
Computer Science Journal of Moldova, vol.20, no.1(58), 2012

Using Test Case Mutation to Evaluate the

Model of the User Interface

Izzat Alsmadi

Abstract

Mutation based testing is used to discover new possible errors
in software applications. This is since in this testing approach,
intentional incorrect lines of codes are injected to check the soft-
ware ability to produce results that are different from the correct
or original code. In this paper an automatic technique to gen-
erate valid and mutant test cases is proposed and developed. In
most mutation techniques, one or more values or parameters in
the specification, code, model, etc are intentionally modified and
then test cases are generated to see if injected modifications can
be detected. However, in this paper, test cases are mutated (i.e.
mutants are generated from the test cases) after they are gen-
erated from the GUI model. Mutations are then applied to the
GUI model to test its ability to kill those mutants by rejecting
them. Typical to mutation testing, the goal of this approach is
to discover possible errors or problems in the program that may
not be discovered by other methods. A robust model is expected
to differentiate between a valid and an invalid sequence of events.
An automatic execution and verification technique is also devel-
oped to evaluate the test cases that were rejected by the model
and calculate coverage based on the number of rejected test cases
to the total number of test cases. Results showed that in user
interfaces, and based on the nature of the mutation process im-
plementation, mutation can find new areas or types of errors that
may not be found using other approaches of testing.

Keywords: Mutation testing, Test case generation, test case
execution and verification. Random test case generation, and
GUI modelling.

c©2012 by Izzat Alsmadi

82

Using Test Case Mutation to Evaluate the . . .

1 Introduction

It is widely acknowledged that testing activities consume a significant
amount of software project resources. This is why research projects in
software testing focus on aspects that can reduce those expenses while
maintain or improve coverage. Test automation techniques are used
to achieve this goal. In order to use test automation, Artificial Intel-
ligent (AI) algorithms are used to replace or simulate tester activities.
Those activities include: test case generation, execution and verifica-
tion. Mutation is a surplus testing activity used in general to improve
test case generation and verification effectiveness. This is accomplished
by changing a small part of the code or the specification. Test cases are
then applied to see the test cases that can kill (i.e. discover) those mu-
tants. In this paper, mutation is used to evaluate the reliability of the
GUI model. In traditional code mutation processes, mutation coverage
can show whether test cases would expose the use of wrong operators
and also wrong operands. It works by reporting coverage of conditions
derived by mutating (i.e. substituting) the program’s expressions with
alternate operators, such as ”less than” substituted for ”more than”.
In the traditional mutation, mutation is occurred to the code or the
specification and test cases are expected to discover this mutation. In
this paper, the process is reversed. Mutation occurs in test cases and
the GUI model is expected to discover those mutations. Such approach
may fall under model based testing techniques where the GUI model
is tested for its ability to kill (i.e. reject, in the scope of this paper)
wrong test cases.

Why would someone apply mutation to test case generation?! In
GUI testing, most GUI components have one main event interaction.
For example, a button main even interaction is the ”double click”, the
textbox main interaction is ”entering a text”, the option item main in-
teraction is selecting one or options, etc. A GUI abstraction model that
considers the GUI components, their attributes and association with
each other along with one main event for each component is developed
[9, 10]. As such, the abstraction model considers both GUI structure
and event models. In this model, test cases can be generated directly

83

Izzat Alsmadi

Figure 1. A simple GUI structure sample generated from an application
in an XML format.

from the GUI structure file. Figure 1 shows a simple screen shot sample
generated from an application for a GUI structure. The XML file (gen-
erated automatically from the application at run time using reflection;
a reverse engineering process to discover the program GUI components
from its executable) contains all GUI components along with each com-
ponent parent. Test cases are then automatically generated from this
model through traversing through GUI paths starting from the entry
point to an end or leaf point. For each component, test cases are con-
sidering the component default event (in order to generate the test case
that will be executed automatically).

Is it significantly useful to make an effort to inject errors in test
cases and then make extra effort trying to find them ?! A mutation in
a test case means that we will try to execute a test case with invalid se-
quence or combination of GUI components. Such sequence should not
be executed successfully. This is somewhat similar to the specification
based testing that tests the application using valid and invalid inputs.
The application is expected to accept valid inputs and produce consis-
tent results while rejecting invalid inputs and halt the execution. The
next section introduces the related work. Section 3 lists the goals of
this research and describes the work done toward those goals. Section

84

Using Test Case Mutation to Evaluate the . . .

4 presents the conclusion and future work.

2 Related Work

In this literature survey, several relevant papers are discussed. Those
papers discussed using mutation for evaluating coverage and test case
effectiveness. All papers listed as references in this paper focus on
generating mutation operators based on one aspect of software products
and then evaluate test coverage or effectiveness from this mutation
process. The major difference that distinguish one paper from the
others is the software aspect that mutation operators are generated
from (e.g. requirements, software model, code, state diagram, etc).

