
Computer Science Journal of Moldova, vol.2, no.3(6), 1994

Object class hierarchy for an incremental

hypertext editor

A.Colesnicov M.Colesnicov L.Malahova

Abstract

The object class hierarchy design is considered due to a hy-
pertext editor implementation. The following basic classes were
selected: the editor’s coordinate system, the memory manager,
the text buffer executing basic editing operations, the inherited
hypertext buffer, the edit window, the multi-window shell. Spe-
cial hypertext editing features, the incremental hypertext cre-
ation support and further generalizations are discussed.

1 Introduction

We are considering here the engineering problem of the object class hi-
erarchy design due to the implementation of text, hypertext and struc-
tured text editors into object-oriented environments with incremental
development support.

The discussed problem had arisen when we had implemented a
WYSIWYG system of incremental hypertext creation and editing in
the MS-DOS operating system textual screen mode on IBM PC com-
patible computer. The resulting hypertexts were supposed to be used
as help subsystems in applications. On the one hand, the screen mode
restriction had excluded the complications connected with the graph-
ical interface. On the other hand, the restrictions of the underlying
operating system had forced us to the very careful selection of object
classes. E.g., the necessity of the separate memory management sub-
system became especially clear.

c©1994 by A.Colesnicov, M.Colesnicov, L.Malahova

283



A.Colesnicov, M.Colesnicov, L.Malahova

The system was implemented in Turbo Pascal 6.0 using Turbo Vi-
sion.

The proposed object hierarchy was successfully used afterwards in
the implementation of the token-oriented keyboard script editor. Right
now other projects are developed using the same technology.

Detailed discussions on hypertexts may be found in [3, 4, 8]. The
structured text is the text with a superimposed structure. In the case
of a hypertext it is a graph, see [2].

Token-oriented editors deals not with separate characters but with
tokens, see [1]. We are to note here that in the former case the internal
representation of tokens and their screen (visual) representation may
differ. As a generalization, some tokens may be invisible on the screen.

The object-oriented design is perfectly discussed in [5].
The preliminary variant of this article was published as [10]. See

also [11] for related topic discussion.
Another approach to the structured text editors was developed as

a part of the Mjølner project at Lund University, Sweden. See [6, 7].
Their approach differs mainly in two aspects: they deal with a highly
structured text (programs and grammars), and they had developed
their system top-down. Their system highly supports the incremental
development.

2 Features of hypertexts and hypertext cre-
ation systems

There are a lot of MS-DOS hypertext system: Norton Guide, Multi-
Edit Help (part of the text editor), Turbo/Object Professional Help,
Tech Help etc. We had tried 6 or 7 systems and had rejected all, see
[9]. The main consideration was that we found all of them unsuitable
on variable reasons.

The external representation of most existing systems does not con-
form to both CUI standard and the design style of the product which
our system was to be integrated into. E.g., some of them do not use
mouse, or restrict its movements on the screen. Some are not state-of-

284



Object class hierarchy for an incremental hypertext editor

the-art hypertexts, e.g., they not allow hyperlinks embedded into text
but only in menu, some keep hyperlink pointers visible in the text,
most do not permit to execute MS-DOS command through hyperlink
etc.

The main lack of all studied system was the absence of the WYSI-
WYG hypertext editor. In most cases the single supplied tool was the
help compiler. The hypertext creation process supposed the prepara-
tion of the text by the usual text editor, when hyperlink and emphasize
markers are to be issued as special command sequences, and then the
labelled text is passed through the hypertext compiler. Those special
command sequences are invisible in the resulting hypertext but they
are visible when preparing the hypertext source with the text editor,
and you would see the text not in its final allocation. It is especially
difficult to prepare in such a way tables with hyperlinks and emphasize
inside.

Hypertext and other structured text creation by a conventional text
editor may also imply the temporary defectiveness of the resulting text.
The solution supposes the incremental creation, see sec. 8 below.

