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MT and Unification®

D.Estival

1 Introduction

This paper presents one of the projects pursued at ISSCO, the devel-
opment of a prototype for a machine translation system and describes
ELU, the environment built for this project and in which the prototype
was developed. This project has been very much of a cooperative effort
and the list of those who made substantial contributions to ELU or its
intellectual ancestor, UD, is too long to allow for detailed individual
acknowledgement here. Successive stages of its development can be
traced through the papers by Johnson and Rosner (1989), Warwick,
Russell, Boschetti and Bouillon (1989), Russell, Warwick and Carroll
(1990), Estival, Ballim, Russell and Warwick (1990), Estival (1990b),
Russell, Ballim, Estival and Warwick (in prep.), which are referenced
in the bibliography.

The experimental work of building a machine translation prototype
is embedded in more general projects such as designing an evaluation
methodology for machine translation systems, experimenting with dif-
ferent theories of translation or testing the adequacy of linguistic the-
ories. ELU (Environnement Linguistique d’Unification) is a linguistic
development environment based on unification. A linguistic develop-
ment environment is a software system which serves as a guide or frame-
work for linguists building natural language processing systems. The
aim of this paper is to explain the base concepts of this environment
and show their relations to the goal of machine translation (MT).

In computational linguistics, the traditional division between the
“developers” and the “users” of a computational tool is mirrored by
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the two issues which must be confronted for every problem, i.e. the
computational and the linguistic aspects of the problem. For MT, the
two issues can be characterized as follows:

e the computational issue: the design and implementation of a com-
putational tool for translation.

e the linguistic issue : the description of the linguistic problem of
translation.

ELU was designed and built as a computational tool general enough
for the development of computational linguistic applications in general,
but more specifically for M'T, and its design already presupposes a cer-
tain conception of the interaction between the computational imple-
mentation and the linguistic description.

2 MT as Knowledge Description

Research in M'T may have several purposes, but any MT system is by
definition required to accept as input a text in one language and to
produce as output a text in another language. A possible approach to
MT is to view it as modelling the knowledge of a good translator per-
forming the translation. Regardless of the psychological implications of
such an approach, this knowledge can be characterized as involving the
following two components which must be represented in the knowledge
base of any MT system:

e separate knowledge of source and target languages (linguistic
ability);

e translation specific knowledge (translation skill).

The division between the two kinds of knowledge implies that the
translation skill of a translator is separate from that translator’s lin-
guistic ability in the different languages involved. The requirement
that the knowledge of the source and target languages be separate im-
plies that linguistic ability in one language is not affected by linguistic
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ability in another language. This is a more controversial assumption
psychologically but a reasonable one in the absence of a good theory
of language interference. It also is a crucial requirement in the design
of a flexible MT system, allowing it to be easily extendable to different
language pairs.

Therefore, an important task in building an MT system is to write
grammars for each of the languages independently of each other, and
a fundamental step in the design of the system is the definition of
the formalism for the grammars. The term grammar is taken in the
larger sense and means the description of linguistic knowledge, or more
formally, the characteristic function of the (infinite) set of the well-
formed expressions of the language.

A linguistic description contains different types of information: lex-
ical, morphological, syntactic and semantic. An important point is that
all these partial descriptions are reversible, that is they can be used for
synthesis as well as for analysis.

The translation process can be represented with the classic U-
shaped schema of Figure 1, indicating the role played by the gram-
mars. The arrows leading to the transfer component show the use
of the grammar for analysis while the arrows leading away from the
transfer component show the use of the grammar for generation (i.e.
synthesis).

As for translation itself, we see in Figure 1 that it is viewed as a
mapping between representations in a language description into repre-
sentations in another language description. This means that we have
made a choice and decided not to pursue the other approach to transla-
tion in MT, i.e. “interlingua”, but follow the “transfer” approach. This
is not the place for a discussion of the merits of the two approaches.

For each language, the grammars produce representations which
abstract away from the particular form of the language at different
levels of abstraction, and one must therefore decide at which level the
mapping for transfer (both lexical and structural) should be made. The
approach adopted is that it should be at the highest level of abstrac-
tion, under the hypothesis that this will be the most uniform across
languages. This hypothesis is independent of any semantic theory but
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Figure 1:The Translation Process

depending on the linguistic theory chosen the level of abstraction will
be the level of semantic representation, of logical form, of functional
structure, etc.

3 ELU (Environnement Linguistique d’Unifi-
cation)

ELU has its first origins in the system developed at ISSCO by Johnson
and Rosner (called UD for “Unification Device”), presented in Johnson
and Rosner 1989, which can be described as an enhanced PATR-II
style environment for linguistic development. The original version has
been revised and extended and now contains a generator (described in
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Warwick et al. 1989 and Russell et al. 1990) and a transfer component
(described in Estival et al. 1990). Even in those components which do
not exist in PATR, the syntax of ELU still follows rather closely the
PATR formalism which has become a standard for unification-based
systems (Shieber 1986).

An environment is both a computational tool and a formalism for
representing linguistic knowledge, and these two aspects, as a compu-
tational work environment and as a metalanguage for stating linguistic
descriptions, correspond closely to the two issues of MT mentioned
above. In ELU, both of them are determined by the fact that the for-
malism adopted is based on unification, and that the syntax of ELU
has a declarative semantics.