One of the prominent researchers in the area of testing in gen-
eral and mutation testing in particular is Jeff Offutt at George Mason
University (cs.gmu.edu/ offutt). He has several books, book chapters
and relevant papers sole or with friends and students. He also devel-
oped the widely used mutation tool muJava (http://cs.gmu.edu/ of-
futt/mujava/). Examples of some of those contributions include:
[1,2,3,4,5,6,7,8]. These papers discussed developing and using muta-
tion tools such as Java and Mothra. They also discussed Mutation
operators and using mutation in source code, Web applications and
object oriented code. Coverage (e.g. code, and path) was a criterion
to evaluate the effectiveness of mutation against it. Mutation can be
divided based on the software stage where it occurs, or based on the
software product component(s) upon which the mutation process oc-
curs. For example, there are several papers that discuss: source code
mutation (e.g. Java, object oriented code), Windows or Web mutation,
test cases’ mutation, database, integration testing, design or require-
ment mutation. The selection of the papers in this literature review of
related work is based on selected variations of these different mutations.

In [1], Choi et al presented one of the earliest mutation based testing
environment. Other examples of mutation tools include: Java, Clipse,
Javalanche, Jumple, Certitude, Jester, Proteum, and SQLMutation.

In our paper, a new mutation tool is developed for the particular
mutation in user interface components. The Mothra testing project was

85

Izzat Alsmadi

initiated in 1986 by members of the Georgia Institute of Technology’s
software engineering research center. Mothra is written in FORTRAN
and consists of a collection of individual tools, each of which implements
a separate, independent function for the testing system. Examples of
some of its mutation operators include relation operators’ replacement.
In original Mothra, the tool converts the tested code to an intermediate
code in order to execute its mutated version by an interpreter.

In a recent paper [2], Mateo et al proposed mutation operators that
are somewhat related to GUI components as some of these operators
were trying to evaluate whether a component is interchanged with an
earlier version of the same component which is something that may
occur frequently especially with an evolving application. This system
level mutation is a continuation for a work done in this area previously
by Delamaro et al [14, 16, 17, and 24] work on MuJava. On the GUI
level, the mutation operators proposed consider a small subset of the
possible GUI mutants such as GUI components’ position or order inter-
change, component deletion and modification. However, as the paper
had a large scope, extensive evaluation and implementation of these
mutations were not mentioned. As our paper came as an extension of
a GUI test automation tool [9, and 10] which includes the automation
of all GUI testing activities: generation, execution and verification,
the tool is utilized and extended to generate GUI mutants along with
implementing the ability to automatically execute these mutants and
evaluate their results.

In [3], Offutt et al described how to use the information of equiva-
lent mutation for the problem of some paths’ feasibility. An equivalent
mutant is the one that will always produce the same output as the orig-
inal program, so no test case can kill it. This affects the mutation score
and causes it always to be less than complete coverage. Earlier, in his
dissertation, Offutt proposed using Constraint-Based Testing (CBT)
for detecting equivalent mutants [5].The paper presented a method to
detect equivalent mutants in code through using constraints. These
constraints are applied on the input domain to narrow its scope. GUI
mutation has some possible equivalent mutation operators that will be

86

Using Test Case Mutation to Evaluate the . . .

discussed in this paper.
Li et al evaluated mutation as a coverage criterion in comparison

with other testing coverage criteria such as path, edge, etc. [6]. Cov-
erage is a test case metric that is used to measure the ability of a par-
ticular test approach to cover one or more aspects of the software code
that may include: statement, branch, path, etc. coverage. The study
focus was on unit testing and showed that mutation can actually be
more effective in terms of coverage from many other test criteria. Un-
like mutation score, mutation coverage calculates the number of faults
that can be detected using the mutation process. In our GUI testing
approach, the GUI is serialized from the actual application dynamically
using a reverse engineering process. (i.e. .NET reflection). As a result,
the GUI model is represented by an XML file which includes the GUI
components, hierarchy and attributes. Mutations are created based
on the XML file and applied on the actual GUI during the execution
process. However, since a GUI test case looks like a GUI path (e.g.
File,Save,Exit), mutation can be also applied on or generated from the
test cases. In typical cases, the program is mutated and the test cases
are used to detect this mutation. However, in GUI, it is possible to
reverse the process through generating a mutated test case (that may
include for example an invalid GUI component) and then execute it
on the application where its failure is an indication that the mutant is
killed. If the mutant test case failed then this is a possibility of two:
either the mutant test case is equivalent and looks like a normal test
case to the GUI, or the test case is killable but the current state of the
GUI failed to kill this mutant.

