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On the optimal control of heat apportionment

systems

E.Naval

Abstract

The theory of optimal control for distributed parameters sys-
tems is adjusted for solving the problems of determining the con-
troled temperature fields of hidrotehnical construction with the
aim of appointment of the tehnical and technological operations,
which assure their integrity. The problem is simulated with the
help of the conduction equation with initial and boundary con-
dition. The control function is introduced as the heat flowing,
boundary influence or as the thermal diffusivity coefficient.

1 Introduction

An important place among the technical problems belongs to the con-
tinuos heat apportionment systems. The heat emition stipulates the
appearance of complex temperature fields in the systems, that causes
the appearance and concentration of temperature tensions, that fur-
ther bring to the formation of cracks, stratifications and other defects,
which lead to the distruction of the buildings and constructions. An
example of sach systems can be the massive concrete constructions.

The cause of appearance of cracks in them is the temperature ten-
sions, which appear at the internal heat apportionment, because of
great differences between the temperatures in the internal and exter-
nal parts of the concrete massive and deformation at its cooling to the
normal exploitation temperature.

To present the formation of cracks in the concrete laying in the pe-
riod of building of hydrotechnical constructions it’s necessary to sup-
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port certain temperature regimes, at which the tensions values do not
exceld the permisible ones.

In this connection the problem of computing the controled temper-
ature fields of such constructions is as quite importance. The computed
temperature fields permit to take off temperature picks, and also to set
corresponding technical and technological measures, which assume the
achievement of given temperatures in a period of construction.

Mathematically this problem is given by the parabolic equation
with initial and boundary conditions. The unstationary control action
is found in the right part of the heat conduction equation as the densites
of sources distribution, and in the boundary conditions as the heat
flowing or is the thermal diffusivity coefficient.

The criterium of optimization is considered the square cost function.
The one- two- and three-dimensional control problems are considered
depending of the aims of investigation.

2 Control problem

First we make same assumptions concerning the erection of massive
concrete constructions, than we’ll state the optimal control problem of
the temperature regime of the cooling concrete massive.

a) Concrete is considered a quasihomogeneous izotopic material.

b) The thermophysical characteristics of the concrete are constant
values, that do not depend neither on time, nor on temperature,
except the case when one of the thermophysical coefficients is a
control influence.

c) After the concrete laying a heat emision process begins, which is
determined by the expression:

q = q0e
−mt,

where q — quantity of heat, emited in a unit time, q0, m —
constants, t — time.
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d) We’ll consider that the control p(t, x) ∈ L2. In the case when
p(t, x) enters in the heat conduction equation or in the boundary
condition as the heat flowing, this can be technically performed as
pipe cooling system with the pipe situated enouqh close to one
another. In the case, when the control is a thermal diffusivity
coefficient, this can be one of the compound components with
corresponding properties.

An unbounded concrete wall of thickness R, one side of which is
thermo–isolated, and on the other the heat exchange with the environ-
ment takes place is considered. The controlled process is given by the
parabolic equation:

∂U(t, x)
∂t

=
∂(ap(x)∂U(t,x)

∂x )
∂x

+ q0e
−mt + bp(t, x), (1)

t ∈ (0, t1], x ∈ (0, R)

with the initial condition

U(0, x) = ϕ(x), x ∈ (0, R) (2)

and boundary conditions

∂U(t, 0)
∂x

= 0,
∂U(t, R)

∂x
= α[cp(t)− U(t, R)], 0 < t ≤ t1, (3)

here a — the thermal diffusivity coefficient, α — the heat exchange
coefficient.

Now let’s formulate the optimal control problem. Let t1 be fixed
constant. It’s necessary to find such a control function p(x), that at
the moment of time t = t1 the corresponding solution of the boundary
problem (1) - (3) satisfies the condition:

U(t1, x) = y(x), y(x) ∈ L2(0, R), (4)

and the cost function

J(p) =
∫ R

0

∫ t1

0
[ap2(x) + bp2(t, x) + cp2(t)]dtdx (5)

achieves the minimal value. a, b, c — constants, b and c get the value
1 or 0, depending of the control function considered.
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3 Distributed control (p(t) = 1, c = 0, b = 1)

Let’s formulate the auxiliary problems. Let t1 be fixed. It is necessary
to find such a control function p(t, x) and the corresponding solution
of the problem (1)–(3), on which the cost function

J1(p) =
∫ R

0
(U(t1, x)− y(x))2dx + β

∫ R

0

∫ t1

0
p2(t, x)dtdx (6)

achives the minimal value, where β is a given positive number.

