
Computer Science Journal of Moldova, vol.20, no.2(59), 2012

Self-Stabilization in Membrane Systems∗

Artiom Alhazov Marco Antoniotti Rudolf Freund
Alberto Leporati Giancarlo Mauri

Abstract

In this paper we study a notion of self-stabilization, inspired
from biology and engineering. Multiple variants of formalization
of this notion are considered, and we discuss how such properties
affect the computational power of multiset rewriting systems.

1 Introduction

Membrane systems, also called P systems, are a framework for (bioin-
spired) computational models, see [9], [10] and [14]. In this paper we
consider a one-region rewriting model with symbol objects. In this case,
membrane computing can be considered as (maximally parallel or se-
quential) multiset processing. In general, a computation is a sequence
of transitions between configurations. Configurations are multisets,
and the transitions are induced by rules, defined by reactants, prod-
ucts and control (additional applicability conditions, if any), viewed as
formal computational systems (generating/accepting numeric/vector
sets, or computing functions).

We will call a property dynamic if it depends on the behaviour of
a system and cannot be easily derived from its description (as opposed
to syntactic properties). Given any finite computation, we assume that
the property is easily verifiable. The two usual sources of undecidability
are a) that we do not always know whether we are dealing with finite

c©2012 by A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri
∗ The first author acknowledges the project RetroNet by the Lombardy Region

of Italy under the ASTIL Program (regional decree 6119, 20100618). The work of
the second, the fourth and the fifth author was partially supported by Università
degli Studi di Milano-Bicocca, Fondo di Ateneo per la Ricerca (FAR) 2011.

133

A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri

or infinite computations, and b) that some properties are defined on
infinite number of computations (due to non-determinism, to the initial
input or to some other parameter). In the case of this paper, another
source of potential undecidability is the finite set to be reached as given
in the definitions below.

Since in this paper we will deal with reachability issues, we would
also like to mention the connection with temporal logic [5].

Self-stabilization is a known concept in conventional distributed
computing, introduced by E. Dijkstra in [4], as well as in systems biol-
ogy, but not yet considered in the framework of membrane computing.
Other works on self-stabilization are [12], [1], [7], [13], [6], [3], to name
a few. It has been recalled by Jacob Beal during the Twelfth Confer-
ence in Membrane Computing, CMC12, and an attempt to formalize
it in the membrane computing framework has been done in [2]. The
underlying idea is the tolerance of natural and engineering systems to
perturbations. The formulation from [15] says:

A system is self-stabilizing if and only if:

1. Starting from any state, it is guaranteed that the system will
eventually reach a correct state (convergence).

2. Given that the system is in a correct state, it is guaranteed to
stay in a correct state, provided that no fault happens (closure).

In case of inherently non-deterministic systems, “with probability
1” should be added. Based on this concept, we propose to consider a
few formal properties, following the discussion below.

In this paper we consider fully cooperative multiset rewriting, pos-
sibly with promoters/inhibitors/priorities, operating either in the max-
imally parallel or the sequential mode. We consider a single working
region only, for two reasons. First, the properties of interest are unaf-
fected by flattening the static membrane structure. Second, we would
currently like to avoid the discussion about reachability related to “ar-
bitrary configurations” with dynamic membrane structure.

134

Self-Stabilization in Membrane Systems

2 Definitions

We assume the reader to be familiar with the basics of formal language
theory, e.g., we refer to [11].

An alphabet is a finite non-empty set V of abstract symbols. The free
monoid generated by V under the operation of concatenation is denoted
by V ∗; the empty string is denoted by λ, and V ∗ \ {λ} is denoted by
V +. The family of all finite (recursive, recursively enumerable) sets of
positive integers is denoted by NFIN (NREC, NRE, respectively).

2.1 Membrane systems

A one-region (rewriting) membrane system is a tuple

Π = (O, w, R) ,

where O is a finite alphabet, w ∈ O∗ is a string representing the initial
multiset, and R is a set of rules of the form r : u → v, u ∈ O+, v ∈ O∗.