Offutt et al discussed a selective mutation process to reduce the
expenses of mutation as the number of possible mutation operators for
even a small program can be significant [7]. A selective mutant can be
selected from many mutants if they produce the same results. Lee et
al. presented a Web based scenario level mutation based on interaction
scenarios written in an Interaction Specification Model (ISM) [8]. ISM
is an XML based interaction constraint language. Message mutation
can be applied in a wide range of applications that use messaging such
as distributed systems, networks, etc.

87

Izzat Alsmadi

Hierons paper represents another paper in specification or modeling
mutation [24]. The paper discussed Finite State Machines (FSMs)
mutation based on the basic elements of FSMs which are: states, events
and transitions. In FSM, each state is recognized by preconditions
which represent the constraints that are required to occur or be true in
order for the transition to the target state to occur, and post conditions
that represent the expected results from the state transition. In relation
to this subject, we are planning to extend GUI mutation in future to
cover GUI state based mutation aspects.

Other papers such as [11] and [14] discussed using mutation for eval-
uating states coverage. Examples of mutation operators for finite state
machines include: event, arc, or output missing, extra or exchanged.
For user interface mutation this also can be considered for GUI events
interaction, however, the focus of our mutation operators here is on the
GUI structural mutation.

There are some other papers such as [13 and 18] that used the muta-
tion process as a technique for validating a particular testing algorithm
or approach. Bradbury et al [13] used a subset of the Concurrency Mu-
tation Analysis (ConMan) operators that are discussed in the authors’
earlier paper [23]. However, by larger, model checking is a testing area
where mutation is not thoroughly investigated. In this paper and in
mutation research papers in general, one weakness of such studies is
that same authors are the one who usually create mutations and cre-
ate tests to detect them. If the goal of mutation is to try to imitate
real life bugs and test abilities to detect them, the creation of mutation
and the detection process should both be independent from each other.

Papers from [15, 16, 17, 18, 19, 20, 21 and 22] include examples
of using mutation in other software artifacts such as: Web, object
orientation and aspect oriented programming.

88

Using Test Case Mutation to Evaluate the . . .

3 Goals and Approaches

3.1 Using Test Case Mutation to Evaluate the Model of
the User Interface

Mutation is used in testing for various purposes. It is first used to
inject faults into the system and measure the system or the test cases’
ability to catch those mutants. As a result, mutants can indicate the
effective test cases through their abilities to detect errors which allow
us to eliminate ineffective test cases and improve test effectiveness.
Mutation can be also used to indirectly generate test cases. Mutation
testing can be also used to indirectly verify requirements. In mutation,
three steps are accomplished: First mutants are created according to
mutation operators; second program is executed with normal and mu-
tant inputs. Finally verification and coverage analysis is implemented
based on the percentage of mutants discovered. In this paper we will
present mutation for the test cases. In our GUI model, each test case
contains a sequence of GUI components. This means that the program
executing those test cases will interact with those components consec-
utively with the right or typical type of interaction (e.g. a button click,
a textbox type text, an option list option select, etc). Default types of
interactions are defined for each control type. As such, the mutations
that will be evaluated first are changing one component or widget in
each test case. From previous knowledge, we know that if the mutated
control is changed to a control in the same level, the new test cases can
still be executed (however, it should produce a different behaviors). As
such, we can divide the expected behaviors from test cases’ mutation
into 3 levels:

• It is expected that the majority of mutated test cases should
be rejected as they will produce invalid test cases that will not
fully and successfully be executed. Execution and Verification
tool should be able to distinguish that such mutant test cases
produced different results relative to the original ones.

• Some mutations will pass the validation process and produce a
valid test case. However, they will produce different results or

89

Izzat Alsmadi

behavior relative to the original test cases.

• It is expected that few mutations will not be killed at all as
they will be valid and produce identical results compared to the
original test case or the different behavior can’t be distinguished
or observed.

3.2 The Execution and Verification Process

Implementing and verification process for testing is one of the challeng-
ing processes that have several obstacles. An algorithm is developed to
read test cases one by one and execute them on the actual application.
Each GUI component is then tested to see if it is successfully executed
or not. Once all test case components are successfully executed, the
test case suite passes the execution and verification process. In such
processes many problems can occur. Timing is one of the problems
where one form or web page needs to wait for another execution to
finish while it is expecting it earlier. Synchronization and dealing with
multithreads are also other examples of such problems. In order to fo-
cus on evaluating and comparing original test cases with mutants, any
test case from the original test fails the execution and the verification
process will be eliminated. The importance of evaluating this execution
and verification effectiveness is that it can test our mutation process
by measuring the ratio of killed (i.e. invalid) mutants to valid ones.
Any invalid component should not be executed successfully. Figure 2
shows a sample log of the execution and verification process output.
The test list count shows the input GUI components to the execution
process and the test execution count shows the number of GUI com-
ponents that were successfully executed. The difference between the
two numbers (i.e. test list count – test execution count) represents the
number of GUI components that fails in the execution process.

90

Using Test Case Mutation to Evaluate the . . .