Theorem 1 (Necessary and sufficient optimality conditions) If the ad-
misible control p0(t, x) and the corresponding solution U0(t, x) of the
boundary problem (1)–(3) to be optimal, it is necessary and sufficient,
the function

H(Ψ0, U0, p0) = p0(t, x)Ψ0(t, x)− βp0(t, x)2

to sutisfy the condition

H(Ψ0, U0, p0)(=)maxH(Ψ0, U0, p), (7)

where Ψ0 is the solution of the boundary problem

∂Ψ(t, x)
∂t

+ a
∂2Ψ(t, x)

∂x2
= 0, (8)

t ∈ [0, t1), x ∈ (0, R).

Ψ(t1) = 2[U(t1, x)− y(x)], x ∈ (0, R), (9)
∂Ψ(t, 0)

∂x
= 0,

∂Ψ(t, R)
∂x

= −αΨ(t, R), t ∈ [0, t1) (10)

Solving in common problems (1)–(3) and (8)–(10) with the condi-
tion

p(t, x) = Ψ(t, x)/2β, (11)

we build the optimal control for the auxiliary problem. And the solu-
tion of the initial problem we obtain by the limit passing at β → 0. For
this case it is possible to obtain the analityc optimal solution U0(t, x),
p0(t, x) as a infinite series of decomposition by the proper functions
which correspond to the Sturm – Liuvilly problem.

323



E.Naval

4 Boundary control (a = const, b = 0)

We’ll consider the controlled process, given by the two dimensional
heat conduction equation

∂U(t, x, y)
∂t

= a[
∂2U(t, x, y)

∂x2
+

∂2U(t, x, y)
∂y2

] + q0e
−mt, (12)

t ∈ (0, t1], x ∈ (0, R0), y ∈ (0, R1)

with the initial

U(0, x, y) = U la, 0 < x < R0, 0 < y < R1 (13)

and boundary conditions

∂U(t, 0, y)
∂x

= 0,
∂U(t, R0, y)

∂x
= α0[g0(t, y)− U(t, R0, y)],

∂U(t, x, 0)
∂y

= 0,
∂U(t, x.R1)

∂y
= α1[g1(t, x)− U(t, x, R1)]. (14)

The functions g0(t, y) and g1(t, x) are of the form g0(t, y) =
g0(y)p(t), g1(t, x) = g1(x)p(t), where g0(y), g1(x) — are given func-
tion ∈ L2, and p(t) — are arbitrary control function ∈ L2.

It is necessary to find such an admisible control p(t), that the cor-
responding solution of the problem (12)–(14) at the moment of time
t = t1 satisfies the condition

U(t1, x, y) = UO, 0 < x < R0, 0 < y < R1 (15)

and the cost function

J(p) =
∫ t1

0
p2(t)dt

achieves the minimal value.
We’ll search the approximate solution of the formulated problem

by solving the following problem. It is necessary to find such control
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p(t) ∈ L2(0, t1) that together with the corresponding solution of the
problem (12)–(14) it will minimize the cost function

Jβ(p) = 1/β

∫ R0

0

∫ R1

0
[U(t1, x, y)− UO]2dxdy +

∫ t1

0
p2(t)dt. (A)

For each admisibile control p(t) and corresponding solution U(t, x, y)
we’ll confront the function V (x, y), defined by the correlations:

Vt(t, x, y) = a[Vxx(t, x, y) + Vyy(t, x, y)],

0 ≤ t < t1, 0 < x < R0, 0 < y < R1; (16)

V (t1, x, y) = −2[U(t1, x, y)− UO],

0 < x < R0, 0 < y < R1; (17)

Vx(t, 0, y) = 0, Vx(t, R0, y) = −α0V (t, R0, y),

0 ≤ t < t1, 0 < y < R1;

Vy(t, x, 0) = 0, Vy(t, x, R1) = −α1V (t, x, R1),

0 < x < R0, 0 ≤ t < T1. (18)

The following theorem is true.

Theorem 2 In order the admisibile control p0(t, β) in the boundary
problem (12)–(14) to be optimal it is necessary and sufficient, that the
function

h = p(t, β)r(t) + βp2(t, β),

r(t) =
∫ R1

0
g0(y)V (t, 0, y)dy +

∫ R0

0
g1(x)V (t, x, 0)dx,

where V (t, x, y) is the solution of the problem (16)–(18), corresponding
to p0(t, β), to satisfy the condition

h(V 0(t, x, y), p0(t, β)) (=) suph(V (t, x, y), p(t, β)).
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Theorem 3 The optimal control p0(t, β) is the solution of the integral
equation

