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A form of multidimensional averiging functions
satisfying the property of associativity

V.Arnaut

Abstract

In this paper multidimensional averiging functions are studied
in assumption that they are continuous, monotonic and satisfy
the property of associativity. It is proved that such functions are
very “closed” to functions MAX() and MIN().

1 Introduction

As a rule, the estimation process results in obtaining a sequence of
numbers. Because each number is the “measurement” of one essence
by an expert, but in reality we are interested in a general image which
is a combination of all opinions, it often resorts to an aggregation of
given numbers, that is to obtaining the smaller secquence, but which
concentrates already the general opinion of many experts.

Definition 1 The aggregation is called a total one if the obtained se-
quence consists of a single element.

The aggregation procedure is often based on the definition of a
function, called aggregation function, which is applied to sequence
obtained as a rezult of estimation. In this case the following algo-
rithm is applied. Let f(x1,x9,...,2,) be the aggregation function

and let A = {a1,a2,...,0j41,...,0j4n,0jqtnt1,-..,am} be the se-
quence for aggregation. From sequence A a subsequence of n numbers
{@j41,...,aj4n} is selected, applying the function f(z1,z9,...,z,) we
obtain
!
aji1 = f(aj+17 cee 7aj+n)'
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Replacing this subsequence by ag 41 a new sequence A" = {ay,aq,...,
a; 415+ s Gm_nt1} is obtained. Iteratively applying this algorithm, we
gradually decrease the initial sequence.

Definition 2 The function f(x1,%2,...,2Ty) is called correct aggrega-
tion function relatively to sequence A = {a1,aq9,...,an} if iteratively
applying it to this sequence a total aggregation is obtained.

Statement 1 For the function f(x1,z9,...,x,) to be correct aggrega-
tion function relatively to sequence A = {ai,as,...,an} the condition
(m —1)|(n — 1) must be satisfied.

Proof. Because at each stage of aggregation the sequence decreases
with (n—1) elements and at termination of iterative aggregation process
a sequence of one element is obtained it rezults that (m—1) = k(n—1),
where £ is a natural number, hence (m — 1)|(n — 1).

Statement 2 The number of classes of correct aggregation functions
is equal to the number of divisors of (m — 1), where m is the number
of elements of sequence which must be aggregated.

Proof. Because (m —1)|(n — 1), where n is the number of aggregation
function variables, it rezults that reuniting all the functions of n vari-
ables into one class we obtain so many classes as many divisors (m — 1)
has.

Statement 3 Aggregation functions of two variables are correct rela-
tively to every sequence.

Proof. Because in this case we have n = 2 and because 1 is the divisor
of every number we have (m —1)|1 and hence functions of two variables
are correct relatively to every sequence.

The aggregation function is a simmertical one if every arrangement
of sequence z1,xs,...,x, does not change the value of the function,
that is

fx1, 22, xn) = f(®i1, Tig, . .., Tin)-
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The aggregation function satisfies a complete associativity if the fol-
lowing relationships are satisfied

f(f(xtha e ax’n)amn—f-la .. ax2n—1) -
= f(xlaf(x%--- axn-l-l)a'-- 733277,—1) = .
= f(xlux% s 7$n717f($n7$n+17 e 7«/1;27171))-

If only some of the relationships are satisfied we have a partial associa-
tivity.

Definition 3 Aggregation procedure is called averiging aggregation if
the aggregation function is an averiging one.

Definition 4 Function f(x1,22,...,zy) s called averiging function if
m < f(x1,29,...,2) <M

where m = min(zy, z9,...,z,) and M = max(zy,z2,...,Ty).

2 The axioms involved in aggregation process

In the aggregation process some axioms can be involved which are the
cristallization of some requirement imposed to the aggregation process.
We shall express this axioms in the form of properties of averiging
functions [1].

Let f(x1,x9,...,2,) be an averiging function. In the assumption
that 0 and 1 are respectively the minimal and the maximal values
admited at the process of estimation, we have the following axiom.

Axiom 1 f(0,0,...,0) =0 and f(1,1,...,1) =1.

If we have that the vectors z and y are connected by relationship
2 > y this fact would mean that the object reprezented by vector = in
the opinion of some experts is better than the object reprezented by
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the vector y and hence, because an aggregation is an union of opinions
expressed by all experts, it is natural that aggregation performed on
the vector = to be better than aggregation performed on the vector y
and hence the following axiom is natural.

Axiom 2 f(z1,29,...,2n) > [(Y1,Y2, - yn) for z > y.

This axiom is so called axiom of monotony.

Making abstraction of some critical moments, we shall assume that
a very small variation of opinions of experts has a small influence on
the general opinion about the given object. This moment is expressed
in the following axiom.

Axiom 3 The averiging function is a continuous one.

This is the axiom of continuity.

3 Properties of associative averiging functions

Statement 4 There are no strictly monotonic associative averiging
functions, that is, if the vectors x and y are connected by relationship
x > y then we have

f(x17$27"'7x7l) >f(y17y27"'7y")'

Proof. We assume that there are such functions. Then for the sequence
T <z <...< 1z, we have

flxr,mo, ... xn) < f(f(T1,29, . Tp)s Tyy e v oy Tyy) =

= f(z1, 29, .., f(Xn, Ty oo ) = f(T1, 29, ..., Ty).

The obtained contradiction proves the assertion.
We make the following notation

fQ0,...,0, z,...,z,2 ) = fi
v
i

For monotonic functions we have that fi < fJ for i < j.
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Statement 5 If the function is associative and monotonic then fi =

fi.