3.1 Unification-based Formalism

I briefly review the general idea of a unification-based approach to
grammar. Unification is a formal operation which operates on certain
kinds of objects, and all the linguistic unification-based formalisims rely
on two basic assumptions:

e the informational elements are feature structures (FSs)
e the operation combining this information is the unification of F'Ss.

A feature structure (FS) is an organized representation of the in-
formation needed by the system manipulating it. All the knowledge
embodied by the system is contained in FSs. An FS is a set of
features, where each feature consists of an attribute-value pair (an
attribute-value pair can be viewed as a path in a graph and be writ-
ten <attribute value>). The value of an attribute can be an atom or
an FS, as seen in (1). This is an example of a complex FS, where
the attribute “agreement” has a complex value which is itself an FS
consisting of a set of three features.
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cat n
head sem pred  Pierre
(1) agreement gender  masc

number sg
person 3

The unification of two FSs combines the information contained in
them. The operation of unification is based on the relation of subsump-
tion. This relation holds between two FSs F; and F}, i.e. F; subsumes
Fj, iff all the attribute-value pairs of F; form a subset of the attribute-
value pairs of F;. Unification between two F'Ss succeeds iff the common
attributes of these two F'Ss either end in the same values or can be uni-
fied (note that the definition is recursive because the value of a common
attribute may itself be an FS). The result of unification is a third FS
which contains the attribute-value pairs which are found in either one
or both of the original F'Ss.

The two FSs of (2) can serve as an illustration of unification as
information combining operation. If the FSs in (2.a) and (2.b) are
unified, they form the FS given in (1).

( cat n
head sem pred  Pierre
(2) a. agreement gender masc
number sg
L person
[ cat
head sem pred
b. agreement gender
number sg
L person 3

Neither (2.a) nor (2.b) subsumes the other, but each subsumes (1),
the F'S resulting from their unification.

Unification can be required between FSs by using constraint equa-
tions, in the rules or in the lexical entries. For instance, (3) is an
example of a constraint equation: it indicates that the FSs which are
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the value of the “agreement” attributes of “XP” and “head” have to
unify.

(3) <XP agreement> = <head agreement>

Solving a constraint equation means checking that the path descrip-
tion given by that equation unifies with the FS under consideration.
Constraint equations are the only way not only of specifying informa-
tion, but of specifying how to use that information. To get a result,
all the applicable constraints must have been solved, and there is no
ordering among the constraints. This is what makes the system declar-
ative.

3.2 ELU: The Computational Tool

Since one of the goals of the project was to provide linguists (seen
as users in the process of developing an MT system) with a flexible
tool in which they could experiment with several analyses and state
them easily, some of the characteristics of ELU as a computational
tool for linguistic development are worth pointing out, especially those
which are due to the formalism chosen. Unification is a clear and
well-defined operation, and a system based on unification allows the
representation of linguistic knowledge independently of any particular
machine or application:

e machine independence: ELU is a LISP program (Common LISP);
it was developed on SUNs but does not require a specific interface.

e general purpose: ELU is a computational tool suitable for a large
range of linguistic applications, such as:

— the description of a particular language at a particular level:
lexical, morphological, syntactic, or semantic.

— a specific task such as analysis or synthesis of particular
languages, or transfer between FSs. Transfer between FSs
has application beyond MT, see Russell et al. (in prep.).
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— or translation, i.e. an application which comprises all these
more specific tasks.

o user-friendliness: ELU offers a clear and flexible syntax for writ-
ing linguistic descriptions, incremental compilation and debug-
ging facilities for testing them.

e modularity: A consequence of the formalism, this property is re-
lated to user-friendliness. Our own experience with the develop-
ment of ELU is an illustration of the benefits of this aspect of
the system. Although at first efforts had concentrated mainly
on the morphological and syntactic components and on the lex-
icon/morphology /syntax interfaces for the descriptions used in
analysis, as soon as the generator was added, those descriptions
were formally usable for generation as well (but see Russell et
al. 1990 and Estival 1990a for some linguistic issues). Once the
transfer component was added, these monolingual descriptions
were also usable without modification, the linguistic work con-
sisting in adding the transfer rules.

3.3 ELU: The Formalism

ELU is designed to offer the same formalism in all of its components,
be it for synthesis, analysis or transfer. To be usable in such a broad
range of tasks, a formalism must have a clear transparent syntax and
a declarative semantics. The basic properties of ELU as a formalism
for linguistic description are that it is unification-based and that it is
declarative. These two properties are related to each other, since a
formalism which only allows the operation of unification is necessarily
declarative: the only statements which are expressible are constraint
equations. These two properties immediately give the system certain
advantages.

3.3.1 Unification-based

Among the advantages deriving from being based on unification, we
first note that unification has become a central concept for a number
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of computational tools: PATR-II, FUG, GDE, (cf. Shieber 1986, Kay
1983, Carroll et al. 1988); and for a variety of linguistic theories: GPSG,
LFG, HPSG (cf. Sag et al. 1986, Johnson 1988).