A configuration of the system is represented by a multiset of ob-
jects from O contained in the region, and a rule r : u → v is applicable
if the current configuration contains the multiset specified by u. Fur-
thermore, applicability may be controlled by promoters (r : u → v|a),
inhibitors (r : u → v|¬b), or priorities (r′ > r). Throughout the paper,
we will use the word control to mean that at least one of these three
features is allowed. In such cases, in addition to the availability of u
for a rule r to be applicable, the promoter a must be present in the
current configuration, the inhibitor b has to be absent in the current
configuration, and no rule r′ with higher priority than r is allowed to
be applicable, respectively.

A computation step in the sequential mode consists of the non-
deterministic application of one applicable rule, replacing its left side
with its right side. In the maximally parallel mode, multiple applicable
rules have to be applied multiple times, to disjoint submultisets, in a
non-deterministic way, possibly leaving some objects idle, under the
condition that no further rule is applicable to them. The computation
step is denoted by the binary relation⇒. A computation halts when no
rule is applicable to the current configuration (halting configuration).

135

A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri

For a generating system, the result of a halting computation is the
total number of objects in the system when it halts. The set of num-
bers generated by a P system is the set of results of its computations.
An accepting system is described as (O, Σ, w, R), where Σ is an input
alphabet: instead of w, the computation starts with wx, x ∈ Σ∗, and
its result is |x| if it halts. The set of numbers accepted by a P system
is the set of results of its computations for all x ∈ Σ∗.

2.2 Self-stabilization and related properties

We now resume the discussion started at the end of the Introduction.
Clearly, “a correct state” should be rephrased as “a configuration

in the set of correct configurations”. Moreover, we would like to elim-
inate the set of correct states, let us denote it by S, as a parameter.
We say that our property holds if there exists some finite set S of con-
figurations satisfying the conditions 1 and 2 above. Since membrane
systems are inherently non-deterministic, we additionally propose two
weaker degrees of such a property: possible (there exists a computa-
tion satisfying the conditions), almost sure (the conditions are satisfied
with probability 1 with respect to non-determinism). Finally, if con-
dition 2 is not required, we call the corresponding property (finite)
set-convergence instead of self-stabilization. We now give the formal
definitions from [2].

Definition 1 A P system Π is possibly converging to a finite set S of
configurations iff for every configuration C of Π there exists a configu-
ration C ′ ∈ S such that C ⇒∗ C ′.

Definition 2 A P system Π is (almost surely) converging to a finite
set S of configurations iff for every configuration C of Π the computa-
tions starting in C reach some configuration in S (with probability 1,
respectively).

Definition 3 A P system Π is possibly closed with respect to a finite
set S iff for every non-halting configuration C ∈ S there exists a con-
figuration C ′ ∈ S such that C ⇒ C ′.

136

Self-Stabilization in Membrane Systems

Definition 4 A P system Π is closed with respect to a finite set S iff
for every non-halting configuration C ∈ S C ⇒ C ′ implies C ′ ∈ S.

We say that a system is (possibly, almost surely) set-converg-
ing if it is (possibly, almost surely, respectively) converging to some
finite set of configurations.

We say that a system is possibly self-stabilizing if it is possibly
converging to some finite set S of configurations and if it is possibly
closed with respect to S.

We say that a system is (almost surely) self-stabilizing if it is
(almost surely, respectively) converging to some finite set S of config-
urations and if it is closed with respect to S.

The examination of computational aspects of these properties mo-
tivates us to add “weakly” to the properties proposed in [2] – (possibly,
almost surely) converging, (possibly) closed, (possibly, almost surely)
set-converging, (possibly, almost surely) self-stabilizing – if the corre-
sponding conditions over configurations C only span the reachable
non-halting ones.