Proof. To prove this assertion it is sufficient to show that f1 = f¢ for
every 1 > 1. From associativity we obtain for f! the following relation-
ships:

fo=10,...,0, fptx) =

=f(0,...,0,f§72,a:,a:) =... =f(f%,a:,a:,...,x)

and for f% the relationships which follow below:

f[lz‘,‘:f(o”o7 f{ll'/"x?"'?x ):
—
(3
= £(0,...,0, f2a,...,x)=...=f(0,0,...,f)
i —1
P

From these relationships we can observe that

fw]':f((),-.-,o,f;”il,x)2f(0707...7 ;717x):f;

Hence we obtain f! = fZ.

Statement 6 If the function is associative, continuous and monotonic
and fi = a, then f(0,0,...,0,2) = z for every z that belongs to seg-
ment [0, a].

Proof. From associativity we have the relationship

Because the function f(z1,z9,...,z,) is continuous and varying z from
0 to 1, the function takes values from 0 to o, which means that sub-
stituting f(0,...,0,2) by z we have a variation of z from 0 to « and
therefore we obtain equality f(0,...,0,z) = z for Vz € [0, a.
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Statement 7 If the function is associative, simmetrical, continu-
ous and monotonic and f{ = a, then f(0,...,0,a) = « and
fla,...,a,1) = a.

Proof. The equality f(0,0,...,0,«) = « is obtained from Statement 6.
From associativity and simmetry we obtain

f(a7a7"'7a7]') :f(a7a7"'7f(a70""70)71) =
:f(a7a7"'7a7f(0707"'7071)) :f(a7a7"'7a7a) =«

Statement 8 If f( «,...,a ,1) = « and f(x1,...,x,) is associative
——
n—1
and simmetrical then f( o, ..., ,1,...,1) = a for every 1 < k <
————
k
n — 1.

Proof. From associativity we obtain

flaoa,...;a,1,...,1)=f( ..., flaya,...,a),1,...,1) =
N——_——— N——_———
k kE—1
=fla,a...,a,fla,a,...,a, )10 1) = f( oy, a0 ,1,..0,1)
%/_/ %,—/
k k+1

Repeating this procedure (n — k — 1) times we derive the equality

flaa...;a 1,....1)=f( ,a,...,a ,1) =«
%/_/ %,—/
k n—1

Therefore we obtain that

flaa...;a,1,...1) =«
—_———
k

forevery 1 <k <n-—1.
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Statement 9 If fi = 2Vz € [0,a] and f(z1,72,...,27,) i an mono-
tonic function then f(z1,z9,...,x,) = max(z1,T9,...,x,), for values
x; which donf exceed .

Proof. We make the notation M = max(x1,x2,...,Z,). Then we have
the relationship

M:f(o,,O,M) < f(wlaan---axn) < f(MaMaaM) =M
Therefore f(x1,x9,...,2,) = max(x1,Z9,...,Ty).
Statement 10 If the function is associative, simmetrical, continuous

and monotonic and f{ = «, then f(x1,T2,...,2,) = a for every se-
quence which has values both greater than o and smaller than «.

Proof. Replacing in f(x1,x9,...,2,) the values greater than «
with «, and the values smaller than o with 0 we obtain the value
f@0,...,0,a,...,a). Performing such a procedure under the condition

that instead of the values smaller than « we substitute the value «, and
instead of the values greater than a we substitute the value 1 we obtain
the value f(a,...,a,1,...,1); as a rezult we can write the following
relationships

a=f(0,...,0,a,...,a) < f(x1z9...20) < fty...,a,1,...,1) =«
Hence we obtain the equality
flx1, 29, ... 2,) = @

Statement 11 If the function is associative, continuous, monotonic
and

f(17"'7]"a):a’

then f(1,1,...,1,2) = z for every z that belongs to the segment [c, 1].
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Proof. From associativity we have the relationship

f,... Lz)=f(1,1,...,f(1,...,1,2)).

Because the function f(z1,z9,...,z,) is continuous and varying z from
a to 1, the function takes values from « to 1, which means that sub-
stituting f(1,...,1,z) by z we have a variation of z from « to 1 and
therefore we obtain equality f(1,...,1,2) = z for Vz € [a, 1].

Statement 12 If f(1,...,1,z) = 2Vz € [a, 1] and f(z1,29,...,2y) is
a monotonic function then f(x1,x9,...,2,) = min(zq, o, ...,xy,), for
values x; which exceed .

Proof. We make the notation m = min(z1, z9,...,z,). Then we have
the relationship

mzf(17717m) Zf(xlux%"wxn) Zf(m7m7"'7m) =m
Therefore f(z1,z9,...,2,) = min(xy,x9,...,Z,), for values z; which
exceed «.

Theorem 1 The associative, simmetrical, monotonic and continuous
averiging functions have the following form:

Max Ty, ...,Ty), if max(zy,...,z,) < «
med(Z1,...,Tp, @) =1 a,if min(zy,...,z,) < a < max(zy,...,Ty)
min(xy,...,Zy), if min(zy,...,x,) > «

Proof. We make the following notation:

f(0,0,...,1) =«

Then from the Statement 6 we have that f(0,0,...,0,z) = z for
every z that belongs to the segment [0,«]. It follows from the
Statement 9 that f(z1,zo,...,z,) = max(zy,z9,...,z,), for values
z; which donf exceed «. From the Statement 10 it follows that
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f(x1, 29, ..., 2,) = a for every sequence which has values both greater
than a and smaller than «. From the Statement 7 and the State-
ment 8 we deduce that f(1,...,a) = «, and from the Statement 11
we obtain that f(1,...,2z) = z for every z which belongs to the seg-
ment [«, 1]. Further we apply the Statement 12 and we obtain that
f(x1, 29, ..., 2y) = min(xy, x9,...,Z,), for values z; which exceed a.
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