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Mathematical modeling of high-speed loads
effects on underground storage tanks∗
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Abstract

The purpose of this paper is to provide a numerical modeling
of intense dynamic loads on engineering materials. Numerical
results illustrate the evolution of the state of elastic-plastic shells
(filled with fluid or elastic-plastic material), which are subjected
to explosive loads.
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1 Introduction

The elements of thin-wall constructions are used in various fields of
engineering practice and most of them function in conditions of rather
high operational load [1-3]. These objects include different shell con-
tainers constructed of materials with diverse physical and mechanical
properties and intended to store flammable, toxic and chemical sub-
stances. Their stress-strain state exposed to a wide range of external
forces and force-majeure circumstances represents a significant interest
for analysis in order to level down the accidental risk and environmen-
tal impact. In this paper the behavior of shell containers deepened
in ground and exposed to intense dynamic loads is considered [4, 5].
To adequately describe all the processes arising under intense dynamic
loads of the material it is important to choose a particular mathemat-
ical model of the environment. This model should take into account
a noninvertible nature of deformation, the dependence on strain rates
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and other processes associated with an explosive loading. The behavior
of various materials is described within the framework of state equa-
tion in the form of Mie-Gruneisen, taking into account the complex
stress-strain behavior of the matter. The ground is represented as a
three-component substance consisting of solid granules, water and air
[3]. Computer modeling of deformation under explosive loading sup-
poses setting a numerical method and obtaining a picture of internal
parameters’ evolution. In this paper following Wilkins [6-8] we con-
sider a second order accurate finite-difference scheme and provide its
modification to solving specific problems. The use of adaptive meshes,
parallel numerical algorithms and multiprocessor clusters allows one to
reduce computing time [9].

2 Setting of the problem and mathematical
model

Assume an underground container is subjected to explosive loading.
Note that explosives are situated inside and/or outside the shell. The
behavior of theses structures under intense dynamic loads is of unsteady
nature and is described with the help of environment models and phys-
ical laws of loading. Let us examine the dynamics of explosive load-
ing within the framework of two-dimensional model of elastic-plastic
medium and solve the following basic equations [6]:

σ′ = k0

(
εkk − αν (T − T0)− Λ

3

∫ ω

0

∂ω̇

∂σ
∂ω

)

(τ́ij)
∇ + λτ́ij = 2µ0 ˙eij , τ́ij τ́ij ≤ 2

3
Y 2

0 ,

ρc0Ṫ + αν σ̇T = τij ˙εij
p + Λω̇2 − divq̄, (1)

ω̇ = B(σ′ − σ∗)mH(σ′ − σ∗),

τij = Sij + Γεij , τ́ij = τij/(1− ω), σ′ = σ/(1− ω).

Here the symbol T denotes temperature; ρ – density; q̄ – heat trans-
fer rate; σij = σδij + sij – stress component, divided into two mutually
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orthogonal tensors, spherical tensor σδij = σkkδij/3 and deviator sij ;
εij , ε

e
ij , ε

p
ij – elastic and plastic strain components; eii = εij − 1/3εkkδij

– strain deviator components; ω – structural parameter describing the
origin and growth of material’s vulnerability; H(x) – Heviside func-
tion; δii – Kronecker delta; k0 and µ0 – bulk modulus and shear modu-
lus of undamaged material; αν – cubic expansion coefficient; cσ – heat
at constant pressure; τij – components of the "active" stress tensor;
A,B, m,Γ – material’s characteristics. We assume εij = εe

ij + εp
ij and

εp
kk = 0, then plastic flow is incompressible. ∇ is a Yauman’s derivative
of tensor components:

S∇ij = Ṡij − Sikωjk − Sjkωik; (2)

ώij = 1/2(
∂νi

∂xj
− ∂νj

∂xi
),

ν – velocity components, x – Cartesian coordinates; λ is determined by
the Mises plastic’s:

λ = 0 in elastic region,
λ = 3µ0τ́ij ėijH(τ́ij ėij)/Y 2 in the region of plastic flow.