More concretely, besides declarativeness, a unification-based for-
malism can be characterized by the following properties:

o cxpressivity: as a metalanguage, the formalism can be used to
express different types of analysis, and analyses at different levels
of abstraction.

e uniformity: across these different analyses and across the various
grammatical components.

e theoretical neutrality: the system does not impose any particu-
lar linguistic theory. Nevertheless, it is particularly well-suited
for the implementation of the fundamental properties of mod-
ern linguistic theories, (i.e. declarativeness and lexicalism); ELU
therefore allows the linguist to simulate various syntactic theo-
ries, such as LFG, GPSG, HPSG, or GB.

3.3.2 Declarativeness

Declarativeness is the fundamental property from which all the other
properties mentioned follow and can best be explained by way of a
negative definition. A declarative program, description, or rule is not
procedural, it does not state how to do something, but under what
conditions something is done or is true. The interpretation of declar-
ative statements does not depend on the processes running them:; in
other words, declarative statements have a meaning independently of
their application. In addition, the ordering among the statements is
irrelevant, since what matters for the result is that all the applicable
statements can be shown to hold at the same time.

The property of declarativeness means that a linguistic description
is a set of independent statements (constraint equations) about the
well-formed expressions of the language. FEach statement or rule is
local and bidirectional.
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Locality of rules is a necessary property for any system which has
any claim to generality. As in other formalized fields using rules and
representations, it is one of the essential principles in linguistics that a
rule must only refer to the smallest possible context in which it applies.
FSs can be very complex structures, but the rules working on them do
not have to be as complex, because those structures may be decom-
posed into smaller parts. Locality of the rules allows the description as
a whole to be:

e flexible: permitting changes during development.

e incrementable: permitting additions during development or even
in application. (The modularity of the system as a whole parallels
the incrementability of the descriptions.)

Bidirectionality of rules is an essential property of the declarative
formalism, and it allows the construction of:

e reversible grammars: for each language, only one grammar is
needed for both parsing and generation.

e bidirectional transfer: between two languages, ouly one set of
rules is needed to express the translation relation in both direc-
tions.

Grammar reversibility is a working hypothesis which is worth push-
ing as far as possible, because it imposes certains constraints for the
linguistic analyses (Dymetman et Isabelle 1988, Russell et al. 1990)
and permits a better testing of the covering of the grammar. If it is
only used for analysis a grammar might overgenerate (and accept un-
grammatical input), while if it is only used for generation, the grammar
might undergenerate (select one paraphrase for generation and not be
able to accept other grammatical variants). A reversible grammar has
to strike a balance between the two. It is also more efficient for de-
velopment and maintenance, since changes need not be repeated. Like
grammar reversibility, transfer reversibility is also a hypothesis that
we are pursuing (Estival et al. 1990). The consequences of transfer
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reversibility are harder to foresee, because the properties of a trans-
fer module are much less well understood. The strong claim it makes
about the nature of translation may prove not to be tenable, but this
claim must be investigated, and this investigation is possible precisely
because the formalism allows the transfer rules to be bidirectional.

3.4 Extensions to the formalism

The unification formalism is very powerful but its simplicity is also
extremely constraining and some extensions are needed to increase its
expressivity. Most systems based on unification have found it useful
and convenient to add some features to the basic formalism. The prob-
lem all have had to face is to ensure that these extensions do not detract
from the advantages of the formalism.

The extensions of the formalism which are specific to ELU and
distinguish it from other unification-based formalisms, such as PATR-
II or FUG, are the following:

e ELU provides pre-defined expressions for negation and for dis-
Junction

ELU accepts terms (complex objects) and lists as attribute values.

ELU accepts wvariables over attribute-value paths.

ELU permits defining new data types with typed expressions.

ELU allows abstracting over sets of constraints with parameter-
ized templates.

e ELU allows direct manipulation of lists defined as feature values.

These extensions to the general unification formalism make the met-
alanguage of ELU more expressive, and permit a more direct expression
of linguistic generalizations.

Parameterized templates are a way of abstracting over sets of con-
straints. Like PATR templates, they are a shorthand for sets of con-
straint equations and thus permit the statement of lexical, morpho-
logical, syntactic and semantic generalizations in a concise way. But
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parameterized templates are a much more powerful mechanism than
simple templates, because they can take arguments. Moreover, in ELU
a parameterized template admits not only recursive but also multiple
definitions. The recursive and multiple definitions of parameterized
templates introduce a certain amount of non-determinism which may
cause some difficulties in generation, but this question falls outside the
scope of this paper and will not be addressed here (see Russell et al.
1990, Estival 1990a and 1990b).

The simple template of (4.a) defines a three place agreement rela-
tion on *, A, B, which is expressed by the two constraint equations.
The variable “*” in an equation always refers to the F'S described by the
rule to which the equation is attached. A call like (4.b) then triggers
the set of equations to apply.

4) a. # Define Agree(A,B)
g
<* agreement> = <A agreement>
<A agreement> = <B agreement>

b. !'Agree(A,B)

An example of the use of multiple definitions is shown in (5), in
which the template “X1”7 allows the complement of an N to be an NP,
a PP or an SBAR, or the complement of a V to be an NP, a PP, an
SBAR or a VP.

