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Abstract
Medical imaging mainly treats and processes missing, ambigu-

ous, complementary, redundant and distorted data. Biomedical
image registration is the process of geometric overlaying or align-
ment of two or more 2D/3D images of the same scene, taken
at different time slots, from different angles, and/or by differ-
ent acquisition systems. In medical practice, it is becoming in-
creasingly important in diagnosis, treatment planning, functional
studies, computer-guided therapies, and in biomedical research.
Technically, image registration implies a complex optimization of
different parameters, performed at local or/and global levels. Lo-
cal optimization methods frequently fail because functions of the
involved metrics with respect to transformation parameters are
generally nonconvex and irregular. Therefore, global methods are
often required, at least at the beginning of the procedure. In this
paper, a new evolutionary and bio-inspired approach – bacterial
foraging optimization – is adapted for single-slice to 3-D PET
and CT multimodal image registration. Preliminary results of
optimizing the normalized mutual information similarity metric
validated the efficacy of the proposed method by using a freely
available medical image database.

Keywords: medical imaging, image registration, soft com-
puting, evolutionary strategies, bacterial foraging algorithm,
global optimization.

1 Introduction

Image registration (IR) is a fundamental task in computer vision used
to find either a spatial transformation (e.g., rotation, translation, etc.)
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or a correspondence (matching of similar image entities) among two (or
more) images taken under different conditions (at different times, using
different sensors, from different viewpoints, or a combination of them),
with the aim of overlaying such images into a common one [Gon02],
[Pra01], [Ran05]. Over the years, IR has been applied to a broad range
of situations from remote sensing to medical images or artificial vision
and CAD systems, and different techniques have been independently
studied resulting in a large body of research.

IR methods can be classified in two groups according to the na-
ture of images [Cor06]: voxel -based IR methods (also called intensity-
based), where the whole image is considered for the registration process;
and, on the other side, feature-based methods, which consider promi-
nent information extracted from the images, being a reduced subset
of them. The latter methods take advantage of the lesser amount of
information managed in order to overcome the problems found in the
former when the images present some inconsistences to deal with, for
example, regardless of changes in the geometry of the images, radiomet-
ric conditions, and appearance of noise and occlusion. These features
correspond to geometric primitives (points, lines, surfaces, etc.) which
are invariant to the transformation to be considered between the input
images. Moreover, the latter methods perform faster than the former
ones due to the reduced amount of data they take into account, at the
expense of achieving coarse results.

Likewise, IR is the process of finding the optimal spatial transfor-
mation (e.g., rigid, similarity, affine, etc.) achieving the best overlaying
between two (or more) different images named scene and model images
(Figure 1). They both are related with the specific transformation,
measured by a similarity metric function. Such transformation esti-
mation is interpreted into an iterative optimization procedure in order
to properly explore the search space. Two search approaches have been
considered in the IR literature: matching-based, where the optimization
problem is intended to look for a set of correspondences of pairs of those
more similar image entities in both the scene and the model images,
from which the registration transformation is derived; and the trans-
formation parameter-based, where the strategy is to directly explore
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inside each range of the transformation parameters. Both strategies
can be used with either a voxel-based or a feature-based approach.

Specific aspects such as the presence of noise, image discretization,
different amplitudes in the scale of the IR transformation parameters,
the magnitude of the transformation to be estimated cause difficulties
for traditional local optimizers (gradient- and nongradient-based) and
they become prone to be trapped in local minima. As a consequence,
global methods are preferred, at least at the beginning of the IR pro-
cess.

Medical imaging modalities

Within the current clinical setting, medical imaging is a vital com-
ponent of a large number of applications occurring throughout the clin-
ical track of events, e.g. in clinical diagnostic, planning, consummation,
and evaluation of surgical and radiotherapeutical procedures.

The imaging modalities can be divided into two global categories,
i.e. anatomical and functional. Anatomical modalities include X-
ray, CT (computed tomography), MRI (magnetic resonance imaging),
US (ultrasound), and (video) sequences obtained by various catheter
“scopes”.