The model used in this work generalizes the Prandtl-Reiss elastoplastic
flow model along with the Mises plasticity criterion, as well as accounts
for the anisotropy of plastic deformation (for Γ 6= 0 ), the formation
of microdamages in rarefaction waves, and thermal effects [5]. It is
supposed that the flow limit Y , modules k0 and µ0 depend on the
temperature, pressure and other state parameters (Steinberg-Guinan
model) [7]:

Y = Y0(1 + βεp
u)n(1− bσ(

ρ0

ρ
)1/3 − h(T − T0)),

Y0(1 + βεp
u)n ≤ Ymax, Y0 = 0 at T > Tm, (3)

Tm = Tm0(
ρ0

ρ
)2/3 exp(2γ0(1− ρ0

ρ
)),

µ0 = µ00(1− bσ(
ρ0

ρ
)1/3 − h(T − T0)),
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where εp
u =

√
2εp

ijε
p
ij/3 – is the plastic deformation tensor intensity;

Tm – melting temperature of the material; Y0, Ymax, Tm0, β, b, γ0, µ00 –
material constants. It is considered that σ∗ = σ0∗Y/Y 0, σ0∗ is a material
constant. Numerical modeling of impulsive impacts gives a possibility
to neglect strain anisotropy of the materials (in case of adiabatic flow)
and to assume divq = 0 and Γ = 0 in equation (1). Thus from equation
(1) it follows that:

s∇ij + λsij = 2µėij , sijsij ≤ 2
3
Y 2. (4)

Equations (4) written for the deviator components of strain tensor are
amplified with state equation for the spherical part of strain tensor
σ = −p (p – pressure):

p = p(ρ, U), (5)

here U – specific internal energy. State equation is considered in Mie-
Gruneisen type [2,7] written in the form:

p = l1(1− ρ0

ρ
) + l2(1− ρ0

ρ
)2 + l3(1− ρ0

ρ
)3 + γ0ρ0U, (6)

where l1, l2, l3, γ0 are material constants that are known for the wide
class of materials used in calculations. The whole variety of grounds
with different mechanical and physical properties is presented as porous
multicomponent medium consisting of solid particles, liquid (water)
and gas (air). Characteristics of different types of grounds depend on
structure, shape and location of solid particles, percentage of gas and
liquid. Following Lyakhov, a ground is called non water-saturated (or
air-dry grounds) [3] if air content by volume is much higher than the
water content in it. Otherwise the ground is called water-saturated.
Thus the ground may be considered as three-component medium (solid
particles, water and air) and its characteristics depend on the volume
content of each component which can vary over a wide range. Let di

denote respectively a volume content of air (i = 1), water (i = 2),
and solid (i = 3) components in the ground. These values are related:
d1 + d2 + d3 = 1. If ρ0 is an initial density and p0 is an initial pressure
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then

ρ0 =
3∑

i=1

diρi.

On this assumption, following Lyakhov, we have ground’s state equation
[3]:

ρ0

ρ
=

3∑

i=1

di[
ki(p− p0)

ρic2
i

+ 1]−
1
ki . (7)

Here ki – isentropic exponents, ci – sound velocities in these components
for the case of initial pressure (atmospheric pressure).

In actual numerical calculations instead of formula (7) it is more
convenient to use the dependence of pressure on density in an explicit
form. This dependence can be approximated by a cubic polynomial
with respect to compression µ = ρ0

ρ − 1 :

p = a0 + a1µ + a2µ
2 + a3µ

3. (8)

Polynomial coefficients are determined on account on (7) using Newton
interpolation polynomial or the method of least squares.

