
Computer Science Journal of Moldova, vol.2, no.3(6), 1994

Mathematical theory of multiprocessor control

systems and its applications

G.Cejtlin E.Jushchenko

Abstract

The peculiar feature of cybernetic control systems is a feed-
back interaction with a controlled object. The abstract model
of such an interaction may be based on the control and operat-
ing automata composition originating in the abstract computer
model suggested by V.M.Glushkov [1]. The model functioning
can be formalized by the technique of systems of algorithmic al-
gebras (SAA). The paper is concerned with mathematical theory
of multiprocessor control systems (MCS) based on the modified
SAA technique and intended for solving the problems of forma-
lization of the parallel processes semantics, their modification,
optimization by selected criteria, in particular.

1 The abstract model of the control system

The abstract model of the control system consists of a composition
of control automation U and operating automation P . The set α̃ of
logical values of conditions which characterize the current state of P
being input and perceived, the automaton P outputs the operator A
transferring P to a new state. By way of cyclic functioning according
to the given scheme, U can attain the final state thus indicating the
control process completion.

When using this model for MCS it is supposed that the number
of channels for interaction with the control object coincide with the
number of automata forming a part of the control structure of the given
model. The modified SAA oriented to multiprocessing formalization [2]
(see also [3,4]) are associated with abstract MCS models.

c©1994 by G.Cejtlin, E.Jushchenko

247



G.Cejtlin, E.Jushchenko

2 Regular schemes on abstract memory types
(AMT)

The SAA 〈A, B〉 represent dual–basis algebraic system and consist of
a set of operators A and a set of logical conditions B with determined
signature of operations Ω. Operators are represented by mappings (pos-
sibly partial) of information set M onto oneself and logical conditions
are predicates over the set M adopting truth values of three–valued
logic E3 = {0, 1, µ} where 0 is falsity, 1 is truth, µ is uncertainty. The
signature of SAA operations Ω = Ω1 ∪Ω2 consists of Ω1 logical opera-
tions adopting the values in the set B and the system Ω2, i.e. operations
adopting the values in the set of operators A. Graphical means of the
modified SAA inherent to the signature Ω are compared to program-
mer control structures and operations of program logic in Table 1. A
strict definition of SAA and their modifications oriented to formalizing
parallel and non–determined program schemes and also a comparison
of principal notions of SAA theory with program logics are given in
[1–4].

It should be noted that the signature of SAA 〈A, B〉 contains op-
erations corresponding to successive (A,B), distributive (if α then A
else B), cyclic (while α do A) control structures. Thus, SAA means
and their modifications represent a mathematical base for structural
programming technologies [5].

Representation of operators from A in SAA 〈A, B〉 by way of super-
position of operations belonging to the signature Ω is named the regular
schemes. In the regular schemes control is realized in forward direction
only, from the left to the right; backward jumps are possible only for
α–iterations from closing iteration brackets to opening ones. Despite
such limitedness as compared to traditional schematics, V.M.Glushkov
[1] proved the validity of the following statement.

Theorem 1 An arbitrary algorithm or a program is representable in
the SAA 〈A, B〉 by an equivalent regular scheme: a constructive pro-
cedure of regularization (reduction to the regular scheme) is developed
for arbitrary algorithms and programs.

248



Mathematical theory of multiprocessor control systems. . .

Signature of operations Programmer Signature of
of modified SAAs structures propositional

program logics
Logical structures

generalized conjunction AND Usual propositional
generalized disjunction OR connections
generalized negation NOT
left multiplication by
operator Aα — [A]α
composition A×B A; B A;B
synchronous disjunction — —
A ∨B
asynchronous disjunction A,B —
A∨̇B

Operator structures
non–determined
disjunction —
A|B A ∪B
α–disjunction (αA ∨B if α then A (α?;A) ∪ (¬α?; B)

else B

switch
∏

(
α1, . . . , αk

A1, . . . , Ak

)
CASE —

α–iteration {αA} while α do A (α?;A)∗;¬α?
inverse α–iteration {A}α do A while α —
filtration α — (α?)
synchronizer S(α) descent function —

Table 1

249



G.Cejtlin, E.Jushchenko

Within the framework of multilevel structural design of MCS of in-
terest are the regular schemes on AMT conceptually close to abstract
data types widely spread in modern programming. Let

∏
(n) be a

multidimensional memory space in whose integer vertices q̃ the cells
rq̃ are situated, assuming values from the set M(rq̃), i.e. the alpha-
bet of the given space. By AMT the system 〈N, S〉 is meant where
N ⊆ ∏