Another comment we can make on “almost sure” is that such a
property may depend on how exactly the transition probability is de-
fined. The easiest way is to assign equal probabilities to all transitions
from a given configuration. Alternatively, to a transition via a multiset
of rules rn1

1 · · · rnm
m we may assign the weight of a multinomial coeffi-

cient
(
n1+···+nm

n1,··· ,nm

)
= (n1+···+nm)!

n1!···nm! , which will make the corner cases less
probable than the average ones. There can be other ways to define
transition probabilities, but we would like to discuss the properties of
interest without fixing a specific way. We assume the transition prob-
abilities in an independent subsystem are the same as if it were the
entire system.

An important assumption we impose on the probability distribution
is that the probability of each transition is uniquely determined by the
associated multiset of rules and by the set of all applicable multisets of
rules, yet it does not depend on the objects that cannot react, or by
the previous history of the computation.

137

A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri

2.3 Register machines

In what follows we will need to simulate register machines; here we
briefly recall their definition and some of their computational proper-
ties. A register machine is a tuple M = (m,B, l0, lh, P), where m is
the number of registers, P is the set of instructions bijectively labeled
by elements of B, l0 ∈ B is the initial label, and lh ∈ B is the final
label. The instructions of M can be of the following forms:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically
jump to instruction l2 or l3. This instruction is called increment.

• l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, other-
wise decrease the value of register j by one and jump to instruc-
tion l2. The two cases of this instruction are called zero-test and
decrement, respectively.

• lh : HALT . Stop the execution of the register machine.

A register machine is deterministic if l2 = l3 in all its ADD in-
structions. A configuration of a register machine is described by the
contents of each register and by the value of the program counter, which
indicates the next instruction to be executed. Computations start by
executing the first instruction of P (labelled with l0), and terminate
with reaching a HALT -instruction.

Register machines provide a simple universal computational model
[8]. Register machines can be used as accepting or as generating as
well as as decision devices. In accepting register machines, a vector
of non-negative integers is accepted if and only if the register machine
halts having it as input. Usually, without loss of generality, we may
assume that the instruction lh : HALT always appears exactly once in
P , with label lh. In the generative case, we start with empty registers
and take as results of all possible halting computations. Being used
as decision devices, register machines may halt in an accepting state
with label lyes or in a rejecting state lno, respectively. In the following,

138

Self-Stabilization in Membrane Systems

we shall call a specific model of P systems computationally complete
if and only if for any register machine M we can effectively construct
an equivalent P system Π of that type simulating each step of M in a
bounded number of steps and yielding the same results.

3 Results

3.1 Accepting systems

For the following theorem we consider any computationally complete
model of P systems as defined above, e.g., a model with maximally par-
allel multiset rewriting or with controlled sequential multiset rewriting.

Theorem 1 If a model of P systems yields a computationally complete
class, then the weakly self-stabilizing subclass accepts exactly NREC.

Proof. For any recursive number set there is a register machine M
with one accepting state qyes and one rejecting state qno, deciding it.
We modify the register machine in order to obtain a register machine
M ′ which, once the decision is made, i.e., qyes or qno has been reached,
erases the workspace and then enters q′yes or q′no respectively, thereby
halting in q′yes if and only if the input is accepted or performing an
infinite loop with q′no : (SUB (1) , q′no, q

′
no) if and only if the input x is

rejected. This register machine M ′ now can be simulated with a P sys-
tem Π, which by construction starts with a configuration representing
the input x and will either end with halting in a configuration repre-
senting the state q′yes or else looping in a configuration representing the
state q′no, i.e., Π is weakly self-stabilizing.