Functional modalities depict primarily information on the metabo-
lism of the specific anatomy. They include scintigraphy, SPECT (single
photon emission computed tomography), PET (positron emission to-
mography), which all are nuclear medicine imaging modalities, then
fMRI (functional MRI), pMRI (perfusion MRI), fCT (functional CT),
EIT (electrical impedance tomography), and MRE (magnetic resonance
elastography).

Since information gained from two images acquired in the clinical
practice is usually of a complementary nature, proper integration of
useful data obtained from the separate image modalities is often de-
sired. A first step in this integration process is to bring the modalities
involved into spatial alignment, a procedure referred to as registration.
After registration, a fusion step may be required for the integrated
display of the data involved.
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2 The image registration problem

During the last decades, hundreds of papers were dedicated to image
registration (IR) problem and different taxonomies have been estab-
lished to classify the IR methods presented so far, considering different
criteria: the image acquisition procedure, the search strategy, the type
of transformation relating the images, and so forth [Mai98], [Zit03],
[Zol03]. There is not a universal design for an IR method that could
be applicable to all registration tasks, since various considerations on
the particular application must be taken into account.

Yet, IR methods usually require the four following components (Fig-
ure 1): two input Images, named as Scene Is = {p1, p2, ..., pn} and
Model Im = {p1, p2, ..., pm}, with pi and pj being image points; a
registration transformation f being a parametric function relating the
two images; a similarity metric function F in order to measure a qual-
itative value of closeness or degree of fitting between the transformed
scene image, denoted by f ′(Is), and the model image; and an optimizer
which looks for the optimal transformation f inside the defined solu-
tion search space. Hence, the key idea of the IR process is focused on
determining the unknown parametric transformation that relates both
images, by placing them in a common coordinate system bringing the
points as close as possible. Of course, the global optimum is obtained
at the best registration transformation. Because of the uncertainty un-
derlying such transformation, the IR task arises as a nonlinear problem
that cannot be solved by a direct method (e.g., resolution of a simple
system of linear equations). It should be solved by means of an iterative
procedure searching for the optimal estimation of f , following a specific
search space optimization scheme aiming at minimizing the error of a
given similarity metric of resemblance. Classical local optimizers can
be used for this task although their main drawback is that they usually
get trapped in a local minima solution. The main reasons for such be-
havior are related to both the nature of the problem to be tackled and
the greedy/local search features of these methods. So, the interest on
the application of soft-computing and Artificial Intelligence in general
to the IR optimization process has increased in the last decade due to
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their global optimization nature.

Figure 1. Image registration as an optimization process

According to the nature of images, IR methods can be classified as
voxel -based (or intensity-based) and feature-based. The former directly
operate with the whole raw images. The latter approach introduces a
step before the application of the registration process: a reduced sub-
set of the most relevant features is extracted from the images. One
important drawback of voxel-based methods is that they can not re-
liably approach the variable contrast obtained during the acquisition
of different images. In that case, the similarity metric offers unreli-
able measurements and often induces the optimization process to be
trapped in local minima. The feature-based methods of IR are based
on the extraction of salient features (e.g. geometric primitives) from
the images. The feature detector has to accurately extract invariant
features, i.e. regardless of changes in the geometry and contrast of the
images and appearance of noise.

2.1 Transformations

The IR methods can be classified according to the registration trans-
formation used to relate both the scene and the model images. The
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first category of transformation models includes linear transformations,
which preserves the operations of vector addition and scalar multipli-
cation, being a combination of translation, rotation, global scaling, and
shear components. The most common linear transformations are rigid,
similarity, affine, projective, and curved. Linear transformations are
global in nature, thus not being able to model local deformations. The
second category of transformation models includes “elastic” or “non-
rigid” transformations, which allow local warping of image features,
thus providing support for local deformations.

2.2 Similarity metric

The similarity metric is a function F that measures the goodness of
a given registration solution, that is, of a registration transformation
f . The final performance of any IR method strongly depends on its
accurate estimation. Each solution is evaluated by F applying such
transformation f on one of the two images, usually to the scene image
(f(Is)). Next, the degree of closeness or fitting between the transformed
scene and the model images, Ψ(·) must be determined,

F (Is, Im, f) = Ψ(f(Is), Im). (1)

The main approaches trying to estimate the function Ψ(·) depend
on the dimensionality (2D or 3D) and the nature of the considered
images. There are: (a) voxel-based approach: sum of squared differ-
ences, normalized cross-correlation (i.e., correlation coefficient or phase
correlation), and mutual information; (b) feature-based approach: fea-
ture values-based metrics (i.e., registration based on the curvature) and
distance between corresponding geometric primitives.