(n) is a memory medium, S = {fi(Ã, X̃)| i = 1, 2, . . . k} is an
access signature consisting of operators fi(Ã, X̃) performing access to
the memory and presented by regular schemes which depend on the
sets Ã = {A1, A2, . . . , Am} and X̃ = {X1, X2, . . . , Xm} of elementary
operators and conditions, respectively. The notion of AMT can be in-
terpreted as a hypothetic machine whose instructions are represented
in the form of regular schemes fi(Ã, X̃) similar, in a certain sense, to
microprograms. And what is more, elements of the sets Ã and X̃ are in-
terpreted as microinstructions. In this connection it is mentioning that
initially the SAA were called the microprogrammed algebras [1]. AMT
covers, in particular, the elastic tape which serves as a framework to
classify the well–known memory structures: stack, queue, double ended
queue, etc. The asynchronous multiprocessing and mark cells technique
makes it possible to simulate AMT on the elastic tape, with AMT be-
ing a variety of combinations of the enumerated structures reflecting
the characteristic features of standard data structures multiprocessing.

Heterogeneous periodically defined (HPD) transformations on ab-
stract registers whose terms are used for formalization of synchronous
multiprocessing semantics provide another and very essential type of
AMT. Let R = (ri| − ∞ < i < ∞) be bilaterally infinite ab-
stract register separated into sections each having n elements. HPD–
transformation on register R is assigned by a combination of generat-
ing functions fq and coefficients kq (q = 1, 2, . . . , n). Each fq deter-
mines new states of the q–th elements in each of these sections according
to the states of elements occurring in the neighborhood. The latter is
periodically defined over the whole register depending on coefficient kq.
A register transition to a new state as a result of HPD–transformation
is carried out synchronously (in one cycle). For example, for n = 1 we
obtain PD–transformation with the unique generating function f and

250



Mathematical theory of multiprocessor control systems. . .

coefficient k which realizes homogeneous multiprocessing of contents of
the register R.

Note the conceptual similarity of the PD–transformations to the
Neumann–Church multidimensional automata, Moore honeycomb struc-
tures, interactive networks playing an important part in the theory
of homogeneous structures. The further development of the theory
of Post modified algebras [6] is related to the semi–group of HPD–
transformations. Thus, using the terms of the regular schemes on AMT
it is possible to formalize the operation of abstract models of MCS com-
bining the asynchronous and synchronous strategies of multiprocessing,
and in particular of abstract models of conveyor, rotating and building–
berth multiprocessing ascending from the well–known industrial ana-
logues. Introducing the dimensionality into the space

∏
(n) it is possible

to obtain AMT of various configurations oriented towards application
to problems of CAD, computer–assisted technological preparation of
processes, machine graphics, etc.

3 “Writers–readers” problem

One of the popular problems of parallel programming is the “writers–
readers” problem which consists in the following.

Several processors–writers record into the buffer and several proces-
sors–readers read the data out of this buffer. Simultaneous access to
the buffer for any arbitrary number of readers is possible though only
one writer can operate with it at the given time instant. Besides, the
writers are granted with buffer access priority as compared to readers.
Interaction between the writers–readers processes is formalized by the
following PRS : RWP = {αFQW ∨̇FRR∨̇BA} where α is a condi-
tion which becomes true after completion of the process; FQW is an
operator of forming the queue of names of active writers, FRR is an
operator of forming the register of names of the active readers; BA
is an operator of buffer access. The operator FQW loads the queue
of active register RR consisting of elements containing the names of
active readers, so when the buffer is open for reading it is accessible to
achieve readers through RR in a parallel way.

251



G.Cejtlin, E.Jushchenko

The operator BA = {βREAD(WQ) × WRISBUF}READBUF ;
here β is a condition true when the queue of writers is empty;
READ(QW ) is an operator of reading of the active writer name S out
of QW ; WRISBUF is an operator of operation of the writer S with
the buffer; READBUF is an operator of access of all active readers
from RR to the buffer.

Note that when the buffer is properly organized it is possible to solve
the problem of dependencies between the writers–readers processes.
For this purpose it will suffice to represent the buffer in the form of
two queues BSf and BSu of addresses of filled in and unfilled pages,
respectively. When access to the buffers is realized in the write mode
the writer obtains the address of unfilled page from BSu, fills it in and
records the given address to BSf . At the same time the writers read
the address of the filled in page from vertex of BSf and on emptying
in input the address into the queue BSu.