When this problem was formulated for the practical development,
it had presented natural to produce the system from a text editor. So
the next section is dedicated to the text editor objects classes.

3 Text editor basic objects classes

The difficulty of the considered task is usually underestimated. We had
got some tutorial examples, e.g. that one supplied with Turbo Pascal
6.0, but we could not find anything useful for our task.

Then we were to start from the beginning and to separate abstract
object classes of the text editor. It was found that the functions of
events handling and of text editing must be separated in different ob-
jects. In the examples mentioned above all operations on the text,
screen presentation and event handling were mixed together. It had
lead to the program which can not be developed to real software prod-
uct.

We propose a text buffer as the basic object of the text editor. The

285



A.Colesnicov, M.Colesnicov, L.Malahova

buffer has the internal, invisible for the descendent objects memory
management subsystem and exports methods performing the elemen-
tary operations on characters, lines and blocks. Those operations are
inserting, deleting, moving, repositioning the current cursor location
etc.

The memory manager was constructed in such a way that it can
be replaced by another without changing the upper level interface of
the text buffer. In fact, we had changed two variants of the memory
manager.

One of the memory management functions is the pre-estimation
of memory volume needed for the operation. E.g., to insert a line we
need memory for its contents and, optionally, the memory to increment
internal line tables; undo buffers grow when we delete information, etc.
This mostly depends of the selected memory organization scheme. The
detailed memory management description is not the aim of the paper.

When the memory manager pre-estimation shows that there is not
enough memory, the operation will not be performed. This approach
was selected after testing of another one, when the operation starts and
may be finished partly, which was found unsuitable.

The lowest level includes such aspects as the coordinate system for
the editor and block representation in those coordinates. We use 32-
bits (long integer) numbers for line and position in the line, starting
from 0. The line is restricted up to maximum long integer to the
right, and the edited text may potentially contain as many lines. The
block is represented by the coordinates of the starting character and
of the character after block’s last one in the same line. We tried also
the Turbo Vision approach not using coordinates of characters but of
points between characters, which also was found unsuitable.

To deal with the coordinates we use two low-level objects – inter-
val of long integers represented by the first number and the number
next to the last, and the block, with appropriate methods. As an ex-
ample of frequently used coordinate system methods, I would mention
here the “relative position” function TInterval.RelPos(I: Integer).
The function returns -2, if the argument is lower than the left interval
bound, -1, if the argument is equal to the left interval bound, 0, if the

286



Object class hierarchy for an incremental hypertext editor

argument is strictly inside the interval, +1, if the argument is equal
to the right interval bound, and +2, if the argument is greater than
the right interval bound. For a point P, we have TBlock.RelPos(P:
TCoord) function which yields a similar result. The necessity to differ
on-bound and strictly internal position is not obvious.

The undo subsystem is a major separate part of the editor. To
implement it we need memory for undo buffers and we are to realize
each operation in such a manner that it can be reversed.

Having the coordinate system and memory manager, we can pro-
duce the text buffer. Then we are to include the buffer in the visual
(screen) object – the edit window. This object handles external events
from keyboard and mouse and interprets them using text buffer meth-
ods.

The next level is the shell performing the control on many editing
windows and text buffers, file loading and saving etc.

We have then the following five levels of the text editor object
classes (from the lowest): coordinate system; memory manager; text
buffer; edit window; multi-window editor shell.

The accurate distribution of functions between these levels may
be a difficult problem. E.g., we insert in each window the change
and position indicators which are separate objects. Being visual they
belong to edit window level, but they reflects the status of underlying
text buffer. Another example: the shell uses change flags to decide does
it need to save the contents of the text buffer in the file when closing
a window etc. The abstraction layer concept means that we are to use
on a level only the methods of immediate preceding one, but in this
and some other cases we are to transmit information through three or
more levels.

