. If j > k implies θµ ◦ y j Â θν ◦ yk for all µ, ν, then the ranking
is elimination.
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Given a ranking Â, a linear polynomial f ∈ RL\{0} has the leading
term a ϑ ◦ yj , ϑ ∈ Θ, a ∈ K, where ϑ ◦ yj is maximal w.r.t. Â among all
θµ ◦yk which appear with nonzero coefficient in f . lc(f) := a ∈ K\{0}
is the leading coefficient and lm(f) := ϑ ◦ y j is the leading monomial.

A ranking acts in RL as a monomial order. If F ⊆ RL \{0}, lm(F )
will denote the set of the leading monomials and lmj(F ) will denote its
subset for the indeterminate y j . Thus,

lm(F ) =
m⋃

j=1

lmj(F ) .

3 Janet-like Gröbner bases

Given a nonzero linear difference ideal I = Id(G) and a ranking Â, the
ideal generating set G = {g1, . . . , gs} ⊂ RL is a Gröbner basis [4, 7] of
I if for all f ∈ I ∩RL \ {0}:

∃ g ∈ G, θ ∈ Θ : lm(f) = θ ◦ lm(g) . (1)

It follows that f ∈ I \ {0} is reducible modulo G:

f −→
g

f ′ := f − lc(f) θ ◦ (g/ lc(g)), f ′ ∈ I .

If f ′ 6= 0, then it is again reducible modulo G, and, by repeating the
reduction, in finitely many steps we obtain

f −→
G

0 .

Similarly, a nonzero polynomial h ∈ RL, whose terms are reducible (if
any) modulo a set F ⊂ RL, can be reduced to an irreducible polynomial
h̄, which is said to be in normal form modulo F (denotation: h̄ =
NF (h, F )).

In our algorithmic construction of Gröbner bases we shall use a
restricted set of reductions called Janet-like (cf. [13]) and defined as
follows.
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For a finite set F ⊆ RL \ {0} and a ranking Â, we partition every
lmk(F ) into subsets labeled by d0, . . . , di ∈ Z≥0, (0 ≤ i ≤ n). Here
[0]k := lmk(F ) and for i > 0 the subset [d0, . . . , di]k is defined as

{u ∈ lmk(F ) | d0 = 0, dj = degj(u), 1 ≤ j ≤ i}.

Denote by hi(u, lmk(F )) the nonnegative integer

max{degi(v) | u, v ∈ [d0, . . . , di−1]k} − degi(u).

If hi(u, lmk(F )) > 0, then θsi
i such that

si := min{degi(v)− degi(u) | u, v ∈ [d0, . . . , di−1]k, degi(v) > degi(u)}

is called a difference power for f ∈ F with lm(f) = u.
Let DP (f, F ) be the set of difference powers for f ∈ F , and J (f, F ) :=
Θ \ Θ̄ be the subset of Θ with

Θ̄ := {θµ | ∃ θν ∈ DP (f, F ) : µ− ν ∈ Zn
≥0}.

A Gröbner basis G of I = Id(G) is called Janet-like [13] if for all
f ∈ I ∩RL \ {0}:

∃ g ∈ G,ϑ ∈ J (g, G) : lm(f) = ϑ ◦ lm(g) . (2)

This implies J−reductions and the J−normal form NFJ (f, F ). It is
clear that condition (2) implies condition (1). Note, however, that the
converse is generally not true. Therefore, not every Gröbner basis is
Janet-like.

The properties of a Janet-like basis are very similar to those of a
Janet basis [14], but the former is generally more compact than the
latter. More precisely, let GB be a reduced Gröbner basis [4], JB be
a minimal Janet basis, and JLB be a minimal Janet-like basis of the
same ideal for the same ranking. Then we have

Card(GB) ≤ Card(JLB) ≤ Card(JB), (3)

where Card abbreviates cardinality, that is, the number of elements.
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Whereas the algorithmic characterization of a Gröbner basis is zero
redundancy of all its S-polynomials [3, 4], the algorithmic characteri-
zation of a Janet-like basis G is the following condition (cf. [13]):

∀g ∈ G, ϑ ∈ DP (g,G) : NFJ (ϑ ◦ g, G) = 0 . (4)

This condition is at the root of the algorithmic construction of Janet-
like bases as described in the next section.

