Computer Science Journal of Moldova, vol.2, no.3(6), 1994

Concurrency and Portability

M.Evstunin

Abstract

Problem of software portability in concurrent environments
are discused. A new method of logical partioning into indepedent
level are supposed.

1 Introduction

Problem of software portability arised long ago but it did not lost it’s
topicality. A lot of difference platforms, computers, operating systems
and environments increases the interest to this area. Software produc-
tion turned into industrial phase. So, new technologies adequate for
mass usage are necessary.

We can see the importance of this problem on example of Intel corp.,
which keep compatibility of 80x86 family expending a lot of resources.
The millions of existing programs not permit to do step aside.

Many firms are specialized on producing and supporting multiplat-
form applications. We can divide them into two categories: producers
of applications and producers of tools. We will deal with the problems
of the second category.

During a number of years in S.-Petersburg University researches
in area of creation and implemention of portable programming system
based on Algol 68 have been carrying out. The problem posed for the
author was formulated as follows: create a portable transput system for
Algol 68. Algol 68 has concurrent computing facilities. This increases
the complexity of porting process. Transput system itself is one of the
most operating-dependent part of compiler. For this reason we had to
develop sophisticated methods of logical partitionig into independent
levels.

(©1994 by M.Evstunin

262



Concurrency and Portability

2 Concurrency Types

Let us at first fix the type of concurrency which we will deal with. There
are two types of parallelism - multitasking and multiprocessing. In the
first case process is considered as separate task from the operating
system point of view. Tasks share the resources provided by OS, but
they cannot access internal resources of each others. In the second case
processes are started in such way that they share common resources
of the parent which started them - common variables, memory, etc.
(Fig. 1).

Take into account the following difference. In the first case times of
life of processes are indepedent each from other, in the second case the
death of parent implies the death of sons. We we’ll deal with the sec-
ond type of concurency only and with shared resources access. These
restrictions are natural for our problem. For example, to implement a
server part of client-server technology with few simultaneusly cooper-
ating processes we can write

file system configuration;
proc(int num)int request handler;
par begin

request handler(1),

request handler(2),

request handler(3),

request handler(4),

request handler(5)

end

There are five concurrent cooperating processes in this example.
They share access to common variable system configuration which has
type file to control work. But new process can be started dinamically
when necessary.

263



M.Evstunin

Operating System

Task 1 Task 2

Operating System

]

Task

Common Data

Process 1 Process 2

Figure 1: A) - multitasking, B) - multiprocessing

264



Concurrency and Portability

3 Logical Levels

The current transput system is based on J.C. van Vliet model [2].
The sophisticated treatment was done to elaborte criteria for logical
division. Algol 68 has powerfull and flexible transput system described
in [1, 2].

We’ll not describe all procedures which are needed to implement
this model (there are more 400 ones). Instead of we’ll describe the
logical levels.

1.

Level of user interface. It consists of procedures which can be call
by user from his program. This level is indepedent of operational
environment.

. Level of internal indepedence procedures. Here we can see pro-

cedures which aree called from user interface level or recursively
by themselves. They don not call transput primitives (for exam-
ple, convertion routines). This level is indepedent on operational
environment.

Level of status file control procedures. It consists of routines
which change transput mode, status of file, etc (for example, the
procedures of changing mode from character to binary and vice
versa, checking of possibility of binary transput, interpreting of
format). This level is indepedent on operational environment but
must be guarded from simaltaneous access.

Level of basic primitives. This level is indepedent of operational
environment but must be guarded from simaltaneous access.

Level of memory managment. It includes procedures for allo-
cating and deallocating memory for buffers, supporting lists of
system resources, etc. This level is indepedent on operational
environment but must be guarded from simaltaneous access.

Level of operating system interface. This is OS dependent level.
This level must be rewritten during porting from one environ-
mental platform to other. It takes from 8 up to 10 percents of

265



M.Evstunin

total number of procedures. It includes open and close file in
the OS procedures, removing files, read-write buffers procedures,
parsing file name one, etc.

Dividing software into such levels decrease effectiveness of program
and increase portability. This is standard technique. We can use differ-
ing criteria and obtain differing results. We choose the criteria which
help to increase independence on OS and to prevent simaltaneous access
to shared resources. If we want to increse effectiveness on particular
computer with particular OS we can to do inline substitution. Other
methods of effectiveness increasing may be found in [3].

Cooperation of levels is shown on Fig. 2.

4 Shared resources protection

Let us to do a little remark. Usually user must prevent simaltaneos
access to shared data himself. But there are a kind of errors type to
detect and debug which is very dificulty. It is easier do not do them.
So we made decision to provide guard of shared resources inside the
transput system.

At least there are three variants:

e User provides guard of shared resources. This variant was dis-
cused above.

e Using greedy algorithm. In this case maximum part are pro-
tected. The procedures from the user interface turn into the
following form:

proc(...)int open =
begin
down guard;

up guard
end

266



Concurrency and Portability

Level of User Level of Status
Interface File Control

Level of Internal
Independence

Procedures Primitives

Level of Basic

Level of Memory Level of Operating

Managment System Interface

Figure 2: Levels cooperation.

The procedures of other levels are unchanged. This variant is the
most simple for implementing. It is very close on sense to the
guard which is provided by user. But the length of the protected
parts is too long, so this deminishes the effectiviness of processes.

An attemp to deminish overheads leads us to the third variant.
Only those parts should be protected which are critical. Obvi-
ously, the procedures of levels of file status control, basic primi-
tives and operating system interface have to be protected. If file

267



M.Evstunin

takes a necesary status nobody can change it until transput is fin-
ished. But processing of one file has not to block the processing
of other ones. It entails the necessity of including the semaphore
into file structure provided that it is unique for all copies of this
object. The level of memory management should be also pro-
tected because procedures of this level provide support of lists of
files, books, etc. This level protection is independent. Semaphore
protection of all these programs has to be set before their calling
because the recursive running of procedures has not to result in
klinch state. This statement is applicable to any recirsive proce-
dure.

Level of user interface and internal indepedence procedures don
not need in guard.

Note that resources which are common for all processes must be
guarded in any case (for example, lists of allocated and free memory,
files, books, etc).

References

[1] Revised Report on the Algorithmic Lanuage Algol 68, Springer-
Verlag (1975).

[2] J.C. van Vliet, Algol 68 Transput, part 1 and 2, Mathematical
Center Track (1979).

[3] Sofware Portability, edited by P.J.Brown, Cambridge University
Press (1977).

M.Evstunin, Received 14 April, 1994
Institute of Mathematics,

Academy of Sciences, Moldova

5, Academiei str., Kishinev,

277028, Moldova

e-mail: evs@math.moldova.su

268