Other examples. Loading and saving edited text files – which level
(buffer, window, or shell) do they belong to? When generalizing the
text character to tokens, where are we to obtain token’s visual rep-
resentation from, buffer or window? (In the keyboard script editor
mentioned above, GetTokenImage was made the text buffer’s method,
but it may be implemented on window level as well).

The difference between the hypertext and the usual text is that

287



A.Colesnicov, M.Colesnicov, L.Malahova

some parts of the edited source have their visual representation and
some (formatting, emphasizing and hyperlinks) have not.

This situation can be generalized to one mentioned above when
we have a token-oriented edit buffer whose tokens are translated into
different visual representation but are processed like characters, i.e.,
they are organized into lines, may be inserted, deleted and moved token
by token, or in lines, or in blocks. The separation of the edit window
and the text buffer allows us to perform the case as well.

4 Hypertext editor basic objects classes

Our main principle for hypertext was that the hypertext is the text
with some marked blocks. The defining property of the marked block
in a hypertext is that every character of this marked block has the
properties of the whole block. E.g., we can click with the mouse at any
point in the hyperlink, and we will follow this hyperlink.

Then we had generalized the text buffer and descend from it the
marked text buffer which is the basic object of the hypertext editor.
The memory manager was also forwarded to control both text and
markers. The marked text buffer performs the same operations as
the text buffer taking in account the above mentioned property of the
marking. E.g., when we copy the part of the hyperlink we produce in
the corresponding place the new hyperlink to the same point etc.

The resulting hierarchy is illustrated by fig. 1.

5 Auxiliary hypertext processing programs

We need also the hypertext compiler, the linker and, may be, the de-
compiler. Those programs may be included into the hypertext cre-
ation environment or used as batch utilities. The desired property of
the environment is the hypertext preview, which leads us to problems
concerning the hypertext engine (see sec. 9).

The above mentioned problems of function distribution include in
our case the need to register hyperlinks, especially when editing many-

288



Object class hierarchy for an incremental hypertext editor

Coordinate
system

•Volumes

•Relative positions, etc.

?

Memory
manager∗)

•Text, internal tables, undo scripts

•Garbage collecting, etc.
»»»»»»»»9

Text
buffer

with Undo subsystem

Inherited:

Marked text
buffer, etc.

•Copy, move, insert, delete

•Load, save

•Internal↔external format conversion

•GetImage (visual representation), etc.
?

Edit
window

•User-generated events: keyboard, mouse, etc.

?

Multi-window
shell∗)

•Windows, files and other resources

•Hyperlinks, hypertopics tables

•Compiler, preview, etc.

∗)May be used those of the application

Figure 1:(Hyper)text editor object class hierarchy

part source, to transform external (file) hypertext formatting com-
mands representation to and from internal representation, to search
a window and a line in it where the desired hypertopic starts, to avoid
hypertopics of being duplicate etc. In fact, we are to realize parts of the
hypertext compiler, and it is only the natural step to realize the whole
compiler as a part of the hypertext editor. In our particular case, how-
ever, the hypertext compiler and the hypertext engine remained the
separate batch utilities. See sec. 6 below.

289



A.Colesnicov, M.Colesnicov, L.Malahova

6 The hypertext engine

The hypertext engine is the program navigating through the hypertext.
Its desired features were widely discussed in the literature. In our case
we needed, e.g., that the hypertext engine should be able to execute
any command of the operating system, which was implemented as a
special hyperlink.

The hypertext engine design concepts include the question of the
single-window versus multi-window hypertext engine. In the single-
window case (most existing help systems), each next hypertopic is
shown in the same window as the previous one. In contrast, we can
create a new window for each new hypertopic. This allows user to com-
pare different topics, to backtrack through topics in any sequence etc.
The third approach is to create new window only when the user wants
this. Multi-window implementation may be restricted by the memory.