4 Algorithm for Linear Difference Polynomials

The following algorithm is an adaptation of the polynomial version [13]
to linear difference ideals.

Algorithm: Janet-like Gröbner Basis(F,Â)

Input: F ⊆ RL \ {0}, a finite set; Â, a ranking
Output: G, a Janet-like basis of Id(F )
1: choose f ∈ F with the lowest lm(f) w.r.t. Â
2: G := {f}
3: Q := F \G
4: while Q 6= ∅ do
5: h := 0
6: while Q 6= ∅ and h = 0 do
7: choose p ∈ Q with the lowest lm(p) w.r.t. Â
8: Q := Q \ {p}
9: h := Normal Form(p, G,Â)

10: od
11: if h 6= 0 then
12: for all g ∈ G such that lm(g) = θµ ◦ lm(h), |µ| > 0 do
13: Q := Q ∪ {g}; G := G \ {g}
14: od
15: G := G ∪ {h}
16: Q := Q ∪ { θβ ◦ g | g ∈ G, θβ ∈ DP (g, G) }
17: fi
18: od
19: return G

208



Computation of Difference Gröbner Bases

It outputs a minimal Janet-like Gröbner basis which (if monic, that
is, normalized by division of each polynomial by its leading coefficient)
is uniquely defined by the input set F and ranking Â. Correctness and
termination of the algorithm follow from the proof given in [13]; in so
doing the displacement of some elements of the intermediate sets G into
Q at step 13 provides minimality of the output basis. The algorithm
terminates when the set Q becomes empty in accordance with (4).

The subalgorithm Normal Form(p, G,Â) performs the Janet-like
reductions (Section 3) of the input difference polynomial p modulo the
set G and outputs the Janet-like normal form of p. As long as the
intermediate difference polynomial h has a term Janet-like reducible
modulo G, the elementary reduction of this term is done at step 4.
As usually in the Gröbner bases techniques [4], the reduction termi-
nates after finitely many steps due to the properties of the ranking
(Section 2).

An improved version of the above algorithm can easily be derived
from the one for the involutive algorithm [14] if one replaces the input
involutive division by a Janet-like monomial division [13] and then
translates the algorithm into linear difference algebra. In particular,
the improved version includes Buchberger’s criteria adjusted to Janet-
like division and avoids the repeated prolongations θβ ◦ g at step 16 of
the algorithm.

Algorithm: Normal Form(p,G,Â)

Input: p ∈ RL \ {0}, a polynomial; G ⊂ RL \ {0}, a finite set; Â,
a ranking

Output: h = NFJ (p,G), the J−normal form of p modulo G
1: h := p
2: while h 6= 0 and h has a monomial u with nonzero coefficient

b ∈ K such that u is J−reducible modulo G do
3: take g ∈ G such that u = θγ ◦ lm(g) with θγ ∈ J (g, G)
4: h := h/b− θγ ◦ (g/ lc(g))
5: od
6: return h
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5 Computational aspects

The polynomial version of algorithm Janet-like Gröbner Basis is im-
plemented in its improved form in C++ [13] as a part of the specialized
computer algebra system GINV [16]. It has disclosed its high computa-
tional efficiency for the standard set of benchmarks1. If one compares
this algorithm with the involutive one [14] specialized to Janet division,
then all the computational merits of the latter algorithm are retained,
namely:

• Automatic avoidance of some useless reductions.

• Weakened role of the criteria: even without applying any criteria
the algorithm is reasonably fast. By contrast, Buchberger’s algo-
rithm without applying the criteria becomes unpractical even for
rather small problems.

• Smooth growth of intermediate coefficients.

• Fast search of a polynomial reductor which provides an elemen-
tary Janet-like reduction of the given term. It should be noted
that as well as in the involutive algorithm such a reductor, if it
exists, is unique. The fast search is based on the special data
structures called Janet trees [14].

• Natural and effective parallelism.

Though one needs intensive benchmarking for linear difference systems,
we have solid grounds to believe that the above listed computational
merits hold also for the difference case.