βp(t) = F (t)−
∫ t1

0
K(t, τ)p(t, τ)dτ, (19)

where

F (t) =
∞∑

n=1

∞∑

k=1

gnkδnke
−λnk2a(t−τ),

K(t, τ) =
∞∑

n=1

∞∑

k=1

g2
nke

−λ2
nka(t+τ−2t1),

δnk = UOnk − U la
nke

−aλ2
nkt1 + q0

nk

∫ t1

0
e−mτe−λ2

nka(t1−τ)dτ,

q0
nk =

∫ R0

0

∫ R1

0
q0Xn(x)Yk(y)wnkdxdy,

U la
nk =

∫ R0

0

∫ R1

0
U laXn(x)Yk(y)wnkdxdy,

UOnk =
∫ R0

0

∫ R1

0
UOXn(x)Yk(y)wnkdxdy,

gnk = (α1aXn(R1)Y (k)wnk + α0aYk(r0)X(n)wnk)/w2
nk,

X(n) =
∫ R0

0
Xn(x)dx,

Y (k) =
∫ R1

0
Yk(y)dy.

Xn(x) and Yk(y) is a full in L2(0, R0; 0, R1) orthonormal system of
proper functions corresponding to the Sturm–Liuvilly problem. The
solution of this equation is unique.

Now we’ll substitute the equation (19) with an approximative one

βp(t) = Fn −
∫ t1

0
KNN (t, τ)p(τ)dτ,

in wich

FN =
N∑

n=1

N∑

k=1

gnke
−λ2

nka(t1−τ)δnk,
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KNN =
N∑

n=1

N∑

k=1

g2
nke

−λ2
nka(t+τ−2t1).

Its unique solution is determined by the function

pN (t, t1, β) = 1/β
N∑

n=1

N∑

k=1

gnk[δnk − Cnk(β)]e−λ2
nka(t−t1),

where Cnk(β) is the unique solution of the system equations

CN
ij + 1/β

N∑

n=1

N∑

k=1

KijnkC
N
nk = bn

ij ,

bN
ij = 1/β

N∑

n=1

N∑

k=1

Kijknδnk, i, j = 1, 2, . . . , N.

The three–dimensional problem is formulated and solved in the
same way. The approximate solutions for the both of this problems
and alsow the analysise of the given results are given.

5 Pipe cooling

It is supposed that a pipe cooling system was laied inside the concrete
massive with a real step of pipes in the period of building. Around a
pipe with radius r0 a cylinder of radius R is cut out, which is situated far
enough from the massive edge. The temperature field of this cylinder
is given by the equation

∂U(t, r)
∂t

= a(
∂2U(t, r)

∂r2
+ 1/r

∂U(t, r)
∂r

) + q0e
−mt, (20)

r < r < R, 0 < t ≤ t1,

with the initial
U(0, r) = U0(r), r0 < r < R (21)

and boundary conditions

∂U(t, r0)
∂r

= −α[p(t)− U(t, r0)],
∂U(t, R)

∂r
= 0, 0 < t ≤ t1. (22)
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It is necessary to find such a control p(t) ∈ P , where P =
{P | mod (p(t)) ≤ Uv}, for which the coresponding solution U(t, r) of
the boundary problem (20)–(22) at the moment of time t = t1 achieves
given values

U(t1, r) = Φ(r), r0 < r < R (23)

and the cost function

J(p) =
∫ t1

0
p2(t)dt (24)

gets the minimal value.
The optimal control is presented in the following way

p(t) =





Uv, Φ(t) ≥ Uv

Ψ, mod(Ψ(t)) ≤ Uv

−Uv, Φ(t) ≤ −Uv

(25)

where
Φ(t) = α/2βΨ(t, R), (26)

β = const > 0 and Ψ(t, R) is defined as unique solution of the initial–
baundary problem

∂Ψ(t, r)
∂t

= −a(
∂2Ψ(t, r)

∂r2
+ 1/r

∂Ψ(t, r)
∂r

),

r0 < r < R, 0 ≤ t < t1;

Ψ(t1, r) = −2
√

r[U(t1, r)− ϕ(r)], r0 < r < R;
∂Ψ(t, r0)

∂r
= αΨ(t, r0),

∂Ψ(t, R)
∂r

= 0, 0 ≤ t < t1. (27)

It means, that it is necessary to solve the problem (20)–(22) and (27)
with condition (26) in order to find the optimal control.

The control p(t) will be searched in the following form

p(t) = −1/β
∞∑

k=1

γk(β)λ2
ka(t1−t). (28)
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Substituting (28) into (26), we’ll get the following system of linear
nonhomogeneous algebraic equations relativly the coefficients γk(β)

γn(β) + α2/βbn

∞∑

n=1

(1− e(−λ2
k+λ2

n)at1)/a(λ2
k + λ2

n)γk(β) = α/βan,

n = 1, 2, . . .