Software engineer implementing the hypertext engine encounters
problems similar with ones when implementing the hypertext editor.
In fact, perfectly constructed hypertext editor must be able to perform
all functions the engine does, that is, in essence, it must contain the
hypertext engine as one of its functional parts. Moreover, the hyper-
text engine needs at its lower level of functional structure the same
class levels as edit window class in the editor structure. To implement
the hypertext engine we need coordinate system and memory manager
also, although only subset of their functions is used. Hypertext format
conversion from the external file format to the internal one is necessary
too.

Formats of both internal and external representation may differ
when we implement the editor and the hypertext engine, particularly
because between preparation and presentation the hypertext is com-
piled and its format is changed.

Hypertext engine class hierarchy is as follows: the presentation
buffer based upon the coordinate system and the memory manager;
the marked presentation buffer inherited from it; the show window and
the multi-window shell. See fig. 2.

We see that at lower levels of the hierarchy are situated similar or

290



Object class hierarchy for an incremental hypertext editor

Coordinate system

?

Memory manager
»»»»»»»»9

Presentation buffer

?

Marked presentation buffer

?

Show window

?

Multi-window shell

Figure 2:Hypertext engine object class hierarchy

the same coordinate system and memory manager classes. Presentation
buffer and marked presentation buffer classes are similar but not the
same in their functionality correspondingly with text buffer and marked
text buffer classes of the editor.

Having unlimited computer resources one can quite well create an
universal tool which would effectively perform both hypertext editor
and autonomous hypertext engine functions. If the resources are lim-
ited, we are to specialize the correspondent tools and their functional
subparts to respond these limitations. This causes that in similar tasks
even the levels performing identical functions are to be implemented in
different ways.

E.g., the memory manager for the hypertext engine performs only
subset of functions needed for the editor. General memory require-
ments are lower than ones for the editor. In the same time demands for
response time and available memory limitations are more severe. The

291



A.Colesnicov, M.Colesnicov, L.Malahova

hypertext editor can be intended for use at more powerful computer
models while the hypertext engine must work also at minor models.
While hypertext editor is addressed to professional users who can rec-
oncile themselves to small delays if they understand what causes them,
the hypertext engine is addressed to end users.

7 Reasons for functional structure similarity

The same or similar class structure encounters in more wide conditions.
Let us try to characterize these conditions.

Particularly structure similarity is caused by similar implementa-
tion base. In a narrow sense it means similar software creation tools
such as programming language or software development tools; more
widely it means the same target platform. In our case these are IBM
PC compatible personal computers and MS-DOS operating system.
E.g., the necessity to implement specialized memory managers for each
task is caused both by relatively small size of operative memory at
personal computers and by absence of ready-made effective universal
memory management tool in MS-DOS operating system.

But the most essential reason for revealed functional structure sim-
ilarity lies in the similarity of implemented tasks as it is shown above.

8 The incremental development support

We understand incremental computing as mode of task setting and
implementation when the whole computational algorithm is performed
step by step presenting current results in some (preferably visual) form
to the user and waiting for user’s intervention into the computation pro-
cess. Incremental computing implies short response time for each step,
flexibility of the process under user’s control, keeping resulting struc-
ture unmistakable at any time and obtaining reasonable and proper
responses to user actions as fast as possible, as a rule at the current
step. The general result of the computation thus is accumulated while
each step increments it.

292



Object class hierarchy for an incremental hypertext editor

Restricting the notion of incremental computing to various classes
of tasks we obtain incremental text processing, incremental compilation
etc.

In our case, all operations on hypertext creation are automatically
executed supporting the right resulting source text structure. E.g.,
the user can select a large block of text and declare it to be a new
hypertopic. Then the system inserts the appropriate marks both at
the beginning and at the end of the block, and if the user exits the
system right at the moment, the resulting text will be saved in proper
external format which would be processed by the hypertext compiler
without errors. Step by step marking of hyperlinks, special hyperlinks,
emphasizing etc. is treated in a similar manner.