As this takes place, computation of a Janet-like basis is more effi-
cient than computation of a Janet basis by the involutive algorithm [14].
The inequality (3) for monic bases is a consequence of the inclusion [13]:

GB ⊆ JLB ⊆ JB . (5)

1Cf. the web page http://invo.jinr.ru.
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There are many systems for which the cardinality of a Janet-like basis
is much closer to that of the reduced Gröbner basis than the cardinality
of a Janet basis. Certain binomial ideals called toric form an important
class of such problems. Toric ideals arise in a number of problems of
algebraic geometry and closely related to integer programming. For this
class of ideals the cardinality of Janet bases is typically much larger
than that of reduced Gröbner bases [13]. For illustrative purposes
consider a difference analogue of the simple toric ideal [13, 18] generated
in the ring of difference operators by the following set:

{ θ7
x − θ2

yθz, θ
4
xθw − θ3

y, θ
3
xθy − θzθw } .

The reduced Gröbner basis for the degree-reverse-lexicographic ranking
with θx Â θy Â θz Â θw is given by

{ θ7
x − θ2

yθz, θ
4
xθw − θ3

y, θ
3
xθy − θzθw, θ4

y − θxθzθ
2
w } .

The Janet-like basis computed by the above algorithm contains one
more element θ4

xθw − θ3
y whereas the Janet basis adds another six ele-

ments to the Janet-like basis [13].
The presence of extra elements in a Janet basis in comparison with

a Janet-like basis is obtained because of certain additional algebraic
operations. That is why the computation of a Janet-like basis is more
efficient than the computation of a Janet basis. Both bases, however,
contain the reduced Gröbner basis as the internally fixed [14] subset
of the output basis2. Hence, having any of the bases computed, the
reduced Gröbner basis is easily extracted without any extra computa-
tional costs.

6 Nonlinear Difference Polynomials

In this section we follow the paper [11] and define difference standard
bases which generalize the concept of Gröbner bases to arbitrary ideals
in the ring R = K{y1, . . . , ym} of difference polynomials.

2In the improved versions of the algorithms.
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A total ordering Â on the set M of difference monomials

M := { (θ1 ◦ y1)i1 · · · (θm ◦ ym)im | θj ∈ Θ, ij ∈ Z≥0, 1 ≤ j ≤ m }

is admissible if it extends a ranking and satisfies

(∀ t ∈M \ {1}) [t Â 1] ∧ (∀ θ ∈ Θ) (∀ t, v, w ∈M )

[ v Â w ⇐⇒ t · θ ◦ v Â t · θ ◦ w ].

As an example of admissible monomial ordering we indicate the
lexicographical monomial ordering compatible with a ranking.

Given an admissible ordering Â, every nonzero difference polyno-
mial f has the leading monomial lm(f) ∈ M with the leading coeffi-
cient lc(f). In what follows, every nonzero difference polynomial is to
be normalized (i.e., monic) by division of the polynomial by its leading
coefficient.

If for v, w ∈ M the equality w = t · θ ◦ v holds with θ ∈ Θ and
t ∈ M we shall say that v divides w and write v | w. It is easy to see
that this divisibility relation yields a partial order.

Given a difference ideal I and an admissible monomial ordering Â,
a subset G ⊂ I is its (difference) standard basis if Id(G) = I and

(∀ f ∈ I )(∃ g ∈ G ) [ lm(g) | lm(f) ] . (6)

As in differential algebra [19], if a standard basis is finite it is called
Gröbner basis.

A polynomial p ∈ R \ {0} is said to be head reducible modulo q ∈
R \ {0} to r if r = p − m · θ ◦ q and m ∈ M, θ ∈ Θ are such that
lm(p) = m · θ ◦ lm(q). In this case the transformation from p to r is an
elementary reduction and denoted by p −→

q
r. Given a set F ⊂ R \ {0},

p is head reducible modulo F (denotation: p −→
F

) if there is f ∈ F such

that p is head reducible modulo f . A polynomial p is head reducible to
r modulo F if there is a chain of elementary reductions

p −→
F

p1 −→
F

p2 −→
F
· · · −→

F
r . (7)
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Similarly, one can define tail reduction. If r in (7) and each of its
monomials is neither head nor tail reducible modulo F , then we shall
say that r is in normal form modulo F and write r = NF(p, F ). A
polynomial set F with more then one element is interreduced if

(∀f ∈ F ) [ f = NF(f, F \ {f}) ] . (8)

Admissibility of Â, as in commutative algebra, provides termination
of chain (7) for any p and F . In doing so, NF(p, F ) can be computed
by the difference version of a multivariate polynomial division algo-
rithm [20, 21]. If G is a standard basis of Id(G), then from the above
definitions it follows

f ∈ Id(G) ⇐⇒ NF(f, G) = 0 .