Such a buffer organization is an extension of the scheme of circular
memory functioning suggested in [4].

Organization of more flexible interaction between the writers–
readers processes can be realized through the scheme of dynamic ex-
change [4]. The “writers–readers” problem is very close to the concept
of ports through which interaction between suppliers and consumers is
realized, the concept common to asynchronous programming.

4 Structural parallel programming semantics

As it was earlier the SAAs and their modifications serve as a formal ba-
sis for the structural programming semantics. In SAA theory the prob-
lem of axiomatization is among the most important ones; it consists
in the development of complete systems of identity relations character-
izing the main properties of operations belonging to the signatures of
SAAs and their modifications. Solubility of the equivalence problem of
regular schemes for the corresponding classes of SAAs is an important
corollary of finite axiomatization.

Let 〈A0, B0〉 is a SAA with the signature of operations Ωo deter-
mined by the following formulas: α∧β, α∨β, α, β = Aα, A×B, (αA∨

252



Mathematical theory of multiprocessor control systems. . .

B), {αA}.
Solution for the axiomatization problem for SAAs 〈A0, B0〉 and for

their modifications is closely related to investigation of the three–valued
algorithmic logic Ã with the signature of operations α∧β, α∨β, α, β =
Aα. Methods of identical transformations of logical functions into
equivalent q–polynomials, similar to DNF in the algebra of logic, were
developed for B̃. Canonical forms of representation in B̃ are perfect
q–polynomials Dc = D1 ∨ Dµ where D1 =

∨k
i=1 B1

i , Dµ =
∨r

j=1 Kµ
j

with B1
i being the generalized elementary conjunction assuming the

value 1 on the corresponding sets of values of variables, and Kµ
j being

the generalized constituent assuming the value µ on the corresponding
sets. The following statement is valid [7].

Theorem 2 An arbitrary three–valued function ϕ 6≡ 0 is uniquely rep-
resentable by the perfect q–polynomial in the logic B̃.

Corollary 1. The problem of axiomatization with the use of the
unique derivation rule, i.e. the traditional substitution, is solved for B̃.

Corollary 2. The problem of equivalence of logical functions is
solvable for B̃.

Note that the generalized DNF in B̃ pertain to the perfect q–
polynomials, so, unlike the algebra of logic, the following statement
is correct.

Corollary 3. If the function in B̃ is representable by the general-
ized DNF then this representation is unique.

The ambiguity of representation of Boolean functions in DNF is
known to be associated with the problem of minimization of Boolean
functions in the algebra of logic.

The duality principle is formulated for B̃ which allows to carry
out the transition from disjunctive forms of representation of logical
functions to conjunctive ones and vice versa.

Control of multiprogram and multiprocessor computations is as-
sociated with the verification of conditions for completion of certain
phases of information processing; such conditions were called closed
[2].

253



G.Cejtlin, E.Jushchenko

Once the conditions become true, they remain so henceforth in-
dependently of subsequent development of the computational process.
This fact determines their conceptual similarity to monotonous op-
erators oriented towards solution of program semantics formalization
problem.

By S–algebras are meant the modified SAAs 〈A1, B1〉 with closed
elementary logical conditions and signature Ω1 of operations defined
by the formulas α ∧ β, α ∨ β, ᾱ, A × B,α, {αA}. For the S–algebras
〈A1, B1〉 the axiomatics Σ is developed with the unique rule of deriva-
tion, the substitution. This axiomatics underlies the apparatus of iden-
tities which is used to transform the regular schemes to the canonical
form, i.e., to the standard polynomial CF whose characteristic feature
is the absence of iterative embedding. The following statement is valid
[2].

Theorem 3 An arbitrary regular scheme F (Ã, X̃) is uniquely repre-
sentable by a standard polynomial CF , F (Ã, X̃) = CF in the S–algebras
〈A1, B1〉.

Corollary 1. For the S–algebras 〈A1, B1〉 the axiomatization prob-
lem is solved with application of the unique rule of derivation, the
substitution.

Corollary 2. For the S–algebras 〈A1, B1〉 the problem of the reg-
ular schemes equivalence is solvable.