9 Hypertext integration into the application

In the case we want to use a hypertext as the part of an application (e.g.,
as the help subsystem), it is to be integrated into application. Methods
of such integration depend mostly on underlying platform. There exists
also an organizational consideration, namely, does hypertext designer
supply to application designer a portion of the source code.

Having hypertext engine source code, application designer may di-
rectly include it into his system. As a result of the solution, you must
provide as many variants of this source code as many programming
systems use your customers.

Hypertext engine may also exist as an independent executable mod-
ule. Then a problem of its call arises. Desired starting point of hyper-
text show may be passed as the call parameter.

Some advanced systems allow simply to send a corresponding event
which is broadcasted over the system and activates hypertext engine.

In MS-DOS-like systems we are to use specific methods because
of the strict memory limits. E.g., the hypertext engine or its small
part may be resident in the memory, or the engine executable module
may be run as the child process of the application, using the memory
swapping when necessary.

293



A.Colesnicov, M.Colesnicov, L.Malahova

There exists also a problem of the hypertext status saving between
calls if it is deleted from memory etc.

10 Conclusions

Two main defining points of our approach are: the down-top devel-
opment, and the maintenance of “poorly structured” texts, when the
prevailing part of the text remains unstructured. Except hypertexts,
another good example of the sort are TEX sources. This case is opposite
to such highly structured texts as program sources.

Our approach to hypertext editor implementation consists of the
selection of the following abstraction levels of object classes: coordinate
system; memory manager; text buffer and inherited marked text buffer;
edit window; multi-window editor shell. The resulting system supports
the WYSIWYG incremental hypertext creation.

This approach was successfully used in implementing of a hyper-
text creation system, a token-oriented editor and is now the subject of
further development.

References

[1] R. Bilos. A Token-Based Syntax Sensitive Editor, in: Proceed-
ings of the Programming Environments – Programming Paradigms
Workshop, Roskilde University Center (1986).

[2] J. Conklin. Hypertext: An introduction and survey, Computer,
20(9) (1987) 17–40.

[3] Hypertext ’87: Proceedings of the conference, Chapel Hill, NC
(1987).

[4] Hypertext ’89: Proceedings of the conference, Pittsburgh, PA
(1989).

[5] Communications of the ACM, Special Issue on Object-Oriented
Design, 33(9) (1990).

294



Object class hierarchy for an incremental hypertext editor

[6] Boris Magnusson et al. An Overview of the Mjølner/ORM Envi-
ronment: Incremental Language and Software Development, in:
Proceedings of TOOLS ’90, Paris, France (1990).

[7] Sten Minör. On Structure-Oriented Editing, PhD thesis, Depart-
ment of Computer Science, Lund University, Lund, Sweden (1990).

[8] Emily Berk and Joseph Devlin, eds. Hypertext/hypermedia hand-
book, McGraw-Hill, New York (1991).

[9] M. Colesnicov. Peculiarities of hypertext technology applica-
tion to homœopathic expert systems, in: Proceedings of the
Scientific-Technical Conference on Computer Science and Com-
puting, Chişinău, Moldova, 1993 (Russian).

[10] A. Colesnicov and L. Malahova. An Object-Oriented Environ-
ment for Hypertext Creation, in: Proceedings of the International
Conference on Technical Informatics, vol. 5, Timişoara, România
(1994).

[11] C. Groza. The Interaction between the Components of a Hybrid
Editor, in: Proceedings of the International Conference on Tech-
nical Informatics, vol. 5, Timişoara, România (1994).

A.Colesnicov, M.Colesnicov, L.Malahova, Received 14 April, 1994
Institute of Mathematics,
Academy of Sciences, Moldova
5, Academiei str., Kishinev,
277028, Moldova

e-mail: kae@math.moldova.su,
mek@evs.moldova.su,
21mal@math.moldova.su

295