(5) X1(Compl, H)
<H cat> = n
<Compl cat> = np/pp/sbar
<H compl> = Compl

X1(Compl, H)
<H cat> = v
<Compl cat> = np/pp/sbar/vp
<H compl> = Compl

List manipulation is facilitated by two Prolog-like operators “++"
and “——". The equation in (6) is an example of list manipulation
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on lists defined as feature values. It is an illustration of the standard
way of dealing with the subcategorization requirements of lexical items.
The equation permits unification only if the NP mentioned in the right-
hand side of the equation can itself be unified with an element of the
list which is the value of the attribute “subcat”.

(6) <* subcat> = <VP subcat> —— NP

This equation takes a member off the list of subcategorized items
attached to the VP structure, and makes the reduced list the value
of the FS which is the “subcat” attribute of the F'S described by the
rule to which the equation is attached, i.e. “*”. The set of equations
in (7.a) and (7.b) give examples of the possible result of unifying (6)
with other equations imposing different constraints on the value of the
subcat list.

(7) a. <VP subcat> = [NP]
<* subcat> = []

b. <VP subcat> = [NP,PP]
<* subcat> = [PP]

None of the extensions listed above destroys declarativeness, i.e.
makes the system procedural. In particular, negation is ounly allowed
for atomic values, and so the question of ordering of statements does
not arise. Disjunction is a very difficult problem in all the proposed
extensions to the pure unification mechanism (cf. Ramsay 1990). After
experimenting with general disjunction, i.e. allowing it for every kind
of terms, it was deemed safer to keep it restricted to atomic values.
The only problem with lists and typed expressions is that they may be
tricky for a beginner to manipulate.
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4 The components of an MT system

The architecture of the system shown in Figure 1 is the classic one,
with the three components of a transfer system: analysis of the source
language, transfer between representations for the source and target
languages, and generation of the target language. The bidirectionality
of rules given by the declarativeness of the formalism makes it possible
to have reversible grammars, or linguistic descriptions, and to clearly
separate them from the processes of analysis and generation. Similarly,
the declarativeness of the formalism not only allows the transfer module
to be clearly separated from the analysis and generation modules, but
it makes it possible to have bidirectional transfer.

4.1 The Linguistic Descriptions

The linguistic description of a language is divided into rules describing
lexicon, morphology, syntax and semantics. The declarativeness and
expressiveness of the formalism allow a great latitude and permit a
healthy eclecticism in the choice of linguistic orientations. Nevertheless,
lexicalism has remained a fundamental principle in our approach.

In a unification formalism, the lexicon is treated as a dynamic ob-
ject, containing information about the morphological and syntactic pro-
cesses that a given lexical item might undergo as well as static syntactic
and semantic information. This information can be stated in a concise
way via the parameterized templates expressing powerful lexical gen-
eralizations.

The morphological component of ELU is a finite state automaton
based on sublexicons of stems, affixes, and continuation classes defining
their combinations. A new version of the morphological component will
use a default inheritance approach.

A set of annotated context-free rules forms the skeleton of the lin-
guistic description. The context-free part of the rules defines the con-
catenation of constituents; like production systems, the context-free
rewrite rules can be interpreted in either direction. The constraint
equations which constitute the annotations on the context-free back-
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bone of the grammar rules determine the combination of syntactic and
semantic information on these constituents. These constraints have
the same syntax and are of the same kind as the lexical constraints ex-
pressing lexical redundancy rules in the lexicon, or any other constraint
equation.

The syntactic approach in the grammars written in ELU is theo-
retically undogmatic, i.e. it borrows from several frameworks the best
each has to offer; nevertheless, given the formalism in which we are
working, we are naturally closer to surface-oriented theories which are
described in unification and feature structure terms (e.g. HPSG and
LFG, cf. Torris 1988 for a discussion of those issues).

4.2 The Analysis component

The parsing part of the grammar is the set of context-free rewrite rules
annotated with constraints. The current ELU parser was written at
ISSCO by R. Johnson. Reflecting the division of the grammar into the
context-free backbone and the set of constraints, this two-pass parser
at first builds a syntactic tree and then checks the constraints.

The first pass is based on the Earley algorithm, and constructs a
phrase structure tree. The extension to the Earley algorithmn lies in the
prediction step. Instead of relying simply on the syntactic categories of
the mother and daughter constituents in the grammar rules to restrict
the search space, it can be driven by pre-compiled restrictors. Roughly
speaking, restrictors cut down the amount of useless work done by the
parser. A restrictor is a specification of a value which can be computed
from an FS. Any attribute can act as a restrictor, and the attributes
to be taken as restrictors are specified by the grammar writer. If no
restrictors are specified, the parser behaves as a simple CKY parser. If
only the syntactic category is specified as a restrictor, then the parser
is equivalent to the unextended Earley algorithm. The values of the
restrictors are checked before attempting to use a grammar rule, and
a rule is discarded from the set of rules to be tried if the values of the
restrictors in the rule do not match the values of the restrictors in the
input. See Shieber 1985 for the use of restrictors in parsing, and the
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ELU User Manual (Estival 1990b) for a more detailed description of
their use in ELU.