Conversely, consider a self-stabilizing P system Π, i.e., for each
input x, Π performs a computation that ends up in a configuration from
a finite set S and then cannot reach any other configuration outside
S. Now consider the derivation graph for all possible computations
of Π on the input x, i.e., the nodes of this directed graph represent
the configurations and the edges indicate the derivation steps from one
configuration to the next one during one of these computations. As
the number of configurations directly derivable from any configuration

139

A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri

in Π is finite, this derivation graph is a connected directed graph with
finite degree (from each node, only a finite number of edges is leaving);
moreover, this graph cannot have a simple path (a path visiting each
node at most once) which is infinite, as every computation in Π has to
reach a configuration (node) from S and then cannot leave the set of
configurations S any more. Due to König’s lemma1, the total number
of nodes (configurations) in the derivation graph must be finite. Hence,
even without knowing the set S, the bruteforce algorithm computing
all possible transitions from the initial configuration, but halting as
soon as the system halts or a configuration already passed previously
is reached, yields a decision procedure for the set accepted by Π. 2

Strengthening this result by removing “weakly” is problematic, even
if more powerful P systems are used. Indeed, self-stabilization also
from unreachable configurations would need to handle not only the
configurations without any state or with multiple states (which could
be handled with the joint power of maximal parallelism and priorities),
but also configurations representing a situation with only one state
which is not the initial state of the underlying register machine. We
have to leave this question open.

Theorem 2 If a model of P systems yields a computationally complete
class, then the weakly almost surely self-stabilizing P systems of this
class accept exactly NRE.

Proof. We start with the construction from Theorem 1. We
want to show that relaxing the property “weakly self-stabilizing” to
“almost surely” leads from recursiveness to computational complete-
ness. It suffices to handle the case when the system rejects the input
by never halting. We modify the underlying register machine as fol-
lows: add a non-deterministic transition from every state p ∈ Q to a
new state e, from e erase the contents of all registers and then jump

1König’s lemma: Let G be a connected graph with finite degree. If G contains
an infinite number of nodes, then it contains an infinite simple path.

140

Self-Stabilization in Membrane Systems

back to e; this will not affect the accepting power, but it will pro-
vide a self-stabilizing path from any reachable non-halting configura-
tion. The transition from p to e can be done by p : (ADD(j), e, e),
since the registers then are emptied anyway. Furthermore, the basic
model of register machines does not allow non-determinism other than
p : (ADD(j), q, r). The branching at ADD instructions may be done
by assuming the original computation to be deterministic and replac-
ing p : (ADD(j), q, q) by p : (ADD(j), q, e). The branching at a SUB
instruction p : (SUB(j), q, r) may be done by the sequence of rules
p : (ADD(j), e, p′), p′ : (SUB(j), p′′, p′′), p′′ : (SUB(j), q, r).

The probability that the computation does not self-stabilize for
more than k steps decreases exponentially with respect to k. Indeed,
the simulation of a register machine by P system has bounded paral-
lelism, each instruction is simulated in a bounded number of steps, and
at least one path leads to self-stabilization. Moreover, there only exists
a finite number of different sets of applicable multisets containing a
branching from the simulation into the self-stabilization path, so the
minimum probability for this self-stabilization path is strictly positive.
These observations conclude the proof. 2

Theorem 3 If a model of P systems yields a computationally com-
plete class, then the class of all almost surely self-stabilizing maximally
parallel/sequential P systems with priorities accepts exactly NRE.

Proof. Given a set L from NRE, we first construct a P system Π
simulating a register machine M accepting L and then extend Π to a P
system Π′ even fulfilling the condition of almost surely self-stabilizing.

Let M = (m,B, l0, lh, P) a deterministic register machine accepting
L. We now construct the P system Π = (O, l0, R,>) with priorities
accepting L:

O = B ∪ {ai | 1 ≤ i ≤ m} ,

R = {l1 → ajl2 | l1 : (ADD (j) , l2) ∈ P}
∪ {ajl1 → l2, l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}

> = {ajl1 → l2 > l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P} .

141

A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri

The contents of a register i, 1 ≤ i ≤ m, is represented by the number
of symbols ai in Π. The state l of the register machine is represented
by the corresponding symbol l in Π, too. When M halts in lh with all
registers being empty, Π also halts with the configuration {lh}. Obvi-
ously, Π accepts L, both in the sequential as well as in the maximally
parallel mode.