3 Numerical results

Initial values of other parameters are as follows: air – k1 = 1, 4,
ρ1 = 12 ∗ 104 gr/sm3, c1 = 300 m/sec; water – k2 = 3, 0, ρ2 = 1, 0
gr/sm3, c2 = 1500 m/sec; quartz – k3 = 3, 0, ρ3 = 2, 65 gr/sm3,
c3 = 4500 m/sec. At small values of pressure ground’s compressibility
depends on compressibility of air which significantly exceeds the com-
pressibility of water and quartz. At higher values of pressure ground’s
compressibility depends on compressibility of liquid and solid compo-
nents. The discrepancy between the data obtained from expressions (7)
and (8) is equal to less than 10 percent.

Consider a water-saturated ground with the following composition:
10 percent of air, 32 percent of water and 58 percent of quartz. Various
numerical experiments were conducted to study the behavior of shells
in the ground which are exposed to intense dynamic loading. These
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Figure 1. The strain corresponding to different state equations.

studies include an approximation of equations (1)-(6) using a finite-
difference scheme of the second order of accuracy that is a development
of Wilkins’ scheme [2]. Relation (8) is taken as a ground’s state equa-
tion. It approximates the equation of state with a cubic polynomial.
Equation of state (8) is tested for the various cases of a-priory known
state equations of medium. Let’s consider the case of water and calcu-
late the stress dynamics at a certain point on the computational domain
using state equation in Mie-Gruneisen form (solid line in Fig.1), and
equation (8) (dotted line in Fig. 1). The expansion of detonation prod-
ucts, shell loading and other physical processes are modeled as well.
Some results are presented in the Figures 2–5. The computational do-
main is a two-dimensional rectangle 21 × 4 cm. A water-filled steel
shell, 0,2 cm thick, is situated in this domain (double fat black lines
in the Fig. 2 and Fig. 4). Its dimensions are 16 × 7 cm. The shell is
surrounded with a ground consisting of 10 percent air, 30 percent wa-
ter and 60 percent quartz. The explosive charge TNT (0, 3 × 0, 1 cm)
closely fits the outside of the envelope (deflected contour in the Fig. 2
and Fig. 4). Certain points are selected to monitor the behavior of the
elastoplastic medium parameters. These points are called indicators
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Figure 2. Stress state, t=100 mks Figure 3. Stress distribution.

and are marked as follows: I-1, I-2, . . . , I-7. They are situated in the
inside of the shell.

Figure 4. Stress state, t=150 mks Figure 5. Stress distribution.

Qualitative change in the physical state of the shell and the medium
inside and outside it over the time is displayed in Fig. 2 and Fig. 4 at
the t = 100 mks and t = 150 mks correspondingly. Figure 2 displays a
wave pattern and the shell’s state at t = 100 mks in two dimensions.
Stress dynamics for the early stages of the loading process up to the
t = 100 мks is displayed in the Fig. 3. Indicators I-1, I-2 are located
directly under the explosive charge (Fig. 2). Thus experimental results
for these indicators (Fig. 3) are close enough and have more pronounced
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wave profile compared to the indicators I-3, I-4 located farther. The
stress state of the shell at the t = 150 mks is displayed in the Fig. 4.
It is easy to observe that the shell exposed to an explosive loading is
deformed and the wave reflected from hard walls of the computational
domain. Stress distribution for the later stages of the loading process
up to time t = 150 mks is displayed in the Fig. 5. One may observe a
new surge at the t = 110 mks caused by the reflected wave.

4 Conclusions

A new mathematical model was developed. A stress-strain state of un-
derground storage tanks, exposed to intense dynamic loads and filled
in with water or other materials was simulated. The ground was con-
sidered as a three-component medium (solid particles, water and air)
and its characteristics depended on the volume content of each compo-
nent which can vary over a wide range. State equation for the ground
is approximated by a cubic polynomial with respect to the degree of
compression. Numerical results illustrate the evolution of the coupled
problem, namely the interaction of ground and elastoplastic shell un-
der explosive loading. This work is supported by STCU (grant 4624)
project.
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