Unfortunately, the F function is affected by both the discretization
of images and the presence of noise, yielding worse estimations and
favoring the IR to get trapped in local minima.
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2.3 Search space strategies

The IR process performs an iterative exploration to obtain that opti-
mal transformation f (introduced in Figure 1). So, the closer f to the
unknown global optimum, the better the fitting (measured by the sim-
ilarity metric F ) between scene and model. The optimization process
considered to obtain those solutions can be deterministic or stochastic
(either a global or a local one).

Although the final registration problem solution consists of the right
values for the parameters which determine f , we can distinguish two
different strategies to solve the problem, each of them working in a
different solution space:

(i) the first searches in the matching space to obtain a set of corre-
spondences of pairs of the most similar image entities in both the
scene and the model images, from which the registration trans-
formation is derived;

(ii) the second directly makes a search in the space of the f parame-
ters guided by the F function, called transformation parameters
space.

The matching-based search space exploration usually consists of the
two following stages: first, a set of correspondences with those more
similar regions of pixels (voxel-based) or geometric primitives (feature-
based) in both the scene and the model images must be computed;
second, the transformation f is assessed by numerical methods consid-
ering the previous matching.

On the contrary, transformation parameters-based search space in-
volves directly searching for the solution in the space of parameters of
the transformation f . In this respect, each solution to the IR problem
is encoded as a vector composed of the values for the parameters of
f , and the IR method generates possible vectors of parameter values,
that is, possible registration transformations. As a consequence, the
search space exploration is guided by the similarity metric F . In this
way, each solution vector is evaluated by the chosen metric, and the
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IR problem becomes a parameter optimization procedure of finding the
best values of f that maximize the similarity metric F .

Other classification divides search strategies in local and global ones.
Local optimization techniques frequently fail because functions of these
metrics with respect to transformation parameters are generally non-
convex and irregular and, therefore, global methods – such as those
based on evolutionary algorithms – are often required.

In recent years a lot of studies and papers were dedicated to med-
ical IR [Alt06], [Coo03], [He02], [Hil94], [Lav04], [Lev08], [Mai96, 98],
[Plu03], [Qin93], [Zib01], [Xua06]. Concerning the CT—PET images
registration topic, some valuable attempts were made in the past. Thus,
rigid 3D transformations were performed, e.g., by Alpert [Alp90] us-
ing the images principal axes and center of gravity, and by Pietrzyk
[Pie94], who used a fully interactive method. Affine registration was
obtained by Wahl [Wah93], employing user identified anatomical land-
marks and external markers, and Maguire [Mag91], who optimized
cross-correlation around such user identified anatomical landmarks
and external markers. In [Lee06] a robust surface registration using
a Gaussian-weighted distance map (GWDM) for PET-CT brain fu-
sion was proposed. A similarity measure was evaluated repeatedly by
weighted cross-correlation (WCC).

In recent years, the application of several well-known evolutionary
algorithms (EAs) to the IR optimization process has introduced an out-
standing interest in order to solve those problems due to their global
optimization techniques nature. The first attempts to solve IR using
evolutionary computation [Bac97] can be found in the early eighties,
when Fitzpatrick et al. [Fit84] proposed such approach based on a
genetic algorithm for the 2D case and applied it to angiographic im-
ages. Since then, several evolutionary approaches have been proposed
to solve the IR problem, mainly in connection with the transformation
parameters-based search space, as it is shown e.g. in [Cho04], [Cor06],
[Cor07], [Eti00], [Rey06], [Rou00], [Wac04]. The main reason of using
global optimization techniques, such as EAs-based algorithms for IR, is
that they do not require an optimum solution to achieve high accuracy
of registration.
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3 Bacterial foraging algorithm

Introduced by Passino [Pas02], [Liu02], bacterial foraging paradigm
is a bio-inspired optimization method based on the foraging model.
This paradigm belongs to the broader class of distributed nongradi-
ent global optimization. A foraging animal takes actions to maximize
the energy obtained per unit time spent for foraging, E/T , in the face
of constraints presented by its own physiology (e.g., sensing and cog-
nitive capabilities) and environment (e.g., density of prey, risks from
predators, physical characteristics of the search area). In other words,
these social animals, like E. coli – a bacterium, try to maximize their
long-term average rate of energy intake.