Thus, if an ideal has a finite standard (Gröbner) basis, then its con-
struction solves the ideal membership problem as well as in commuta-
tive [20, 21] and differential [19, 22] algebra. The algorithmic charac-
terization of standard bases, and their construction in difference poly-
nomial rings is done in terms of difference S-polynomials.

Given an admissible ordering, and monic difference polynomials p
and q, the polynomial

S(p, q) := m1 · θ1 ◦ p−m2 · θ2 ◦ q

is called S-polynomial associated to p and q (for p = q we shall say that
the S-polynomial is associated with p) if

m1 · θ1 ◦ lm(p) = m2 · θ2 ◦ lm(q)

with coprime m1 · θ1 and m2 · θ2.
Algorihmic characterization of standard bases: Given a difference

ideal I ⊂ R and an admissible ordering Â, a set of polynomials G ⊂ I
is a standard basis of I if and only if NF(S(p, q), G) = 0 for all S-
polynomials, associated with polynomials in G. This result follows
from the above definitions in line with the standard proof of the analo-
gous characterization of Gröbner bases in commutative algebra [20, 21]
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and with the proof of similar characterization of standard bases in dif-
ferential algebra [19].

Let I = Id(F ) be a difference ideal generated by a finite set F ⊂ R
of difference polynomials. Then for a fixed admissible monomial order-
ing the following algorithm StandardBasis, if it terminates, returns
a standard basis G of I. The subalgorithm Interreduce invoked in
step 11 performs mutual interreduction of the elements in H̃ and re-
turns a set satisfying (8).

Algorithm StandardBasis is a difference analogue of the simplest
version of Buchberger’s algorithm (cf. [19, 20, 21]). Its correctness is
provided by the above formulated algorithmic characterization of stan-
dard bases. The algorithm always terminates when the input polynomi-
als are linear. If this is not the case, the algorithm may not terminate.
This means that the do while-loop (steps 2–10) may be infinite as in
the differential case [19, 22]. One can improve the algorithm by taking
into account Buchberger’s criteria to avoid some useless zero reductions
in step 5. The difference criteria are similar to the differential ones [19].

Algorithm: StandardBasis (F,Â)

Input: F ⊂ R \ {0}, a finite set of nonzero polynomials;
Â, an admissible monomial ordering

Output: G, an interreduced standard basis of Id(F )
1: G := F
2: do
3: H̃ := G
4: for all S-polynomials s associated with elements in H̃ do
5: g := NF(s, H̃)
6: if g 6= 0 then
7: G := G ∪ {g}
8: fi
9: od

10: od while G 6= H̃
11: G :=Interreduce (G)
12: return G
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7 The Maple Package LDA

The package LDA (abbreviation for Linear Difference Algebra)3 imple-
ments the involutive basis algorithm [14] for linear systems of difference
equations using Janet division. In addition, the package implements a
modification of the algorithm oriented towards Janet-like division [13]
and, thus, computes Janet-like Gröbner bases of linear difference ideals.

Table 1 collects the most important commands of LDA. Its main
procedure JanetBasis converts a given set of difference polynomials
into its Janet basis or Janet-like Gröbner basis form. More precisely, let
R be the difference ring (cf. Section 2) of polynomials in the variables
θµ ◦ yk, µ ∈ Zn

≥0, k = 1, . . . , m, with coefficients in a difference
field K containing Q for which the field operations can be carried out
constructively in Maple. We denote again by RL the set of linear
polynomials in R. Given a finite generating set F ⊂ RL for a linear
difference ideal I in R, JanetBasis computes the minimal Janet(-like
Gröbner) basis J of I w.r.t. a certain monomial order (ranking). The
input for JanetBasis consists of the left hand sides of a linear system
of difference equations in the dependent variables y1, . . . , ym, e.g.,
functions of x1, . . . , xn. The difference ring R is specified by the lists
of independent variables x1, . . . , xn and dependent variables given to
JanetBasis. The output is a list containing the Janet(-like Gröbner)
basis J and the lists of independent and dependent variables.