Figure 2. A sample output from the GUI components execution pro-
cess.

91

Izzat Alsmadi

3.3 Using Mutation in Test Case Generation and Exe-
cution

The majority of research papers that discussed mutation focused on
code, requirement or model mutation. In this part, we will consider
test cases’ mutation. If a system is expected to accept valid test cases,
in principle, it should also reject invalid test cases. This is the main
assumption that the paper hypothesis is based on. The GUI model
will be tested based on its ability to reject invalid test cases. Mutation
is used to make some test cases invalid and test the system ability to
reject and catch those mutations.

In specification based mutation, each specification element is re-
placed with its possible alternatives. A test case that is able to detect
the difference between the original specification and the mutated one
will kill (i.e. discover) the mutant. Similarly, in code based mutation,
a code element (e.g. ”>”; the ”larger than” symbol) is replaced by one
of its possible alternatives (e.g. >=, <, <=). If none of the test cases
in the test suite was able to detect the difference in behavior between
the original and mutant code, this means that this mutant is not reach-
able by any one of the test cases. Another possible reason is that it
is possible that the mutant is reachable but shows a similar external
behavior relative to the original code.

A test case mutant remains live either:

• Because it is equivalent to the original test case and the appli-
cation cannot tell the difference between the original behavior
and the new one. They could be functionally identical although
syntactically different. (i.e. equivalent test cases).

• Or, the program is incapable to kill the mutant. This means that
the different behavior is not propagated to the external interface.
Those summarize the three conditions to kill a mutant: reach-
ability, infection and propagation.

Test coverage can, therefore, be measured according to the fraction
of dead specification or code mutants.

92

Using Test Case Mutation to Evaluate the . . .

Coverage = Number of mutant test cases discovered / the total
number of mutant test cases.

This definition of coverage is somewhat new and is a direct indi-
cator for the GUI model quality. The complete coverage in this ap-
proach equals to killing all non-equivalent test cases. Typical coverage
types evaluated in testing scope include: requirement, code, statement,
branch, path, etc. coverage.

In traditional mutation situation, new test cases are added to kill
the mutants. In this approach, this indicates a problem in the GUI
model that should be addressed (i.e. why it could not reject an incor-
rect test case sequence). As this is a model based testing, mutation
modifications considered here are only those that are related to the
GUI structure. Mutations that are related to the specification such as:
invalid user inputs based on boundary values and equivalent partitions
are not considered in this research as they will affect the code and not
the GUI model.

In this research, the mutation evaluation process is reversed. In the
traditional mutation process, the code, or the specification is mutated
and the test cases are fixed. It is expected that those test cases can
show the difference between the original code or specification and the
mutated one. In this research, the code and the specification are fixed
and the mutation is occurred in the test cases. It should be mentioned
however, that we are not testing the test cases. This type of test case
mutation can be classified as a model based testing approach. The
GUI model is expected to discover and kill the mutants. As such test
adequacy can be measured by the number or the percentage of the
failed test cases. Initially, the approach requires calibration to make
sure that all original test cases pass (or else take the number of the
successful test cases as the denominator). In the first stage before
applying test case mutation, all test cases in the suite must be tested
to make sure that the GUI model accepts and validates them.

The typical definition of coverage is calculated through the code or
specification percentage that is tested through the test cases. In this
research, coverage (which is the number of the test cases that fail to
the total number of mutated test cases) reflects other quality attributes

93

Izzat Alsmadi

in the system. Opposite to this research approach, some good quality
attributes of the system such as robustness express the system dynamic
range and its ability to tolerate inputs or user mistakes. However,
tolerating wrong user inputs should not be mistaken with accepting
wrong user inputs. A fault tolerance application may not crash if a
user input an invalid input; however, it should reject such input and
stop further program execution. This is the quality attribute that this
approach is trying to discover in the program; testing its ability to
distinguish a correct input from an incorrect one. As the focus of this
paper is GUI testing, we will survey some of possible incorrect inputs
that an application may experience.

3.4 The automatic execution and verification

Despite the fact that the subject of this paper is test case mutation in
GUI models, however the automatic execution and verification process
is important in order to evaluate the validity and the value of the
proposed mutation operators.

The need for this automatic process was necessary to check whether
the GUI model will accept or reject the applied test cases. The main
problem was that we are not simply trying to measure expected and
actual numeric values which makes the automatic verification process
simple. In this approach, there is a need to verify the GUI state before
and after executing each test case. Building a research tool to do such
tasks may not be easy. There are some known commercial tools such as
IBM Rational Robot which may have the capability to do such complex
processes. Most commercial tools are using the record/replay methods
and few of them use the object data approach that is adapted in this
research.