Let us suppose that θ is the position of a bacterium and J(θ) rep-
resents the combined effects of attractants and repellants from the en-
vironment, with, for example, J(θ) < 0, J(θ) = 0, and J(θ) > 0 rep-
resenting that the bacterium at location θ is in nutrient-rich, neutral,
and noxious environments, respectively. We want to find the mini-
mum of J(θ), θ ∈ <p , where we do not have measurements or an
analytical description of the gradient ∇J(θ). So, ideas from bacterial
foraging are used to solve this nongradient optimization problem. Ba-
sically, chemotaxis is a foraging behavior that implements a type of
optimization where bacteria try to climb up the nutrient concentration
(find lower and lower values of J(θ)), avoid noxious substances, and
search for ways out of neutral media (avoid being at position θ where
J(θ) ≥ 0). In this way, they implement a type of biased random walk.

The chemotactic actions of E. coli may be resumed as follows:

(i) if in neutral medium, alternate tumbles and runs ⇒ search;

(ii) if swimming up a nutrient gradient (or out of noxious substances),
swim longer (climb up nutrient gradient or down noxious gradi-
ent) ⇒ seek increasingly favorable environments;

(iii) if swimming down a nutrient gradient (or up noxious substance
gradient), then search ⇒ avoid unfavorable environments.

186



Medical Image Registration by means of . . .

3.1 Chemotaxis, swarming, reproduction, elimination,
and dispersal

In [Pas02], [Pas05] a chemotactic step was defined to be a tumble fol-
lowed by a tumble or a tumble followed by a run. Let j be the index
for the chemotactic step. Let k be the index for the reproduction step.
Let l be the index of the elimination-dispersal event. Let

P (j, k, l) = {θi(j, k, l) | i = 1, 2, . . ., S} (2)

represent the position of each member in the population of the S
bacteria at the jth chemotactic step, kth reproduction step, and lth
elimination-dispersal event. Here, let J(i, j, k, l) denote the cost at the
location of the ith bacterium θi(j, k, l) ∈ <p (sometimes we may refer to
the ith bacterium position as θi). Note: we will interchangeably refer to
J as being a “cost” (using terminology from optimization theory) and
as being a nutrient surface (in reference to the biological connections).
For actual bacterial populations, S can be very large (e.g., S = 109),
but p = 3. In computer simulations, we may use much smaller popula-
tion sizes and keep the population size fixed. Let Nc be the length of
the lifetime of the bacteria as measured by the number of chemotactic
steps they take during their life. Let C(i) > 0, i = 1, 2, . . ., S, denote
a basic chemotactic step size that we will use to define the lengths of
steps during runs.

To represent a tumble, a unit length random direction, say φ(j), is
generated; this will be used to define the direction of movement after
a tumble. In particular, we let

θi(j + 1, k, l) = θi(j, k, l) + C(i)φ(j) (3)

so that C(i) is the size of the step taken in the random direction spec-
ified by the tumble. If at θi(j + 1, k, l) the cost J(i, j + 1, k, l) is better
(lower) than at θi(j, k, l), then another step of size C(i) in this same
direction will be taken. This swim is continued as long as it continues
to reduce the cost, but only up to a maximum number of steps, Ns .
This represents that the cell will tend to keep moving if it is headed in
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the direction of increasingly favorable environments. The above discus-
sion is for the case where no cell-released attractants are used to signal
other cells that they should swarm together. The cell-to-cell signaling
via an attractant is represented with J i

cc(θ, θi(j, k, l)), i = 1, 2, . . ., S,
for the ith bacterium.

Let dattract be the depth of the attractant released by the cell and
wattract be a measure of the width of the attractant signal (a quan-
tification of the diffusion rate of the chemical). The cell also repels a
nearby cell in the sense that it consumes nearby nutrients and it is not
physically possible to have two cells at the same location. To model
this, we let

hrepellant = dattract

be the height of the repellant effect and wrepellant be a measure of the
width of the repellant.