After J is computed, the involutive/J−normal form of any element
of RL modulo J can be computed using InvReduce. Given p ∈ RL

representing a residue class p of the difference residue class ring R/I,
InvReduce returns the unique representative q ∈ RL of p which is not
involutively/J−reducible modulo J . A K-basis of the vector space
RL/(I ∩RL) is returned by ResidueClassBasis as a list if it is finite
or is enumerated by a formal power series [25] in case it is infinite. For
examples of how to apply these two commands, cf. Section 9.

Given an affine (i.e. inhomogeneous) linear system of difference
equations, a call of CompCond after the application of JanetBasis re-

3The package LDA is downloadable from the web page
http://wwwb.math.rwth-aachen.de/Janet
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turns a generating set of compatibility conditions for the affine part
of the system, i.e. necessary conditions for the right hand sides of the
inhomogeneous system for solvability.

Moreover, combinatorial devices to compute the Hilbert series and
polynomial and function etc. [17] are included in LDA.

For the application of LDA to the reduction of Feynman integrals,
a couple of special commands were implemented to impose further re-
lations on the master integrals: By means of AddRelation an infinite
sequence of master integrals parametrized by indeterminates which are
not contained in the list of independent variables is set to zero. Subse-
quent calls of InvReduce and ResidueClassBasis take these additional
relations into account (cf. Section 9).

LDA provides several tools for dealing with difference operators.
Difference operators represented by polynomials can be applied to (lists
of) expressions containing y1, . . . , ym as functions of the independent
variables. Conversely, the difference operators can be extracted from
systems of difference equations. Leading terms of difference equations
can be selected.

We consider difference rings containing shift operators which act in
one direction only. If a linear system of difference equations is given
containing functions shifted in both directions, then the system needs
to be shifted by the maximal negative shift in order to obtain a differ-
ence system with shifts in one direction only. However, LDA allows to
change the shift direction globally.

Unnecessary computations of involutive reductions to zero are
avoided using the four involutive criteria described in [14, 23, 24]. Fine-
tuning is possible by selecting the criteria individually.

The implemented monomial orders/rankings are the (block) degree-
reverse-lexicographical and the lexicographical one. In the case of more
than one dependent variable, priority of comparison can be either given
to the difference operators (“term over position”) or to the dependent
variables (“position over term”/elimination ranking).

The ranking is controlled via options given to each command sep-
arately. The other options described above can be set for the entire
LDA session using the command LDAOptions which also allows to select
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Table 1. Main commands of LDA

JanetBasis Compute Janet(-like Gröbner) basis
InvReduce Involutive / J−reduction modulo

Janet(-like Gröbner) basis
CompCond Return compatibility conditions for inho-

mogeneous system
HilbertSeries etc. Combinatorial devices
Pol2Shift, Shift2Pol Conversion between shift operators and

equations

Some interpretations of commands for the reduction of Feynman
integrals:

ResidueClassBasis Enumeration of the master integrals
AddRelation Definition of additional relations for mas-

ter integrals
ResidueClassRelations Return the relations defined for master

integrals

Janet or Janet-like division.

8 Generation of finite difference schemes for
PDEs

We consider the Laplace equation uxx + uyy = 0 and rewrite it as the
conservation law ∮

Γ
−uydx + uxdy = 0.

Adding the integral relations
∫ xj+2

xj

uxdx = u(xj+2, y)− u(xj , y),
∫ yk+2

yk

uydx = u(x, yk+2)− u(x, yk)
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and using the midpoint integration method we obtain the following
discrete system:




−(θx − θxθ2

y)◦uy + (θ2
xθy − θy)◦ux = 0,

24h θx◦ux − (θ2
x − 1)◦u = 0,

24h θy◦uy − (θ2
y − 1)◦u = 0,

(9)

where θx and θy represent the right-shift operators w.r.t. x and y, e.g.,
(θx ◦ uy)(x, y) = uy(x + 1, y).