The algorithm we developed to accomplish the automatic execu-
tion and verification process depends on using reflection and the fact
that managed code includes GUI control details in their executable.
The process will use the reverse engineering reflection method to get
all GUI controls, their associations and attributes to the memory in
order to validate the actual and mutated test cases on them. However,

94

Using Test Case Mutation to Evaluate the . . .

validating each test case as a one unit was impossible as the process
will simply get the GUI controls from the test cases one by one and see
if they exist in the GUI or not. The alternative was to consider that if
any control fails in a test case, the whole test case will be assumed fail.
However, we decided to go with the first option and hence calculate ef-
fectiveness based on the controls rather than the test cases. However,
the alternative can be later considered to see which approach provides
more realistic results.

3.5 The mutation tool

As an extension for GUIAuto [9, 10] which is a test automation tool
developed previously by the author, the tool is developed to execute
all mutation process activities. The tool first uses reflection (a reverse
engineering process to assemble the application components from its
executable) to extract all GUI components and their data to an XML
file. Other test automation activities such as test case generation, ex-
ecution and verification can be triggered based on several algorithms
and techniques. In the developed tool, GUIAuto is extended based on
the GUI mutation operators that will be described later. Those oper-
ators can be generated and executed automatically. The focus of the
developed mutation tool is on GUI components mutation ignoring the
code behind or the actual code in the GUI events triggers.

3.6 The case study

Several small size open source applications are selected for the evalu-
ation in this study. There are two conditions in the selection of those
open source codes. The first one is that since the tool uses reflection to
serialize .NET managed code and extract all GUI components from it,
all selected applications are .NET managed applications. A managed
code is a program (in a .NET programming language: C#, VB. Net,
managed C++, or JScripts) that is executed within a runtime engine
(such as .NET framework and Java Virtual Machine (JVM)) installed
in the same machine. The unmanaged code is an executable program
that runs as a standalone, launched from the operating system. The

95

Izzat Alsmadi

program calls upon and uses the software routines in the operating sys-
tem. However, it does not require other software application in order
to be used.

The second criteria for selection is that the selected application
should contain a reasonable amount of GUI components in many forms
or web pages in order to construct a GUI hierarchy and be able to
generate different sequences of test cases in several levels. Table 1
shows the summary of the 4 selected AUTs for this specific experiment.

Table 1. GUI Summary of the AUTs
AUT No. of Controls No. of Paths No. of Forms

DBSPY 26 19 2
Notepad 158 176 11

BirdWatcher 23 21 3
CourseReg 89 65 2

Based on the GUI model, and based on its structure and compo-
nents, several mutation operators are proposed. In order to evaluate
proposed mutation effects, an automatic execution process is devel-
oped. The GUI model takes all test cases as a sequence and the au-
tomatic execution process apply those test cases on the actual GUI.
An automatic verification method is also developed to check those test
cases that are successfully executed. We define execution coverage met-
ric to be the number of executed controls to the number of input or
generated controls. The execution process tries to execute the sequence
of controls in each test case one by one. The effectiveness for each test
case is calculated. The average for the overall test cases is taken to be
the execution coverage.

1. Mutation Operator Type 1: Switching GUI components. In
this mutation, two components in each test case are switched.

For example, for original test cases of:
1,FRMDATADISPLAY,GROUPBOX3,LSTFIELDS,,SETTINGS

2,FRMDATADISPLAY,MENUSTRIP1,OPENANEWCONNECTIONTOOLSTRIPMENUITEM,,PROGRAM

96

Using Test Case Mutation to Evaluate the . . .

mutation will be:
1,GROUPBOX3,FRMDATADISPLAY,LSTFIELDS,,SETTINGS

2,MENUSTRIP1,ROGRAM,FRMDATADISPLAY,OPENANEWCONNECTIONTOOLSTRIPMENUITEM

Note the two controls that are replaced with each other. Table 2
shows test execution effectiveness comparison between original and mu-
tated test cases. All effectiveness metrics calculated below in all tables
were based on the number of GUI components successfully executed
and verified to the number of the GUI controls that were applied. The
number of GUI controls in each test case varies from 3-7 controls in
the selected applications. It should be mentioned that earlier we define
effectiveness as the number of failed (i.e. detected) mutants to the total
number of inputs. This is usually the complement of the effectiveness
calculated in the tables below. In Table 2, we didn’t focus on the ef-
fect of changing the test case generation algorithm as this may not be
important to the test case verification processes. This will focus on the
impact on the execution processes when test cases are mutated.

