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On Convexity Preserving C1 Hermite Spline

Interpolation

I.Verlan

Abstract

The aim of this paper is to present a general approach to
the problem of shape preserving interpolation. The problem of
convexity preserving interpolation using C1 Hermite splines with
one free generating function is considered.

1 Introduction

It is well known that the problems concerning nonnegativity, mono-
tonicity, or convexity preserving interpolation have received consider-
able attention during the last two decades, because of their interest in
computer aided design and in other practical applications. One can
construct a convexity preserving interpolant by increasing the degree
of interpolating polynomials (see, e.g., [1]- [3]), by adding new mesh
points and increasing the number of pieces (see, for example, [4], [8]),
by constraining the derivatives for Hermite interpolants to meet condi-
tions which imply the desired properties (see [6], [7]) or using different
type of nonclassical splines with free parameters (see, e.g. [5], [10],
[11]). The reader is referred to the survey paper [9] for a large set of
references. A review of the approaches mentioned above shows as it is
mentioned in [2] that, in fact, we have the following common scheme:

a) A set of piecewise functions in which interpolants are thought is
choosen and interpolants are expressed using a set of parameters
(e.g. the derivatives at knots);
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b) The nonnegativity, monotonicity, or convexity conditions are
rewritten using these parameters and admissible domains are de-
rived;

c) A theory for checking the feasibility of the problem is developed
and, eventually, an algorithm is provided.

In the same paper [2] this situation was qualified as schizophrenic one.
In the present paper the idea of generating function of the spline in-
troduced in [12] is suggested to use for the problems concerning shape
preserving interpolation. This idea was succesfully used in [13]-[16] for
constructing different types of interpolating splines and for studying
their convergence properties in a general case.

2 A family of C1 Hermite interpolants

Let us assume that a mesh ∆ : a = x0 < x1 < ... < xN = b is given and
at the knots of this mesh values fi = f(xi) and f ′i = f ′(xi), i = 0(1)N
which are supposed to come from an unknown differentiable function
f are given. The problem of constructing an interpolant S, such that
S(xi) = fi, S

′(xi) = f ′(xi), i = 0(1)n, and S ∈ C1[a, b] is considered.
Let us consider the following family of C1 Hermite interpolants

introduced in [16]: on [xi, xi+1]

S(x) = fi + hif
′
i(2t− t2)/2 + hif

′
i+1t

2/2 + hiγiν(t), (1)

where

hi = xi+1 − xi, t = (x− xi)/hi, γi = (fi+1 − fi)/hi − (f ′i + f ′i+1)/2

and the function ν called generating function in what follows is to be
from the following set of functions

L = {φ ∈ C1[0, 1] : φ(0) = 0;φ(1) = 1;φ′(0) = φ′(1) = 0}. (2)

There are no problems to verify that the set of generating functions L is
the convex and closed one and that splines from the family (1) solve the
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problem under consideration. It was shown in [16] that these splines
are third-order accurate if f ′i , i = 0(1)n are known exactly (except cubic
Hermite splines, which are fourth-order accurate).

In order to illustrate that splines of different type can be represented
in the form (1) we present some examples of generating functions below.
So, from the set of generating functions L the following functions are:

1. The function
ν(t) = 3t2 − 2t3 (3)

lead us to well known cubic Hermite splines.

2. Quadratic Hermite splines are obtained if the following generating
function

ν(t) =

{
t2

τ , t ∈ [0, τ ]
1− (1−t)2

(1−τ) , t ∈ [τ, 1]
(4)

where τ ∈ (0, 1) is the additional knot on the mesh ∆, is used.
The second derivative of this function has a discontinuity at the
point τ .

3. Splines generated by the following function

ν(t) = (1− cos(πt))/2 (5)

seems to be the new ones. We did not meet the splines of this
form in the literature before.

4. The following two generating functions:

ν(t) =





3t2

(1+2τ) , t ∈ [0, τ ]

1− 3(1−t)2(1+τ)
(1−τ)(1+2τ) + 2(1−t)3

(1−τ)2(1+2τ)
, t ∈ [τ, 1]

(6)

and

ν(t) =





3(τ−2)t2

τ(2τ−3) + 2t3

τ2(2τ−3)
, t ∈ [0, , τ ]

1 + 3(1−t)2

(2τ−3) , t ∈ [τ, 1]
(7)

give us blend parabolic-cubic splines. In the contrast to parabolic
splines the second derivative of these ones has no more a discon-
tinuity at the point τ .
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5. Using the generating function

ν(t) =





(3+p−pτ)t2

τ + (2pτ2−pτ−3τ−p−3)t3

3τ2 , t ∈ [0, τ ]
1 + p(1− t)2 + (2pτ−3p−3)(1−t)3

3(1−τ) , t ∈ [τ, 1]
(8)

we get cubic splines with one additional knot. In this case there
are two free parameters for each piece - p and τ . It is easy to see
that this function is a generalisation of the previous two. So, the
function (7) is obtained if p = 3/(2τ−3) and, correspondingly, we
get the generating function (6) for p = −3(1+ τ)/(1+2τ)(1− τ).