We show how to use LDA to find a finite difference scheme for the
Laplace equation:

> with(LDA):

We enter the independent and the dependent variables for the problem
(ux > uy > u):

> ivar:=[x,y]: dvar:=[ux,uy,u]:

Next, we translate (9) into the input format of JanetBasis. Note that
one can in general use AppShiftOp to apply a difference operator given
as a polynomial similar to the ones in (9) to a difference polynomial.

> L:=[2*h*ux(x+1,y)-u(x+2,y)+u(x,y),
> 2*h*uy(x,y+1)-u(x,y+2)+u(x,y),
> 2*h*(ux(x+2,y+1)-ux(x,y+1))+2*h*(uy(x+1,y+2)-
> uy(x+1,y))]:

Then we compute the minimal Janet basis of the linear difference ideal
generated by L w.r.t. a ranking which compares the dependent vari-
ables prior to the corresponding difference monomials (“position over
term” order; this ranking is chosen when using the option 2 as below).
The least element of this Janet basis is by construction a difference
polynomial which does not contain any monomial in ux and uy be-
cause ux > uy > u.

> JanetBasis(L,ivar,dvar,2)[1][1];

u(x + 4, y + 2)− 4 u(x + 2, y + 2) + u(x, y + 2)+
u(x + 2, y + 4) + u(x + 2, y)
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The computation takes less than one second of time on a Pentium
III (1 GHz).

Dividing this difference polynomial by 4h2 we obtain the following
finite difference scheme:

D2
j (ujk) + D2

k(ujk) = 0,

where
D2

j (ujk) =
uj+2 k − 2uj k + uj−2 k

4h2

and
D2

k(ujk) =
uj k+2 − 2uj k + uj k−2

4h2

are discrete approximations of the second order partial derivatives oc-
curring in Laplace’s equation.

9 Reduction of Feynman integrals

In order to demonstrate how to use LDA for the reduction of Feynman
integrals, we consider a simple one-loop propagator type scalar integral
with one massive and another massless particle:

f(k, n) := Ik,n =
1

iπd/2

∫
dds

P k
s−q,mPn

s,0

.

(Here k, n are the exponents of the propagators.)
The basis integrals for this example and the corresponding re-

duction formulae were found and studied by several authors (see,
e.g., [26, 27]). Here we apply the Gröbner basis method, as imple-
mented in LDA, directly to the recurrence relations which have the
form: 




[d− 2k − n− 2m2k1+−
n2+(1− − q2 + m2)] f(k + 1, n + 1) = 0,
[n− k − k1+(q2 + m2 − 2−)−
n2+(1− − q2 + m2)] f(k + 1, n + 1) = 0,

(10)

where
1±f(k, n) = f(k ± 1, n), 2±f(k, n) = f(k, n± 1).
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In addition, it is known that

f(k + i, n + j) = 0 ∀ i ≤ 0 ∀ j (11)

which we will take into account later.

> ivar:=[k,n]: dvar:=[f]:

We enter the recurrence relations (10):

> L:=[(d-2*k-n)*f(k+1,n+1)-2*m^2*k*f(k+2,n+1)-n*f(k,n+2)-
> n*(m^2-q^2)*f(k+1,n+2),
> (n-k)*f(k+1,n+1)-k*(q^2+m^2)*f(k+2,n+1)+
> k*f(k+2,n)-n*f(k,n+2)-n*(m^2-q^2)*f(k+1,n+2)]:

> JanetBasis(L,ivar,dvar):

Again, the computation time is less than one second. Now, the master
integrals are given by:

> ResidueClassBasis(ivar,dvar);

[f(k, n), f(k, n + 1), f(k + 1, n), f(k, n + 2), f(k + 1, n + 1), f(k + 2, n)]

(11) implies additional relations on the master integrals. (Here, j is rec-
ognized as not being contained in ivar and thus serves as a parameter
to define the additional relations.)

> AddRelation(f(k,n+j)=0,ivar,dvar):

The list of master integrals now becomes:

> ResidueClassBasis(ivar,dvar);

[f(k + 1, n), f(k + 1, n + 1), f(k + 2, n)]

Next, we recompute the Janet basis for m = 0:

> m:=0: J:=JanetBasis(L,ivar,dvar):

For the special case where m = 0, we impose the relation f(k+i, n) = 0
for all i:

> AddRelation(f(k+i,n)=0,ivar,dvar):
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Now, we are left with one master integral:

> ResidueClassBasis(ivar,dvar);

[f(k + 1, n + 1)]

We reduce f(k+2, n+3) modulo J taking also the additionally imposed
relations on the master integrals into account. (Here, the option “F”
lets InvReduce return the result in factorized form.)