The obtained results are extended to the case of modified SAAs
oriented towards formalization of non–determined asynchronous pro-
cesses. The paper [8] investigates the S(H)–algebras 〈A2, B2〉 with
signature Ω2 of operations defined by the formulas α∧ β, α∨ β, ᾱ, A×
B, A|B, α, {αA}. Extension of the signature of S–algebras 〈A1, B1〉 by
asynchronous means results in S̃–algebras treated in [2] (p.3). A num-
ber of secondary results were obtained within the framework of solution
of the problem of axiomatization and equivalence for the S̃–algebras.
These interesting results relate to solution of the problem of dead–ends
and elimination of fictitious iterative structures.

Note that the problem of axiomatization of the algebra of regular
events with application of the unique rule of derivation, the substitu-

254



Mathematical theory of multiprocessor control systems. . .

tion, remains open for 25 years that proves the non–triviality of the
obtained results.

The locally closed conditions are the natural generalization of the
notion of closure. Let us determine the relation of the order Â on
the set of elementary logical conditions, such that the validity of im-
plication α → β stems from α Â β. Condition β is locally closed
if it may change the value 1 to 0 only as a result of a jump from
the closing iterative bracket to the corresponding opening one in an
arbitrary α–iteration such that α Â β, retaining its value 1 after com-
pletion of this α–iteration. The local closure ensures assignment of
initial values to logical variables which organize interaction between
processes in the body of the cycle at each access to this body. The
modified SAAs with the locally closed elementary logical conditions
are called the S(l)–algebras. An apparatus of identities was developed
for the S(l)–algebras which includes the identical relations, true in the
S–algebras, and the problems of axiomatization and equivalence were
solved. The obtained results permit to establish the validity of the
following statement.

Theorem 4 Direct and inverse formal transformation of synchronous
regular schemes into asynchronous ones is feasible in the S(l)–algebras.

In connection with the development of structural schematics it is of
interest to conduct a comparative analysis of the descriptive power of
SAA facilities and of their modifications with respect to Janov schemes
underlying the traditional non–structural schematics [9].

By the right–hand recursion is meant the operation P (G,H) spec-
ified by the following set of equations:

Z1 → (α1G ∨A1(β1B1Z1 ∨ C1Z2));
Z2 → (α2D1Z1 ∨A2(β2B2Z2 ∨ C2Z3));
. . .
Zn−1 → (αn−1Dn−2Zn−2 ∨An−1(βn−1Bn−1Zn−1 ∨ Cn−1Zn));
Zn → (αnDn−1Zn−1 ∨An(βDn ∨H));

where Z1, Z2, . . . , Zn are metavariables.

255



G.Cejtlin, E.Jushchenko

Let 〈A3, B3〉 be modified SAAs with the signature Ω3 of operations
defined by the formulas α ∧ β, α ∨ β, ᾱ, A× B,P (G,H), {αA}. Let us
denote by Ri the class of operators representable by regular schemes in
the modified SAAs with the signature Ωi, respectively, (i = 0, 1, 2, 3).

The axiomatics ∆i is called transformationally complete, ∆i [S →
Ri] if there exists a constructive procedure of regularization of Janov
schemes based on the axiomatics ∆i (construction of the equivalent
regular scheme of the class Ri according to an arbitrary Janov scheme)
where S is a class of operators representable by Janov schemes.

Theorem 5 For the modified SAAs with signature Ωi there exists
transformationally complete axiomatics ∆i [S → Ri] (i = 0, 1, 2, 3).

Corollary. Strict inclusion S ⊂ Ri is valid for any i = 0, 1, 2, 3.
Thus, SAAs and their modifications considered earlier exceed for-
malisms of Janov schemes with respect to graphical possibilities. In-
terchangeability of operations determined by the formulas β = Aα, A∨
B, A|B, P (G,H) with respect to Janov schemes stems from the theo-
rem 5 which makes it possible to optimize logical schemes of programs
taking account of peculiarities inherent in computing resources. Note
that the process of Janov schemes regularization essentially simplifies
substantiation of their correctness.

The obtained results are used for optimization with respect to the
length of the linked cycles of standard non–structural constructions,
parallel algorithms of multilayer sorting, syntactical analysis, transla-
tion, partial program verification, etc. Axiomatization of SAAs based
on application of the unique derivation rule, substitution, allows for
automating the process of analytical transformations of the regular
schemes of ANALYST package implemented in ANALYTIC and L2B
languages (see review [10]). It should be noted that enumerated lan-
guages contain the operator APPLY RELATION that essentially sim-
plifies implementation of the given package.

256



Mathematical theory of multiprocessor control systems. . .