Solving this system relativly γn(β) we define p(t), J(p) and U(t, r). To
find the optimal control we solved the problem of minimization of the
cost function

J1(p) =
∫ R1

R0

[
√

r(U(t1, r)− Φ(r))]2 + β

∫ t1

0
p2(τ)dτ,

and we have got the optimality conditions for it. So we obtained the
temperature of the cooling liquid, which is feeded into the pipe in order
to obtain a given temperature distribution around the pipe.

Next, outcoming from the given cooling liquid temperature we’ll
find the minimal number of pipes necessary for the temperature ten-
sions be not greater than the admissible ones at the given moment of
time. Let U(, x) be the temperature of the concrete massive in the
point x at the moment of time t. Let x1, x2, . . . , xn be the points of
the pipes location. The quantity of heat from the concrete to the pipe
is proportional to the value [U(t, x)−Uv], where Uv is the temperature
of the cooling liquid. Hence, the power of the heat flowing in the point
xi is equal to the value C0[U(t, xi)− Uv].

The temperature distribution is given by the following initial–
boundary problem

∂U(t, x)
∂t

=
∂2U(t, x)

∂x2
+ f(t) + C0

n∑

k=1

δ(x− xk)[U(t, x)− Uv],

0 < t ≤ t1, 0 < x < 1; (29)

U(0, x) = Un, 0 < x < 1; (30)

∂U(t, 0)
∂x

= 0,
∂U(t, 1)

∂x
= −αU(t, 1), 0 < t ≤ t1. (31)

329



E.Naval

It is necessary to find the minimal number n of points, through
which the cooling pipes pass, necessary for the temperature tension
computed by the formula

σ(t, 1, n) = αE/(1− ν)[Ũ(t, 1, n)− U(t, 1, n)]

to sutisfy the condition σ(t, 1, n) ≤ σ∗. Here α is the linear coefficient
of thermal expansion, E — elasticity module, ν — Poisson coefficient,
Ũ(t, 1, n) =

∫ 1
0 U(t, x, n)dx — middle section temperature. Both prob-

lems are solved approximately.

6 Thermal diffusivity coefficient control (b =
0, a = 1, c = 0)

The control process is given by the one dimentional equation of heat
condaction

∂U(t, x)
∂t

=
∂(p(x)∂U(t,x)

∂x )
∂x

+ f(t), (32)

0 < t ≤ t1, 0 < x < R,

with initial
U(0, x) = Φ(x), 0 < x < R (33)

and boundary conditions

∂U(t, 0)
∂x

= 0,
∂U(t, R)

∂x
+ αU(t, R) = 0, 0 < t ≤ t1, (34)

where f(t, x), Φ(x) — given function from L2(0, t1), L2(0, R), control
p(x) — piece–wise constant function, that p(x) ∈ P = {p : p1, p2}.

The problem is to find such a control p(x), that the cost function

J(p) =
∫ R

0
[U(t1, x)− y(x)]2dx (35)

achieves at the moment of time t = t1 the minimal value, y(x) — a
known function from L2(0, R).
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Since the problem (32)–(34) is incorrect, we’ll consider the following
cost function

Jβ(p) =
∫ R

0
[U(t1, x)− y(x)]2dx + β

∫ R

0
p2(x)dx. (36)

Let’s state the conjugate to (32)–(34) problem and let Ψ(t, x) be it’s
solution

∂Ψ(t, x)
∂t

= −∂(p(x)∂Ψ(t,x)
∂x )

∂x
, 0 ≤ t < t1, 0 < x < R; (37)

Ψ(t1, x) = −2[U(t1, x, p)− y(x)], 0 < x < R; (38)
∂Ψ(t, 0)

∂x
= 0,

∂Ψ(t, R)
∂x

= −αΨ(t, R), 0 ≤ t < t1. (39)

Let H(t, x, U,Ψ, p) = p(x)
∫ t1
0

∂U(t,x)
∂x

∂Ψ(t,x)
∂x dt+βp2(x), then the follow-

ing theorem is true.

Theorem 4 In order the function p(x) ∈ P be the solution of the
problem (32)–(34), (36) it is necessary the following conditions to fulfile

H(t, x, U∗,Ψ∗, p∗) = max
p∈P

H(t, x, U,Ψ, p), (40)

where U∗(t, x), Ψ∗(t, x) are corresponding the solutions of the basic and
conjugate problems at p(x) = p∗(x).

The necessary condition of optimality and descent method on great
variation were used for numerical solving of this problem .

7 Conclusion

A short characteristic of the problems, that appear when simulating
the controlled temperature fields of massive concrete construction, is
given in the article. Their analytic and numeric solutions are obtained
by using the necessary and sufficient conditions of optimality in the
maximum principle form. Pipe cooling is shown as an example of prac-
tical control application. Standard mathematic ensuring for this was
elaborated.
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