> InvReduce(f(k+2,n+3),J,"F");

−((2 n + 4− d + 2 k) (2 n + 2− d + 2 k) (2 k + n− d) (n + 3− d + k)

(n + 2− d + k) f(k + 1, n + 1))/((n + 1) (2 n− d + 4) n q6 k (d− 2 k − 2))

Using ResidueClassRelations one can display the relations imposed
on the master integrals:

> ResidueClassRelations(ivar,dvar,[i,j]);

[f(k, n + j), f(k + i, n)]

The difference operators occurring in the last result can be extracted
as polynomials in δk, δn:

> Shift2Pol(%,ivar,dvar,[delta[k],delta[n]]);

[δn
j , δk

i]

10 Conclusion

The above presented algorithm Janet-like Gröbner Basis is imple-
mented, in its improved form, in the Maple package LDA, and can be
applied for generation of finite difference approximations to linear sys-
tems of PDEs, to the consistency analysis of such approximations [10],
and to reduction of some loop Feynman integrals.

Alternatively, the Gröbner package in Maple in connection with the
Ore algebra package [6] can be used to get the same results.

Two of these three applications were illustrated by rather simple
examples. The first difference system (discrete Laplace equation and
integral relations) contains two independent variables (x, y) and three
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dependent variables (u, ux, uy). The second system (recurrence rela-
tions for one-loop Feynman integral) also contains two independent
variables/indices (k, n), but the only dependent variable f . The sec-
ond system, however, is computationally slightly harder than the first
one because of explicit dependence of the recurrence relations on the
indices and three parameters (d,m2, q2) involved in the dependence on
indices.

Dependence on index variables and parameters is an attribute of
recurrence relations for Feynman integrals. Similar dependence may
occur in the generation of difference schemes for PDEs with variable co-
efficients containing parameters. Theoretically established exponential
and superexponential (depends on the ideal and ordering) complexity
of constructing polynomial Gröbner bases implies that construction of
difference Gröbner bases is at least exponentially hard in the number
of independent variables (indices). Besides, in the presence of param-
eters the volume of computation grows very rapidly as the number of
parameters increases.

The reduction of loop Feynman integrals for more than 3 internal
lines with masses is computationally hard for the current version of the
package. One reason for this is that the Maple implementation does
not support Janet trees since Maple does not provide efficient data
structures for trees.

Another reason is that in the improved version of the algorithm
there is still some freedom in the selection strategy for elements in Q to
be reduced modulo G. Though our algorithms are much less sensitive to
the selection strategy than Buchberger’s algorithm, the running time
still depends substantially on the selection strategy: mainly because
of dependence of the intermediate coefficients growth on the selection
strategy. To find a heuristically good selection strategy one needs to do
intensive benchmarking with difference systems. In turn, this requires
an extensive data base of various benchmarks that, unlike polynomial
benchmarks, up to now is missing for difference systems.
For the problem of reduction of multiloop Feynman integrals recently
some new reduction algorithms have been designed (cf. [28] and refer-
ences therein) that exploit special structure of these integrals and by
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this reason are computationally much more efficient then the universal
Gröbner bases method.

The comparison of implementations of polynomial involutive algo-
rithms for Janet bases in Maple and in C++ [17] shows that the C++
code is of two or three order faster than its Maple counterpart. To-
gether with efficient parallelization of the algorithm this gives a real
hope for its practical applicability to problems of current interest in
reduction of loop integrals.

Thus, for successful application of the Gröbner basis technique
to multiloop Feynman integrals with masses and to multidimensional
PDEs with multiparametric variable coefficients one has not only to
improve our Maple code but also to implement the algorithms for
computing Janet and/or Janet-like difference bases in C++ as a spe-
cial module of the GINV software [16] available on the web page
http://invo.jinr.ru.

As to the algorithm StandardBasis, it has not been yet imple-
mented. Another algorithmic development also aimed at computation
of Gröbner bases for systems of nonlinear difference polynomials is de-
scribed in recent paper [29].
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