5 Tools for the method of multilevel structural
program design (MSPD)

The suggested formal means can form the basis of design technology
for MCS. With this in mind, the method MSPD was developed at
V.M.Glushkov Institute of Cybernetics of the Ukrainian Academy of
Sciences. The method is based on the program structure formalization
being designed in terms of regular schemes on AMT in combination
with the chosen strategy of multilevel design: descending, ascending or
combined one [10]. The use of the set of regular schemes of programs
permits to coordinate the MSPD method with well–known program-
ming technologies and creates possibilities to apply this method at the
upper stages of programs and algorithms development which allows to
use later well developed means for data structures formalization as well
as language and program means characteristic to the given technolo-
gies. It should also be noted that the MSPD method as compared to
program logic, flowchart means, EKZEL and PDL languages is char-
acterized by complex way of usage within the framework of the unique
formalism of structurization, parallelism, memory standartization, de-
veloped means of formal transformations and the necessary set of fa-
cilities. Due to the correspondence of graphical means of SAA to the
main programmer constructions it is possible to jointly design algo-
rithms and programs by the MSPD method which is comparable with
respect to its significance to the joint design of computer hardware and
software.

Main principles of program development by the MSPD method are
implemented in the MULTIPROCESSIST system. A coordinated fam-
ily of the system input languages is based on the set of regular program
schemes, i.e., the SAA–schemes, and is associated with main stages of
designing the programmed product. Thus, the control program struc-
ture is formalized in terms of the language of logical SAA–schemes. The
concept of AMT underlies the language of SAA–schemes on memory.
Interpretive languages are intended for detalization of operators and
conditions of SAA–schemes in conformity with specific features of the
implemented algorithms. Transition from interpreted SAA–schemes

257



G.Cejtlin, E.Jushchenko

to the base language program is realized by way of recording and as-
sembling to the given scheme. The given modules form syntactically
correct fragments of a program; the subsequent recording which can
be carried out automatically results in generating the syntactically
correct program in the base language. At present, the first stage of
MULTIPROCESSIST system (MLT–1), i.e., the program synthesizer
in the base language using the description of programs in the language
of SAA–schemes (SAA–1) was realized. The text in the SAA–1 lan-
guage (logical SAA-scheme) represents documentation for the control
structure of the created program. The peculiar features of the SAA–1
language for various ways of development of syntactically correct and
graphically clear SAA-schemes are:

• multilevel structure of the text of the SAA–scheme representing
the list of equations situated in such a way that each subsequent
equation specifies by SAA means some operators and conditions
whose identifiers occur in one of the previous equations;

• the presence of various forms of syntactic representation of one
and the same object and language operations;

• an arbitrary length of identifiers, operators and conditions and
the possibility of random repetition of the definite symbols of al-
phabet which makes it possible to use the chains of these symbols
for partitioning the scheme text.

The software of the synthesizer MLT–1 is intended, firstly, for au-
tomatic output of the control program structure from its SAA–scheme
(and here, the given control structure corresponds to its documenta-
tion at any moment of time) and, secondly, for subsequent automated
program design through attaching to its control structure the elemen-
tary operators and conditions of the initial schemes from the file of
the design program which are realized in the base language. (The file
contains libraries of the initial and object modules.) The synthesizer
MLT–1 is oriented to the class of problems characterized by complex
logic and a relatively simple data structures. Parametric character of
the system consists in the possibility of tuning it to the class of input

258



Mathematical theory of multiprocessor control systems. . .

and output (base) languages. Tuning of the system to an interpreted
input language of SAA–schemes intended for formalization of a cer-
tain class of algorithms is performed by means of library composition
reflecting the specialization of the input language. Switching of the
new base language to the system is performed by way of positioning
the switches which control, at the phase of semantic interpretation,
the process of assignment of the corresponding semantic modules. At
present the base languages of the system are PL–1, ASSEMBLER and
PASCAL.