To strengthen the result to even non-weak almost sure self-
stabilization, we have to take into account the non-reachable con-
figurations, too. The almost surely self-stabilizing P system Π′ =
(O′, l0, R′, >′) with priorities accepting L is constructed as follows:

O′ = B ∪ {ai | 1 ≤ i ≤ m} ∪ {e} ,

R′ = {l1 → ajl2 | l1 : (ADD (j) , l2) ∈ P}
∪ {ajl1 → l2, l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}
∪ {ai → e | 1 ≤ i ≤ m} ∪ {

ex → e | x ∈ O′} ∪ {e → e}
∪ {l → e | l ∈ B \ {lh}} ∪

{
ll′ → e | l, l′ ∈ B

}
,

>′ = {ajl1 → l2 > l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}
∪ {

ex → e > r, ll′ → e > r | l, l′ ∈ B, x ∈ O′, r ∈ R
}

∪ {l → e > ai → e | l ∈ B \ {lh} , 1 ≤ i ≤ m}
∪ {

r > e → e | r ∈ R′ \ {e → e}} .

In addition to the idea of the construction given in the proof of Theo-
rem 2 using the exit e by applying a rule l → e, l ∈ B \ {lh}, it suffices
to self-stabilize from the configurations with no state and from the con-
figurations with multiple states of the register machine. Multiple states
can be reduced by the rules ll′ → e, l, l′ ∈ B. If no state symbol is
present, then we may exit with one of the rules ai → e, 1 ≤ i ≤ m.
All remaining cases can be captured by the rules ex → e, x ∈ O′. By
construction, the self-stabilizing set S equals {{lh} , {e} , ∅}. The whole
construction again is valid for the sequential as well as the maximally
parallel mode. 2

An open question is whether priorities in Theorem 3 can be replaced
by promoters or inhibitors.

142

Self-Stabilization in Membrane Systems

3.2 Generating systems

Theorem 4 Any finite set M of numbers can be generated by some
self-stabilizing membrane system without control.

Proof. Consider a P system Π = ({s, a}, s, R), where

R = {s → an | n ∈ M} ∪ {amax(M)+1 → λ, ss → s}.

It is not difficult to see that Π generates M and (taking S = {an | n ≤
max(M)} ∪ {s}) it is self-stabilizing. 2

Since self-stabilization implies set-convergence and closure, and relax-
ing either property (to possibly, almost surely and/or weakly) does not
compromise the construction of the P system descibed in the proof
of Theorem 4, the lower bound on the generative power of associated
systems restricted to any property we have defined, is at least NFIN .

Lemma 1 A possibly finite set-converging system only generates finite
sets.

Proof. By Definition 1, for a system possibly converging to a set S, S
contains all halting configurations. Since S is finite, so is the set of all
the halting configurations. Hence, at most NFIN is generated. 2

Theorem 5 Any of the following classes of P systems dpOPm(c) gen-
erate exactly NFIN :

d is possibly/almost surely/ -
p is self-stabilizing/finite set-converging
m is maximally parallel/sequential
c is uncontrolled/with promoters/with inhibitors/with priorities.

Proof. The claims directly follow from Theorems 4 and 5. 2

We now proceed to weak properties of generative systems.

Theorem 6 Weakly almost surely self-stabilizing P systems generate
exactly NFIN .

143

A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri

Proof. The lower bound is shown by Theorem 4. Now take a weakly
self-stabilizing P system Π, and its associated set S from the definition
of the property. Consider an arbitrary halting computation of Π. Let C
be the configuration of Π one step before the halting. Interpreting finite
set-convergence for C implies that the halting configuration belongs to
S. Since the halting computation has been arbitrarily chosen, the set
of all halting configurations is a subset of S, and hence it is finite.
Therefore, the set generated by Π is finite, too. 2

Theorem 7 If a model of P system yields a computationally complete
class, then weakly possibly self-stabilizing subclass generates NRE.