Table 2. Execution effectiveness for Type1 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.82
2 50 0.816 0.802
3 30 0.86 0.84
4 50 0.71 0.73

The expectation is that effectiveness for mutants should be less than
those of the original test cases. This indicates the application ability
to reject wrong test cases. In normal situations, switching elements of
the test case should cause a test execution failure. The first type does
not imply a failure from the GUI model itself. It implies the inabil-
ity of the developed execution and verification process to detect this
type of mutation. The reason is that the execution process segments
each test case in its components and then tries to verify the successful
execution of each GUI component individually independent from the

97

Izzat Alsmadi

other components in the same test case. The automatic execution and
verification process executes and searches for every control from each
of the test cases in the application assembly (which contains all ap-
plication GUI components) and verifies its existence and ability to be
executed. This is why switching test case elements didn’t affect majorly
the effectiveness in Table 1 and made the difference in effectiveness neg-
ligence. In reality, the automatic verification process is very complex
and subjected to several environmental factors. For example, timing
and synchronization between the forms or components that are cur-
rently visible is very hard to accomplish. For example, the automatic
execution robot maybe expecting a button to be clicked at a moment
while the opened form is not yet visible or ready. Another problem is
the fact that some modules are modeless and do not accept any fur-
ther commands before closing. The visibility of some GUI components
(especially containers) is also a challenge for the automatic verification
where defining its visibilities and executing them can be difficult.

The trials to automatically verify the execution of a complete GUI
path were unsuccessful. In future, a modified execution algorithm to
verify the test case in the same sequence should be implemented to
cover this weakness in the verification process.

2. Mutation Operator Type 2: Changing the name of one
control in the sequence (by adding or removing one letter, for example).

In Type 2, a letter from one control in every test case is removed.
The goal is to keep the control entity but change its identity. If each
GUI object is defined by its name only, this mutation type should be
detected. Location of the mutated or modified letter and the control
(from the test case) are selected randomly. Table 2 shows the effective-
ness results from this mutation gathered from the actual applications.
Results showed that execution effectiveness is reduced to indicate re-
duction percentage for all controls that were located before mutation
only. This can be calculated theoretically by:

NewEff = OrgEff − (NoMut/NoControlsTotal)

Where NewEff is the effectiveness after mutation, and OrgEff

98

Using Test Case Mutation to Evaluate the . . .

is the effectiveness before mutation, NoMut is the total number of
modified controls (through their name) divided by the total number of
controls in all test cases applied.

For example, in Table 2, AUT1, OrgEff = 0.75, NoMut = 30, and
as NewEff = 0.53, we can find the total number of controls in all test
cases which will be 3000/22 or about 136 controls (average controls in
each test case = 136/30 or about 4.5). However, this theoretical value is
assuming that all mutated controls are undetected and all un-mutated
controls are detected in the same way as it was before. Table 3 shows
variations of the results between the 4 tested applications.

Table 3. Execution effectiveness for Type 2 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.53
2 50 0.816 0.75
3 30 0.86 0.64
4 50 0.71 0.468

3. Type 3. Changing the name of every control in the sequence
(by adding or removing one letter, for example). In an extension to
type two, and in order to distinguish between a node (i.e. control)
failure from a path failure, in this mutation every control name in the
test path will be modified by changing only one letter. Table 4 shows
the results of applying this mutation.

Table 4. Execution effectiveness for Type 3 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.0
2 50 0.816 0.03
3 30 0.86 0.0
4 50 0.71 0.0

In Table 4, changing all names of controls should bring all test

99

Izzat Alsmadi

cases to a complete failure. The few exceptions occur in rare cases
where removing a letter from a control change the name to another
valid one.

4. Type 4: Changing one control from the sequence with another
control from the same level. This mutation will bypass some GUI
structure constraints where a test case should contain GUI components
from the different levels respectively. In some cases, changing this
control may change the test case. However, it will produce another
valid test case.

Example:

MAINMENU,EDIT,UNDO–TO–FILE,EDIT,COPY

Where Undo and Copy are two controls from the same level. Table
5 shows the results in effectiveness of applying mutation type 4.

Table 5. Execution effectiveness for Type 4 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.73
2 50 0.816 0.815
3 30 0.86 0.81
4 50 0.71 0.82

As expected and explained earlier, switching GUI controls did not
affect test case effectiveness as it will modify the test case without
invalidating it. In our mutation testing, we are not testing whether the
value before and after mutation stays the same. The tests on the GUI
model focus on only verifying whether the new mutated test cases will
be accepted or rejected by the model. As a result, despite the fact that
this type of mutation changes the test case and that the path that it
is testing, however, the new test case is a valid one. In some cases as
in the last application, effectiveness is improved.

5. Type 5: Changing one control in every test case with another
one from a different level. In this mutation, one control in each test

100

Using Test Case Mutation to Evaluate the . . .

case is replaced with a control randomly selected from the pool that
contains all AUT controls without observing the location of the newly
selected control. Table 6 shows the results from applying this mutation.

Table 6. Execution effectiveness for Type 5 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.64
2 50 0.816 0.812
3 30 0.86 0.80
4 50 0.71 0.82

Similar to Type 1, it is expected that this type should cause a no-
ticeable decrease in effectiveness using mutated test cases. However,
this was not the case due to the limitation in the automatic execution
and verification process, which verifies the existence of each executed
control in the managed code (without considering whether its test case
is still valid or not). Rather than lowering the test effectiveness, using
mutants improves effectiveness which means that switching the loca-
tions of some controls made them more visible and those controls were
then located successfully by the execution algorithm.