The second pass is a recursive depth-first descent through the
phrase structure tree created by the first pass, solving the constraint
equations from the rules, i.e. doing the unifications required by the
constraints annotated on the rules. During the second pass, the whole
grammar (i.e. all the components of the linguistic description) is in-
volved, since the solution to the constraint equations annotated on
the context-free rules may involve constraints from other parts of the
grammar.

The parser is non-deterministic and returns all the valid parses. If
a sentence receives several valid parses, these may be ordered according
to a ranking pre-defined by the user.

4.3 The Generation component

While parsing techniques have been studied intensively and there are a
number of well-known algorithms in unification-based frameworks, gen-
eration is a more recent subject of investigation which is still undergoing
development. It is therefore worth spending more time describing the
generation component.

4.3.1 The Generation algorithm

The generation algorithm of ELU is based on the algorithm described
in Shieber et al. 1989; it was developed at ISSCO by J. Carroll.

Generation is head-driven: each rule has a “semantic head” and
the head daughter of a rule is generated before its siblings. The se-
mantic head of a grammar rule is specified by the grammar writer.
Thus, the context-free part of the grammar rule in (8) is the tradi-
tional rewrite rule S — > NP VP, with the additional information that
the vp (marked with an “H”) is to be taken as the head daughter.
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(8) s => np Hvp
<Hvp cat> = vp
<Hvp head form> = finite
<Hvp subcat> = [Subj]
<np> = Subj
<s subcat> = []

The generator distinguishes two types of rules in the grammar,
“chaining” and “non-chaining” rules, and following from this distinc-
tion, it employs both bottom-up and top-down processing. The dis-
tinction can be explained as follows. All rules have a semantic head,
and in the general case, the semantic head of a rule is conceptually
similar to the mother node for that rule, e.g. the head of a VP is a verb
or the head of an NP is a noun. However, not only is the semantic head
not required to unify with the mother node, no part of it is required
to match any part of the mother node. Now, in a chaining rule, some
subpart of the FS for the head daughter, defined as its “semantics”,
must unify with a subpart of the FS for the mother of the rule. Any
rule in which this is not the case is a non-chaining rule.

The partition of the set of grammar rules into chaining and non-
chaining rules is pre-compiled from the specification of what counts
as the “semantics” of an FS. The grammar writer specifies it with
a statement like the one shown in (9), which is encoded as a set of
restrictor values during compiling.

(9) # Sempaths
<* head sem>

With (9), the chain rules of the grammar are all the rules in which
the value for the attribute <* head sem> on the head daughter sub-
sumes the value for the attribute <* head sem> on the mother.

Chaining rules are used bottom-up from the “pivot”, which is de-
fined as the lowest point in the path through the head daughters of
chaining rules at which the semantics of the FS remains unchanged.
Non-chaining rules are used top-down from the pivot.
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4.3.2 Generation with a unification grammar

Some problems may be encountered by the writer of a unification gram-
mar suitable for generation. Some of these are due to the simple fact
that the generation process itself imposes a mode of thinking which is
strange to a linguist accustomed to writing grammars for analysis, oth-
ers stem from the nature of the linguistic theories which the unification
formalism makes so attractive and for which it seems designed, while
some are directly attributable to the formalism itself.

Coherence and Completeness The generation algorithm guaran-
tees neither the “completeness” nor the “coherence” of the resulting
FS. The coherence and completeness of FSs is a pervasive problem in
all the unification-based formalisms (cf. Kaplan and Bresnan 1982).
In ELU, we use the usual approach of typing. The responsibility for
preventing the generation of F'Ss unifying with the input but being in-
complete (i.e. ensuring completeness) rests with the grammar writer:
any structure which needs to be generated in its entirety should not be
represented as an unconstrained FS, but must be specified as another
data type, i.e. a list, a tree, or a user-defined type expression.

E.g., from an FS such as (10.a), both sentences (10.b) and (10.c)
would be generated (if the grammar allows the verb to eat to be both
transitive and intransitive, of course), because their corresponding F'S
representations both unify with (10.a). The F'S corresponding to (10.b)
is (10.a) itself, while the F'S corresponding to (10.c) is (10.d), which
subsumes (10.a).

[ head sem pred eat -|
(10) a. argl John
| arg2 bananas J

b. John eats bananas.

c. John eats.

[ head sem pred eat
argl John

A better representation for the arguments of a predicate would use
a list for the arguments, as is done in (11.a) from the set of constraints
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in (11.b).
[ head sem pred eat ]
(11) a. [ John
args
[ bananas | J
b. <* head sem pred> = eat
<* head sem args> = [Argl, Arg2]
Argli = John
Arg2 = Dbananas

Alternatively one could define a structure type, for instance Trans
with the type definition given in (12.a), and use it as a constraint in a
type expression as done in the set of constraints in (12.b).

(12) a. Trans = (pred, argl, arg2)

<* head sem> == Trans

<* head sem pred> = eat
John

<* head sem arg2> = bananas

<* head sem argl>

The grammar writer and the generator share the responsibility for
preventing additions to the input FS (i.e. preserving coherence): the
grammar writer must also select appropriate data types, and the gen-
erator “freezes” uninstantiated variables that occur in the input.