Proof. Consider the construction from Theorem 2, but for a generative
P system. The simulation of the underlying register machine is carried
out until some point. Unless the P system has already halted, it always
has a choice to self-stabilize and loop. 2

4 Conclusions

We have presented some results (some of them summarized in Table 1)
concerning the notion of self-stabilization, recently proposed for mem-
brane computing. Its essence is reachability and closure of a finite set.

Property comput. (sequ/maxpar) Thm
complete +pri

self stabilizing acc. ?/F -/5
almost surely s.s. acc. ?/F acc. NRE/F 3/5
possibly s.s. acc. ?/F acc. NRE/F 3/5
weakly s.s. acc. NREC/F 1/6
weakly almost surely s.s. acc. NRE/F 2/6
weakly possibly s.s. acc. NRE/gen. NRE 2/7

Table 1. Results (letter F stands for “generate exactly NFIN”).

144

Self-Stabilization in Membrane Systems

One of the questions we proposed is whether priorities may be re-
placed by promoters or inhibitors in Theorem 2. Another open ques-
tion is the power of accepting with unrestricted self-stabilization, even
if maximal parallelism is combined with priorities (a comment after
Theorem 1 and the first question mark in the table above). The other
open questions are also marked with question marks in the table above.
Any system in the corresponding classes must (besides doing the actual
computation) converge (definitely, in probability or possibly) to some
finite set from anywhere, without using the joint power of maximal
parallelism and control.

We mention two topics that we did not deal with here. One is con-
sidering the finite set as a parameter, possibly leading to a discussion
in model checking. The other one concerns reachability questions in
dynamic membrane structures.

References

[1] Special Issue on Self-Stablization (A. Arora, Sh. Dolev, W.-P. de
Roever, Eds.). Distributed Computing 20(1), 2007, 93pp.

[2] A. Alhazov: Properties of Membrane Systems. Membrane Com-
puting, 12th International Conference, CMC 2011, Fontainebleau,
Revised Selected Papers (M. Gheorghe, Gh. Păun, G. Rozenberg,
A. Salomaa, S. Verlan, Eds.), Lecture Notes in Computer Science
7184, 2012, 1–13.

[3] Z. Collin, Sh. Dolev: Self-stabilizing Depth-first Search. Informa-
tion Processing Letters 49(6), 1994, 297-301.

[4] E.W. Dijkstra: Self-stabilizing Systems in Spite of Distributed
Control. Communication of the ACM 17(11), 1974, 643-644.

[5] E.A. Emerson: Temporal and Modal Logic. In: Handbook of The-
oretical Computer Science, Chapter 16, the MIT Press, 1990.

[6] T. Herman: Probabilistic Self-stabilization. Information Process-
ing Letters 35(2), 1990, 63–67.

145

A. Alhazov, M. Antoniotti, R. Freund, A. Leporati, G. Mauri

[7] Special Issue on Self-Stabilization (M. Merritt, Ed.). Distributed
Computing 7(1), 1993, 66pp.

[8] M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1967.

[9] Gh. Păun: Membrane Computing. An Introduction. Springer,
2002.

[10] Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of
Membrane Computing, Oxford University Press, 2010.

[11] G. Rozenberg, A. Salomaa: Handbook of Formal Languages, 3 vol.,
Springer, 1997.

[12] M. Schneider: Self-stabilization. ACM Computing Surveys 25(1),
1993, 45–67.

[13] T. Weis, A. Wacker: Self-stabilizing Automata. Biologically-
Inspired Collaborative Computing, IFIP International Federation
for Information Processing 268, 2008, Springer, 59–69.

[14] P systems webpage: http://ppage.psystems.eu

[15] http://en.wikipedia.org/wiki/Self-stabilization

Information about authors:

A. Alhazov1,2, M. Antoniotti1, Received May 8, 2012
R. Freund3, A. Leporati1, G. Mauri1,

1 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, 20126 Milano, Italy
E-mail: {artiom.alhazov, marco.antoniotti,
alberto.leporati, giancarlo.mauri}@unimib.it
2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

3 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

146