6. Type 6: Deleting a control from a sequence. In this mutation,
from each test case, one randomly selected control is removed from the
test case.

Table 7. Execution effectiveness for Type 6 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.71
2 50 0.816 0.80
3 30 0.86 0.80
4 50 0.71 0.62

The execution effectiveness should be affected by deleting controls
from the test cases solely because of the deletion since the new calcu-

101

Izzat Alsmadi

lated effectiveness will be based on the new test cases taken the dele-
tion into consideration. However, all Applications Under Test (AUTs)
showed reduction which indicates that when some controls are deleted
this may affect the visibility of some other controls.

7. Type 7: Adding a control to the sequence. Rather than switch-
ing an existed control with another one, in this mutation one randomly
selected control is added to each test case. The randomly selected con-
trol can be the same added to all or can randomly be selected every
time.

Table 8. Execution effectiveness for Type 7 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.76
2 50 0.816 0.77
3 30 0.86 0.77
4 50 0.71 0.75

Similar to the case of: removing a control, adding a control, does not
impact effectiveness as this addition is reconsidered when calculating
effectiveness. Results showed that although in all mutation cases, test
effectiveness after should be less than test effectiveness before, however,
as the verification process verifies the controls one by one, the addition
of some GUI controls causes the effectiveness to be increased (which
may not reflect the test case generation actual effectiveness).

4 Conclusion and Future Work

Test cases are used to detect possible errors and bugs in software appli-
cations. In this paper, mutation based testing is used to test applica-
tions user interfaces and test if they can differentiate invalid from valid
test cases. An automatic tool is developed to automatically generate
test cases from applications user interfaces. Later on, and based on
the generated test cases, an aspect of one component in each test case

102

Using Test Case Mutation to Evaluate the . . .

is changed to create test case mutations. Examples of mutations that
are considered in this paper were in: changing GUI controls location,
name, adding, or removing those controls. An automatic execution and
verification process is developed to evaluate the validity of the proposed
mutations. The automatic execution and verification processes verify
each control individually regardless of its test case. Nonetheless, re-
sults showed promising future in the ability of test case mutation to
verify certain properties in the GUI model. In mutation original test
cases and their results are stored. Those are considered as the baseline
for mutation based testing. After generating mutation, to test those
mutations, a mutation is said to be killed if its test case result is dif-
ferent from that of the original. The validation of the results considers
killing mutants by rejecting them. This makes the automatic verifica-
tion process difficult due to the difficulty of defining the GUI correct
and incorrect states.

References

[1] Choi, B.J., DeMillo, R.A., Krauser, E.W., Martin, R.J., Mathur,
A.P., Offutt, A.J., Pan, H., Spafford, E.H. The Mothra Tool Set.
Proceedings of the 22nd annual Hawaii international conference
on system sciences (HICSS’22), Kailua-Kona, HI , USA, (pp: 275-
284), vol. 2 (1989).

[2] Mateo, P.R. Usaola, M.P. Offutt, J. Mutation at System and Func-
tional Levels. Third International Conference on Software Test-
ing, Verification, and Validation Workshops (ICSTW), 6-10, Paris,
France, (pp: 110), (2010)

[3] Offutt, A.J. Jie Pan. Detecting Equivalent Mutants and the Fea-
sible Path Problem. Proceedings of the 11th annual conference on
computer assurance (COMPASS 96). 17-21 June, Gaithersburg,
MD, USA, (pp: 224), (1996).

[4] Praphamontripong, U. Offutt, J. Applying Mutation Testing to
Web Applications. Proceedings of the 3rd International Confer-

103

Izzat Alsmadi

ence on Software Testing, Verification, and Validation Workshops
(ICSTW), 6-10 April, Paris, France, (pp: 132), (2010).

[5] DeMillo, R.A. Offutt, A.J. Constraint-Based Automatic Test
Data Generation. IEEE Transactions On Software Engineering
(TOSEM), VOL. 17, Issue 9, (pp: 900), Sep. (1991).

[6] Nan, Li Praphamontripong, U. Offutt, J. An Experimental Com-
parison of Four Unit Test Criteria: Mutation, Edge-Pair, All-
uses and Prime Path Coverage. IProceedings of the International
Conference on Software Testing Verification and Validation Work-
shops, 1-4 April, Denver, CO, USA, (pp: 220), (2009).

[7] Offutt, A.J. Rothermel, G. Zapf, C. An Experimental Evaluation
of Selective Mutation. Proceedings of the 15th International Con-
ference on Software Engineering, 17-21 May, Baltimore, MD, USA,
(pp: 100), (1993).