Let

Jcc(θ, P (j, k, l)) =
S∑

i=1

J i
cc(θ, θ

i(j, k, l)) = (4)

=
S∑

i=1

[
−dattract exp

(
−wattract

p∑

m=1

(θm − θi
m)2

)]

+
S∑

i=1

[
hrepellant exp

(
−wrepellant

p∑

m=1

(θm − θi
m)2

)]

denote the combined cell-to-cell attraction and repelling effects, where
θ = [θ1, . . ., θp]T is a point on the optimization domain and θi

m is the
mth component of the ith bacterium position θi. Note that as each cell
moves, so does its J i

cc(θ, θ
i(j, k, l)) function, and this represents that it

will release chemicals as it moves. Due to the movements of all the cells,
the Jcc(θ, P (j, k, l)) function is time varying in that if many cells come
close together there will be a high amount of attractant and hence an
increasing likelihood that other cells will move toward the group. This
produces the swarming effect, where the ith bacterium, I = 1, 2, . . ., S,
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will hill-climb on J(i, j, k, l) + Jcc(θ, P ) (rather than the J(I, j, k, l)
defined above) so that the cells will try to find nutrients, avoid noxious
substances, and at the same time try to move toward other cells, but
not too close to them. The Jcc(θ, P ) function dynamically deforms the
search landscape as the cells move to represent the desire to swarm,
i.e., swarming is viewed as a minimization process.

After Nc chemotactic steps, a reproduction step is taken. Let Nre

be the number of reproduction steps to be taken. For convenience, we
assume that S is a positive even integer.

Let

Sr = S/2 (5)

be the number of population members who have had sufficient nutri-
ents so that they will reproduce (split in two) with no mutations. For
reproduction, the population is sorted in order of ascending accumu-
lated cost (higher accumulated cost represents that a bacterium did
not get as many nutrients during its lifetime of foraging and hence is
not as “healthy” and thus unlikely to reproduce); then the Sr least
healthy bacteria die and the other Sr healthiest bacteria each split into
two bacteria, which are placed at the same location. Other fractions
or approaches could be used in place of (5); this method rewards bac-
teria that have encountered a lot of nutrients and allows us to keep a
constant population size, which is convenient in coding the algorithm.

Let Ned be the number of elimination-dispersal events, and for
each elimination-dispersal event each bacterium in the population is
subjected to elimination-dispersal with probability ped. We assume
that the frequency of chemotactic steps is greater than the frequency
of reproduction steps, which is in turn greater in frequency than
elimination-dispersal events (e.g., a bacterium will take many chemo-
tactic steps before reproduction, and several generations may take place
before an elimination-dispersal event).

The Bacterial Foraging Optimization Algorithm (BFOA) is fully
described in pseudo-code in paper [Pas02] and was used as it is during
our experiments.
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4 Mutual information based multimodal image
registration

Multimodal images acquired at different time moments have variations
due to the acquisition system, position of the subject, and different ge-
ometric deformations. To optimally register and then fuse multimodal
images, we have to minimize the linear and non-linear differences be-
tween the two images. In our paper we propose the use of normalized
mutual information as a similarity metric for registering PET and CT
images. Mutual information, which measures statistical dependence
between two images viewed as random variables, has been proved to
be robust for multimodal registration, with respect to dynamic range
and intensity resolution of the images. Mutual information represents
a measure of the relative independence of two images, in the sense that
high values indicate high dependence.