The abstract model of MCS was employed to represent the worker–
machine tool system that underlies the automated system TPP TEKH-
NOLOG, based on MLT–1 and designed to develop processes of tech-
nological preparation of production by MSPD method. With this end
in view, a version of the system TEKHNOLOG was worked out that
depends upon the MLT–1 orientation towards technological processes
of sheet–metal stamping. Problems of choice of the sequence of techno-
logical operations and problems of estimation of process characteristics
were dealt with. The level–by–level analysis of the above problems by
the MSPD method resulted in the elaboration of algorithms of their
solution for one type of parts and technological operations. A language
adopted for the special purpose of design of technological processes on
the base of the MLT–1 library provided with corresponding program
modules is realized. This enables the programs of design of technolog-
ical processes of the class under consideration to be synthesized auto-
matically. The library is composed of modules of the choice of the next
elementary operation of the type of piercing, bending, cutting, center–
popping, the estimation of the technological parameters of execution
of these operations, the development of some technological transitions
and the process as a whole on the basis of elementary operations of
forming the input technological documents. The synthesized programs
rely on the drawing of a part as well as instructions of the product
engineer and allow constructing a flowchart for the processes of sheet–
metal stamping. It should be noted that the distinctive features of the
class of parts at hand, of the working conditions and the technological
decision making are formalized in terms of the SAA schemes which en-

259



G.Cejtlin, E.Jushchenko

dow the elaborated algorithms with transparency and provide a means
for their convenient modification with a change of a class of problems
to be solved. The described modules were also synthesized in MLT–
1 when the system library composed of functional program modules
performing the search for objects of a given type in the description of
part drawing, the editing of texts of input documentation, etc. The
synthesis of functional modules, in its turn, was executed through the
use of the system libraries with the modules of data base look–up, of
operation with stacks and queues.

Thus, the elaborated facilities enable the problem–oriented func-
tional and the system programming products to be synthesized au-
tomatically which fact attests to their flexibility and efficiency. The
total volume of the developed technological library components of the
MLT–1 system reaches up to 2000 operators of PL–1.

The MSPD method was also applied to develop some components of
AMS, CROSS–systems of software support for special–purpose mini–
and microcomputers, and monitor operating systems for HCS. Exper-
imental employment of these facilities in practice has shown the possi-
bility of 3 to 4 times speedup in development of program product and
enhancement of its quality owing to the developed apparatus of formal
transformation of programs in SAAs. Let us note also, that segmenta-
tion of the program, being developed by the MSPD method, is carried
out during the multilevel design, compilation and catalogueing of pro-
gram modules.

In the nearest future the MSPD facilities will be enhanced through
the development of a flexible archive with problems. system, and per-
sonal user’s libraries, the development of an interpreter system for edit-
ing and debugging the program product as part of the process of its
design, the elaboration of methods and system of training in the MSPD
method.

References

[1] V.M.Glushkov. Theory of Automata and Formal Transformations
of Microprograms. Kibernetika, 1975, No.5, pp.1–10

260



Mathematical theory of multiprocessor control systems. . .

[2] G.E.Cejtlin. Problem of Identity Transformations of Structured
Program Schemata with Closed Logical Conditions. Kibernetika,
1978, No.3, pp.50–57; 1979, No.4, pp.10–18; No.5, pp.44-51

[3] V.M.Glushkov, G.E.Cejtlin, E.L.Jushchenko. Algebra. Sprachen.
Programmierung. Akademie–Verlag, Berlin, 1980, p.340

[4] V.M.Glushkov, G.E.Cejtlin, E.L.Jushchenko. Methods of Symbol
Multiprocessing. Kiev, Naukova Dumka, 1980, 252 p.

[5] R.Linger, H.Mills, B.Witt. Structural Programming: Theory and
Practice. Moskva, Mir, 1983, 406 p.

[6] G.E.Cejtlin. The Theory of the Modified Post Algebras and Mul-
tidimensional Automata Structures. Lecture Notes in Computer
Science, 1975, No.32, pp.418–424

[7] G.E.Cejtlin. Schematics of Structural Parallel Programming and
its Applications. Mathematical Institute, Czechoclovak Academy
of Olomous MFCS’79. Lecture Notes in Computer Science, Vol.74,
1979, pp.474–481

[8] Ju.A.Jushchenko. Problem of Identity Transformations of Struc-
tured Program Schemata with Closed Logical Conditions. Kiber-
netika, 1982, No.2

[9] A.P.Ershov. State–of–the–Art of Theory of Program Schemata.
Problemy Kibernetiki, 1974, issue 27, pp.87–111

[10] V.M.Glushkov, G.E.Cejtlin, E.L.Jushchenko. Multilevel Struc-
tural Program Design: Method Formalization, Spectrum of Ap-
plications. Kibernetika, 1981, No.4, pp.46–60

G.E.Cejtlin, E.L.Jushchenko Received 30 June, 1994
V.M.Glushkov Institute of Cybernetics
Ukrainian Academy of Sciences,
Kiev, 252207, Ukraina

261