6. Examples of generating function given below

ν(t) =
nt2

(n− 2)
− 2tn

(n− 2)
, n > 2 (9)

ν(t) =
n2t

n1

(n2 − n1)
− n1t

n2

(n2 − n1)
, n2 > n1 ≥ 2 (10)

show that polynomial splines with variable degree can be repre-
sented in the same way. Here, n, n1 and n2 are free parameters.

7. Finally, an example of generating function

ν(t) =
((p + 3)t2 − (p + 2)t3)

(1 + pt(1− t))
, p > −4, (11)

which leads us to rational splines is given. In this case the free
parameter p is a parameter of rationality.

As it follows from the examples given above we can generate a lot of
splines of the form (1), which have different analytical representation.
At the same time we can study properties of all these splines in a
general setting using the representation (1).
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3 Convexity preserving C1 Hermite interpola-
tion

Following [1] for any integer i arbitrary but fixed we say that data are
increasing on [xi, xi+1] if

f ′i > 0; f ′i+1 > 0, δi > 0, (12)

convex on [xi, xi+1] if
f ′i < δi < f ′i+1 (13)

and increasing and convex if both (12) and (13) are fulfilled.
Let us suppose that data are convex(concave) on [xi, xi+1] and let

us introduce λi = (δi − f ′i)/(f ′i+1 − f ′i). It is obvious that 0 < λi < 1
for convex(concave) data. The next formula for the second derivative
of the spline follows from (1).

S′′(x) = (f ′i+1 − f ′i)/hi + γiν
′′(t)/2hi (14)

Then there are no problems to prove the following theorem.

Theorem 1 The spline (1) with a generating function ν ∈ L preserves
convexity(concavity) of data in [xi, xi+1] if and only if

min
t

ν ′′(t) > −2/(2λi − 1) for λi ∈ (1/2, 1)

and
max

t
ν ′′(t) < −2/(2λi − 1) for λi ∈ (0, 1/2)

The proof of the theorem is omitted since it is the elementary one.
Conditions of convexity preserving for splines generated by a certain

generating function ν ∈ L can be obtained now directly from the theo-
rem stated above. If the generating function has no free parameters we
get rigid conditions, concerning initial data, when the resulting inter-
polant preserves convexity(concavity). So, in the case of the function
(3) we get that the Hermite C1 cubic interpolant preserves convex-
ity(concavity) if 1/3 < λi < 2/3. For the generating function (5) the
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corresponding condition is 1/2− 2/π2 < λi < 1/2 + 2/π2. As it can be
seen in this case the condition is weaker then the previous one.

If the generating function contains free parameter(s) the result-
ing curve may be modified choosing value(s) of parameter(s). For the
parabolic Hermite splines generated by the function (4) we get that
these splines preserve convexity(concavity) of data if the additional
knot τ on the mesh is choosen so, that τ > 1 − 2λi for λi ∈ (0, 1/2)
and τ < 2(1 − λi) for λi ∈ (1/2, 1). As it was mentioned above the
second derivative of these splines has an additional point of disconti-
nuity at τ . This may become an undesirable fact in many cases. It can
be avoided if other generating functions are used. So, if λi ∈ (0, 1/2)
then the generating function (6) can be used and the additional knot
in this case must satisfy the condition τ > 1− 3λi. If λi ∈ (1/2, 1) we
get a required interpolant using the generating function (7) with the
addtitional knot which satisfies the condition τ < 3(1− λ).

Finally, let us consider the case when generating function of variable
degree is used. If λi ∈ (0, 1/2) and the function (9) is used to generate
an interpolant in order to preserve the convexity(concavity) of the data
the degree n of the function ν must satisfy the condition n > 1/λi. In
the case when λi ∈ (1/2, 1) the following generating function can be
used

ν(t) = 1− n(1− t)2

(n− 2)
+

2(1− t)n

(n− 2)
, n > 2,

where free parameter n (the degree of function) must be selected ac-
cording to the following condition n > 1/(1− λi).

Summarising it can be said that, in fact, we are in the position
to construct convexity-preserving C1 Hermite interpolants for any set
of initial data which are convex using splines of the form (1) with
generating functions from (2).
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