Registration of multimodal medical images may be described as
follows. For instance, let P and C be the PET and CT images for
registration, respectively. Mutual information between the two images
can be represented as

M(P, C) = H(P ) + H(C)−H(P, C). (6)

H(·) is the entropy of the image and H(P, C) is the joint entropy.
Registering P with respect to C (in this manner, as CT image has
much more geometric information) requires maximization of mutual
information between P and C, thus maximizing the entropy H(P ) and
H(C), and minimizing the joint entropy H(P,C). Because mutual
information based registration methods are sensitive to changes that
occur in the distributions as a result of difference in overlapping regions,
normalized mutual information can be used:

NM(P, C) =
H(P ) + H(C)

H(P, C)
. (7)

Our study approaches the rigid body image registration, which ini-
tially determines global alignment, followed by local elastic registra-
tion. Let T denote the spatial transformation that maps features or
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coordinates (spatial locations) from one image or coordinate space to
another image or coordinate space. Let pA and pB denote coordi-
nate points (pixel locations) in images A and B, respectively. The
image registration problem is to determine T so that the mapping
T : pA → pB ⇔ T (pA) = pB results in the “best” alignment of A
and B. For 3-D rigid body registration, the mapping of coordinates
p = [x, y, z]T into p′ = [x′, y′, z′]T can be formulated as a matrix mul-
tiplication in homogeneous coordinates, as shown in (8) in an explicit
manner. That is, the goal of the optimization is to determine the pa-
rameters tx, ty, tz, α, β, and γ in (8).

Usually, optimization in image registration means to maximize sim-
ilarity. Similarity metric values, as functions of transformation parame-
ters, refer to the objective function, denoted as f(x). Alternatively, one
may formulate the image registration as a minimization problem and,
thus, the goal is to minimize – f(x). Although there is yet no proof for
its optimality, because of its robustness (usually it attains its maximum
at correct alignment) and good results in previous works, normalized
mutual information was selected as the similarity measure in our study.
Moreover, it is still generally non-smooth and prone to local optima.
For this reason, global optimization approaches are preferred.

5 Biomedical image registration using bacte-
rial foraging algorithm

In contrast to genetic algorithms and evolutionary strategies, which
exploit the competitive characteristics of biological evolution (e.g., sur-
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vival of the fittest), bacterial foraging (BF) exploits cooperative and
social aspects of animal colonies (like E. coli bacterium) in their at-
tempts to obtain nutrients that maximize energy intake per unit time
spent for foraging.

As it is shown before, the registration of an image with another is
seen as the minimization of the objective function of normalized mutual
information (7). For a rigid body registration this means to find the
transformation T (that is, parameters tx, ty, tz, α, β, and γ in (8))
that maps the pixel p into pixel p′.

We have chosen to register 2-D PET images into 3-D CT images,
taken from www.medcyclopaedia.com, as depicted in Figure 6 and Fig-
ure 7 below. Normalized mutual information was computed using 60
histogram bins, which generally produces a smooth density approxima-
tion while retaining intensity features [Mae97]. Each 2-D image was
oriented at d0 = 10, 15, 20, 25, and 30 voxels from ground truth trans-
lation (relative small distances), as expert knowledge of the correct
orientation can greatly help the search process. For each distance, ten
orientations were applied, ranging from 5◦ to 45◦. For each 2-D im-
age, distance, and orientation, eight trials were performed. After some
trials, the population size was chosen to be S = 150.

Transform T that maps the pixel p in pixel p′ is defined by 6 pa-
rameters: tx, ty, tz, α, β, γ. To find the optimal transform in terms of
normalized mutual information, the bacterial foraging algorithm was
used for optimization in space <6. To have a uniform treatment of the
parameters, the search space was scaled in interval [0, 100] for all six
parameters.

Within the bacterial foraging paradigm, the following chemotactic
actions are defined:

(i) search in a neutral medium;

(ii) seek increasingly favorable environments;

(iii) avoiding unfavorable environments.

Considering that a priori information about the transform parameters
is unknown, only the search case can be used. Cells-released attractants

192



Medical Image Registration by means of . . .

are used to signal other cells the favorable movement directions.
In the example above, we reduced the search space to <2 and the

following parameters were used: number of bacteria in the population
S = 150, number of chemotactic steps before reproduction – 100, mag-
nitude of secretion of attractant dattract = 0.1 and chemical cohesion
signal wattract = 0.2.

In Figure 2, the bacteria trajectories for the first 4 generations are
presented. After 4 generations an elimination / dispersal was applied
and the trajectories for the next 4 generations are shown in Figure 3.

Next, the following parameters were varied: magnitude of secretion
of attractant, dattract = 0.25 and chemical cohesion signal, wattract =
0.1 (Figures 4 and 5). The more the chemical cohesion signal value is
smaller, so the attractant is more diffused.