Unification, Lexicalism and Generation The unification formal-
ism makes it very natural and easy to encode linguistic information in
the lexicon, and thus to implement lexicalist linguistic theories, such as
LFG, GPSG, or HPSG. These theories have proved extremely success-
ful for parsing, and they are attractive for grammar writing because of
the economy and the expressive power they allow the grammar writer.
However, because a great amount of syntactically constraining infor-
mation is found in the lexicon, it is not available during top-down pro-
cessing. Lexicalism thus deprives the generator of information which,
strictly speaking, is syntactic until the lexical item has been found.
Subcategorization, for instance, is a lexical property of heads in lexi-
calist theories, and thus the syntactic properties of a verb which depend
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on its subcategorization are only available when the lexical head has
been proposed for bottom-up generation.

In order to reach the lexical level as soon as possible (otherwise,
too many lexical heads will be proposed), most rules of the grammar
should be chaining rules, which can be used bottom-up. The grammar
writer must ensure that the rules which should be chaining rules satisfy
the condition that the “semantics” of the head daughter subsumes the
“semantics” of the mother.

The grammar writer must also ensure that the rule does not modify
the attributes (of either the mother or the head daughter) which are
defined as restrictors and which serve to limit the search space while
going bottom-up through the semantic heads of the chaining rules. This
use of restrictors in generation was first proposed in van Noord 1988.

Since by definition, the semantics of the mother and head daughter
of a chaining rule are identical, care must be exercised in determining
what attributes count as “syntactic” or “semantic”. Restrictors are
also used heavily in the selection of lexical items, so the attributes
that are chosen as restrictors must also be good discriminants between
FSs. The choice of appropriate data types and restrictors is therefore
crucial to ensure that the grammar is not only efficient but usable in
generation.

4.4 The Transfer component

As was shown in Figure 1, translation is accomplished by performing
transfer between linguistic descriptions. In the MT literature, transfer
is rarely described precisely, and there have not been many attempts
to formalize it. However, see the Third International Conference on
Theoretical and Methodological Issues in Machine Translation of Nat-
ural Languages (Austin TX, June 90), for reports on some recent work
along lines very similar to ours. Part of the reason is that in order to
solve any problem, one needs a clear conceptual separation between the
different parts of the problem and the way these may be solved, but
that the problems of translation have often been dealt with in terms of
the procedures devised to solve them. As a result, both the problems
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and their solutions are intertwined in program statements which are
very difficult to disentangle, and transfer is often a “black box” in MT
systems.

The unification paradigm provides a transparent formalism with
a declarative semantics. The declarative semantics on which we have
been insisting is what allows a separation of the problems and their
solutions. When there are only constraint equations which must all be
solved independently, one cannot describe how to solve the problem
(as with a procedure), but one must decompose the problem in simple
statements about its subparts and the links between those subparts.

Unsurprisingly, therefore, the transfer component of ELU is an ex-
tension of the unification formalism. That is, the linguistic descriptions
on which transfer is performed are FSs, and the relation on which trans-
fer is based is that of subsumption.

4.4.1 Transfer on feature structures

An MT system built with ELU contains a set of bidirectional rules to
perform transfer between two linguistic descriptions. The transfer rules
describe mappings between FSs which are the output of analysis with
one language description and FSs which are the input to generation
with the other language description. Transfer can thus be viewed as
a declarative, bidirectional relation between two FSs. For a simple
example, consider the sentences given in (13.a) and (13.b). which are
translations of each other in French and German, and the structures
shown (14.a) and (14.b), which give simplified FS representations for
(13.a) and (13.b) respectively.

(13) a. Maria liebt Paul.
Maria loves Paul

b. Maria aime Paul.
Maria loves Paul
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head sem pred lieben
(14)  a. [ <1> head sem pred Maria
args <2> head sem pred Paul ]
head sem pred aimer
b. |: args [ <1> head sem pred Maria :|
<2> head sem pred Paul ]

Each FS contains the path descriptions for the lexical head of the
main predicate of the sentence it represents, and for the list of its
arguments (each of them being in turn further specified by other path
descriptions). These two FSs can be mapped into each other by a rule
like the lieben-aimer transfer rule given in (15). Like any other rule
in the unification formalism, such a rule contains sets of constraints:
two sets of path descriptions (named L1 and L2), each of which must
subsume either the input or the output F'S representing the sentence
being transferred; the third set (named X) consists of equations which
give the transfer correspondences between variables mentioned in L1
and L2.

(15) :T: lieben-aimer
:L1: <* sem pred> = lieben

<* sem args> = [Xg,Yg]
:L2: <* sem pred> = aimer
<* sem args> = [Xf,Yf]

:X: Xg <=> X£f
Yg <=> Yf

The rule, as stated in (15), is bidirectional, i.e. either L1 or L2
can be the source language. Here, when translating from German into
French, L1 is the source, and when translating from French into Ger-
man, L1 is the target. Intuitively what the rule means can be informally
stated as follows:

e the path descriptions in the L1 pattern require that the head of
the German FS be the lexical item lieben, which has two argu-
ments;

e the path descriptions in the L2 pattern require that the head
of the French FS be the lexical item aimer, which also has two
arguments;
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e the transfer correspondences given under X state (recursively)
that the transfer relation holds between the two respective heads
of the FSs described by L1 and L2 if and ouly if the transfer rela-
tion holds between the respective arguments of these two heads.