[8] Suet Chun Lee Offutt, J. Generating Test Cases for XML-based
Web Component Interactions Using Mutation Analysis. Proceed-
ings of the International Symposium on Software Reliability Engi-
neering (ISSRE), 27-30 Nov., Hong Kong, (pp: 200-209), (2001).

[9] Alsmadi I. Magel K. GUI Path Oriented Test Generation Al-
gorithms. Proceedings of Human-Computer Interaction confer-
ence (IASTED HCI), Chamonix, France. March 14 - 16, (pp:02),
(2007).

[10] Alsmadi I. Magel K. An Object Oriented Framework for User In-
terface Test Automation. Proceedings of The Midwest Instruction
and Computing Symposium MICS07, 20-21 April, Grand Forks,
ND, USA, (2007).

[11] Hierons, R.M. Merayo, M.G. Mutation Testing from Probabilis-
tic Finite State Machines. Proceedings of the Academic and In-
dustrial Conference – Practice And Research Techniques (TAIC-
PART), 10-14 Sep., Windsor, (pp: 141), (2007).

104

Using Test Case Mutation to Evaluate the . . .

[12] Masud, M. Nayak, A. Zaman, M. Bansal, N. Strategy for Mu-
tation Testing Using Genetic Algorithms. Proceedings of the
Canadian Conference on Electrical and Computer Engineering
(CCECE/CCGEI), 1-4 May, Saskatoon, Canada, (pp 1049- 1052),
(2005).

[13] Bradbury, J.S. Cordy, J.R. Dingel, J. Comparative Assessment of
Testing and Model Checking Using Program Mutation. Proceed-
ings of the Academic and Industrial Conference – Practice And Re-
search Techniques (TAICPART), 10-14 Sep., Windosr, (pp: 210),
(2007).

[14] Pinto Ferraz Fabbri, S.C. Delamaro, M.E. Maldonado, J.C.
Masiero, P.C. Mutation analysis testing for finite state machines.
Proceedings of the 5th International Symposium on Software Reli-
ability Engineering, (ISSRE), 6-9 Nov., Monterey, CA, USA, (pp:
220-229), (1994).

[15] Shufang Lee Xiaoying Bai Yinong Chen. Automatic Mutation
Testing and Simulation on OWL-S Specified Web Services. Pro-
ceedings of the 41st Annual Simulation Symposium (ANSS), 13-16
April, Ottawa, CA, (pp: 149), (2008).

[16] Delamaro, M. Maldonado, J.C. Interface Mutation: Assessing
Testing Quality at Interprocedural Level. Proceedings of the 19th
International Conference of the Chilean Computer Science Society
(SCCC), 11-13 Nov., Talca, CHI, (pp:78), (1999).

[17] Delamaro, M.E. Maidonado, J.C. Mathur, A.P. Interface Muta-
tion: An Approach for Integration Testing. IEEE Transactions on
Software Engineering (TOSEM), VOL. 27, Issue 3, March, (pp:
228), (2001).

[18] Serrestou, Y. Beroulle, V. Robach, C. Functional Verification of
RTL Designs driven by Mutation Testing metrics. Proceedings of
the 10th Euromicro Conference on Digital System Design Archi-
tectures, Methods and Tools (DSD), 29-31 Aug., Lubek, (pp: 222),
(2007).

105

Izzat Alsmadi

[19] Hoijin Yoon Byoungju Choi Jin-Ok Jeon Mutation-based Inter-
class Testing. Proceedings of the Asia Pacific Software Engineering
Conference (APSEC), 2-4 Dec., Taipei, (pp: 174), (1998).

[20] Howden, W.E. Weak Mutation Testing and Completeness of Test
Sets. Transactions on Software Engineering (TOSEM), Vol. SE-8,
Issue 4, July, (pp: 371-379), 1982).

[21] Ferrari, F.C. Maldonado, J.C. Rashid. A. Mutation Testing for
Aspect-Oriented Programs. Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, 9-11
Apr., Lillehammer, (pp: 52), (2008).

[22] Gupta, V. Accelerated GWT: Building Enterprise Google Web
Toolkit Applications. Apress, 1st edition, (2008).

[23] Bradbury, J.S. Cordy, J.R. Dingel, J. Mutation operators for con-
current Java (J2SE 5.0). Proceedings of the 2nd Workshop on
Mutation Analysis (Mutation), 7-10 Nov., Raleigh, NC, USA, (pp:
83-92) (2006).

[24] R. M. Hierons. Testing from a finite state machine: Extending
invertibility to sequences. The Computer Journal, 40(4):220-230,
(1997).

Izzat Alsmadi, Received March 5, 2011
Revised April 15, 2012

Izzat Alsmadi
Yarmouk University
Computer Information Systems Department
IT Faculty
Irbid, Jordan
Phone: 96227211111
E–mail: ialsmadi@yu.edu.jo

106