The validity of the proposed method was checked by means of the
following metrics [Wac04]:

1) accuracy, as measured by the ratio of correct registrations to all
registrations. A registration is considered to be correct if the Eu-
clidean distance from the ground truth translation ([tx0, ty0, tz0])
and final translation ([t′x0, t

′
y0, t

′
z0]) is less than 2 voxels, and if

the maximum absolute value of the three rotation errors is less
than 2. These values have been found to be good indicators of
registration quality; we obtained accuracies between 0.6 and 0.8
for different images; as anticipated, the best accuracies were ob-
tained for d0 = 10 voxels from ground truth translation;

2) efficiency, as measured by the mean number of function evalua-
tions for correct registrations for each 2-D image registered to a
3-D volume.

The mean run time varied among different trials, between tens of
seconds and 130 sec.

Moreover, registered PET-CT images are less sensitive to contrast
changes compared to the CT images alone. As anticipated, the reg-
istered images also provide more distinguishing information compared
to the PET and CT images. These properties of the proposed method

193



H. Costin, S. Bejinariu

Figure 2. Bacteria trajectories for the first 4 generations dattract = 0.1,
wattract = 0.2

Figure 3. Bacteria trajectories for 4 generations after elimination dis-
persal, dattract = 0.1, wattract = 0.2
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Figure 4. Bacteria trajectories for the first 4 generations dattract = 0.25,
wattract = 0.1

Figure 5. Bacteria trajectories for 4 generations after elimination dis-
persal, dattract = 0.25, wattract = 0.1

195



H. Costin, S. Bejinariu

lead us to further continuing our study to improve the registration
performance.

Figure 6 is an example of PET-CT image registration, with images
taken from the portal www.medcyclopaedia.com. From medical point
of view, it demonstrates the physiologic accumulation of fludeoxyglu-
cose (FDG), a radiopharmaceutical, in the whiter regions of the body
image.

In Figure 7, a coronal PET scan (b) presents an intense hyperme-
tabolic activity shown by an arrow. This image may represent a tumor
in the bowel or a mesenteric lymph node. This dilemma was later
solved at biopsy, and a primary carcinoid tumor was found.

6 Conclusions

A new application of bacterial foraging optimization algorithm (BFOA),
specifically used for biomedical image registration, was proposed in this
paper. The preliminary results demonstrate the efficacy of using BF
and stochastic global optimization for biomedical image registration.
Moreover, like many evolutionary techniques, BFOA is intrinsically
parallel, and execution times can be significantly improved by using
distributed- or shared-memory computer architectures.

Concerning the actual application in medical imaging, it is already
known that the primary advantage of PET-CT fusion technology is the
ability to correlate findings from two complementary imaging modal-
ities in a comprehensive way that synergetically combines anatomic
information with functional and metabolic data. CT provides very fine
anatomic details but does not yield functional information, whereas
FDG PET lacks anatomic information but reveals aspects of differ-
ent tumors and allows metabolic measurements. Yet, physiologic FDG
uptake in non-malignant conditions limits the specificity of PET, par-
ticularly in the post-therapy setting. Hybrid PET-CT scanners allow
PET and CT image fusion for differentiation of physiologic variants
from juxtaposed or mimetic neoplastic lesions and more accurate tu-
mor localization. However, software-based fusion of separately acquired
PET and CT scans is more likely to lead to misregistration due to inde-
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Figure 6. Coronal CT (a), PET (b), and PET-CT registered (c) images

Figure 7. Primary carcinoid tumor of the bowel. CT image (a), PET
image (b), and PET-CT image (c)
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pendent parameters and differences in patient positioning. In addition,
CT allows rapid acquisition of attenuation correction data for the PET
scan.

This study shows that the accuracy obtained by image registration
with BFOA is well suited for image-guided radiotherapy. Of course,
we have to extend our work to annotated databases, both for PET-CT
images, and for separately acquired PET and CT images.

Future work will be dedicated to combine bacterial foraging ap-
proach with other evolutionary techniques and local methods for image
registration, as the need for hybrid approaches for difficult registration
problems claims.
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Iaşi, Romania

2 Institute of Computer Science of Romanian Academy,
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