4.4.2 Formalism for Transfer

Each transfer rule is bidirectional. The set of bidirectional rules is
bidirectional. As with grammars, bidirectionality is made possible but
not guaranteed by the formalism. The grammar writer is respounsible
for bidirectionality of a given set of rules (e.g. when dealing with reen-
trancy, see below). As a rule, bidirectionality can be interpreted for
either direction of transfer. For a set of transfer rules, bidirectionality
means, that when transfer is performed in one direction from a source
FS and then performed in the reverse direction with any member of
the resulting set of target F'Ss as the source, the original source FS
is guaranteed to be in the set of target FSs resulting from the second
application of transfer. The result of transfer is a set of FSs because
transfer is a relation. This corresponds to the “possible” translation
as opposed to “best” translation, where the former (not the latter) is
obtained by a reversible function (cf. Landsbergen 1987).

The three sets of constraints in a transfer rule correspond to the
three components of a translation system: a set of path descriptions
for one language (L1), a set of path descriptions for the other language
(L2), and a set of transfer correspondences (X) holding between the
bindings of the variables in L1 and L2. The constraint equations in
L1 and L2 patterns describe parts of the source and target FSs. When
the transfer rules are compiled, L1 becomes the source language in one
direction and the target language in the other. Each of the L1 and L2
sets of path descriptions in a rule describes one single FS. All the path
descriptions from one set of constraints must therefore be rooted in
(i.e. there must be a path leading from) the same variable, which is the
root for that rule. For this reason, only deterministic parameterized
templates are allowed in the rules.

The FS induced by the set of path descriptions in the source lan-
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guage side of a rule is required to subsume the source FS, which was
produced analysing of the source text. The relation is that of sub-
sumption so as to ensure coherence, i.e. that no extra material is
introduced.

The FS induced by the set of path descriptions in the target lan-
guage side of a rule must unify with the target F'S, which will be the
input to generation. On this side we have to use the operation of uni-
fication, in order to obtain a target F'S which characterizes the set of
FSs related to the source FS by the transfer relation.

Transfer correspondences introduce the recursion which allows
transfer to traverse the source FS. A transfer correspondence is a rela-
tion which states that the binding of a variable in L1 is related through
the transfer rules to the binding of a variable in L2. A transfer rule
thus states FSs correspondences through the explicit correspondences
between variables in the rule.

FSs are recursive by definitio. The attribute value may be another
FS. Transfer rules are also applied recursively. Therefore, an F'S may
itself be a subpart of a larger FS. As is standard in the unification
formalism, the distinguished variable “*” in a path description stands
for the FS being described (Kaplan et al. 1989). In a rule, the variable
“*7 gccurs in the path descriptions in L1 and L2 where it refers to the
root of the FS being transferred. Thus, transfer rules refer to local
roots in the same way that grammar rules and lexical descriptions do.

In (16), we have an example of a small transfer section as it would
appear in an ELU user program. Not all the paths contained in the
source F'S produced by analysis need be transferred. The set of paths
which require transferring is left to the grammar writer who specifies
it in a separate statement at the top of the transfer section, under
PATHS1 or PATHS2.

In the general-pred-args rule, the variables Lg and Lf may stand
for lists of arguments, the transfer relation being defined on lists, trees
and other ELU terms, as well as on simple attribute-value pairs. For
simplicity, the only rules shown for nouns in example (16) are quite
trivial (they map proper names to themselves), but they allow us to
present a simple formalism for lexical transfer, before describing the
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more complex case of structural transfer.

(16) # Transfer

:PATH1: <* cat>

<* he

ad>

:PATH2: <* cat>

:L1:
:L2:
: Cg <=> Cf

:L1:
:L2:
: Rg <=> Rf

:L2:

:L2:

:TA:
:TA:
:TA:
:TA:
:TA:

<* he
cat

<* cat>
<* cat>

sempred

ad>

= Cf

Cg

<* head sem pred>

<* head sem pred>

<* head
<* head
<* head
<* head

: Rg <=> Rf

Lg <=> Lf

<* head
<* head
<* head
<* head
<* head

<Vf head sem pred>
<Vf head sem args>
: Rg <=> Rf

Ag <=> Af
Tg <=> Tf

s s
Paul Pau

sem
sem
sem
sem

: gern-aimer
:L1:

sem
sem
sem
sem
sem

1

Maria Maria
lieben aimer
schwimmen nager

: general-pred-args
:L1:

german french

= Rg
= Rf
pred> = Rg
args> = Lg
pred> = Rf
args> = Lf
pred> = Rg
args> = [AglTg]
mod> = gern
pred> = aimer
args> = [Af,Vf]
= Rf

[Af|T£]
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4.4.3 Lexical Transfer and Structural Transfer

From a linguistic point of view, lexical transfer is the statement of
correspondences between lexical items, as in the individual entries in a
bilingual dictionary. Lexical transfer is often contrasted with the more
complex structural transfer but can itself be more or less complex.

Simple lexical transfer is the direct correspondence between two
words, and is most easily stated with an atomic transfer rule which per-
forms transfer between two atomic FSs without any other constraints.
These atomic transfer rules are equivalent to simple lexical entries in a
bilingual dictionary. The last four rules given in (16) are examples of
atomic transfer rules performing simple lexical transfer.

The rule gern-aimer on the other hand is not an atomic transfer
rule: besides the correspondence between the two lexical items gern
and aimer, it also contains equations which constrain the transfer of
other elements in the FSs.

Atomic lexical transfer can be further constrained by other trans-
fer rules defining other attribute-value pairs which are required to be
transferred for lexical items. For instance, with the general rules sem-
pred and general-pred-args in (16), the atomic rule schwimmen nager
is equivalent to the transfer rule with full path specifications shown in
(17).

(17) :T:schwimmen-nager
:L1: <* sem pred> = schwimmen
<* head sem args> = Lg
:L2: <* sem pred> = nager
<* head sem args> = Lf
:X: Lg <=> Lf

It is important to note that atomic rules can be used for any atomic
value. For instance, the last rule of example (16) is an atomic transfer
rule for the constant s. Combined with the transfer rule cat, it allows
the transfer of the syntactic category for sentences. Any syntactic or
semantic value which is needed for translation can be similarly trans-
ferred.
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Structural Transfer The two sentences given in (18.a) and (18.b)
present an example of a notorious class of translation problems, where
a head-modifier relation in one language is not preserved in the other.

(18) a. Maria schwimmt gern.
Maria swims with pleasure

b. Maria aime nager.
Maria likes to swim

The German verbal modifier gern in (18.a) must be translated as
the French main verb aimer in (18.b), while the main verb of the Ger-
man sentence translates as the infinitive complement in the French
sentence. (19.a) and (19.b) are the simplified representations of the
two FSs corresponding to (18.a) and (18.b) respectively.

head sem pred schwimmen
(19) a. args | <1> head sem pred DMaria |
mod gern

head sem pred aimer
[ <1> head sem pred Maria
args <2> head sem pred mnager |
args  [#1] ]

We can perform transfer between these two F'S with the small trans-
fer section given in (16), in particular with the gern-aimer rule.

4.4.4 The Transfer Relation

The transfer relation between two FSs is defined both by the set of
transfer rules between the two languages for which these FSs are valid
representations and by the way these rules are applied to perform trans-
fer. The rules themselves are declarative, so each of them can be in-
terpreted independently of the process running them, but the transfer
component presupposes a particular control strategy, specifically one
of recursive application of the rules for transfer to parts of the source
FS. The choice of which rules to apply at a given point during transfer
is determined by:

29



D.Estival

a) the relation of subsumption between (subparts of) the source
FS and the FS induced by the set of path descriptions for the
source language in the applicable rules, and

b) a partial ordering of the transfer rules based on the relation of
specificity

While (a) is part of the formalism on which ELU is based, since uni-
fication is based on subsumption, (b) is actually a matter of theoretical
choice, not required by the formalism.

Recursive application of the rules The choice of which subparts
of the source FS to use as input to transfer at a given point is deter-
mined by the correspondences stated over variables in the X part of
the rules. Each correspondence requires that the transfer relation hold
between the binding of a variable in the source F'S and the binding of
a variable in the target F'S. The object in the source FS which unifies
with the variable in the source part of the rule becomes the current
input to transfer, and the root of that F'S must unify with the root of
the path descriptions (represented by the variable “*”) in the transfer
rules to be applied recursively.

For a given source FS F;, we try in parallel all the applicable rules.
If the set of rules is ordered according to the relation of specificity
(see Estival et al. 1990), then the applicable rules are the most specific
rules w.r.t the source FS at that point, and the starting point is the
TOP element in the poset of transfer rules.

Trying to apply a rule R; to F; is defined as matching the FS F(R;)
induced by the path descriptions of R; for the source language against
F;. If F(R;) subsumes Fj, the rule may be tried, and the variables in
F(R;) are bound to objects in F;.

A transfer rule R; succeeds w.r.t. a source FS F; and a target
FS Fj if all the path descriptions it contains for the source language,
including the ones entailed by the transfer correspondences between
variables, subsume the source FS, and if all the path descriptions it
contains for the target language, including the ones entailed by the
transfer correspondences between variables, unify with the target FS.
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For every rule R; which succeeds, the FS induced by the path de-
scriptions for the source language, i.e. F(R;), is unified with the FS Fj,
resulting from the unification of all the F(R;) of the rules R; which have
successfully applied. Fy, is used for checking completeness of transfer.

Since transfer is performed by actually creating a target FS Fj,
some of the problems presented by transfer are akin to those found in
generation, namely termination of the process and ensuring complete-
ness and coherence of the target F'S Fj.

Termination is guaranteed if there is no rule of the form (20)- shown
only going from L1 to L2~ where an FS (“*”) is rewritten as a whole.

(20) :T: infinite-recursion
:Ll: <> =X
:L2: ...,
X X <=>Y

Any other rule requires that transfer be applied recursively to a
subpart of an FS. FSs being finite and there being a finite number of
rules, termination for acyclic FSs is guaranteed. While ELU allows any
FS to be cyclic, transfer of a cyclic F'S can only be guaranteed if its
cyclicity is specifically treated by a transfer rule; moreover, generation
from a cyclic F'S cannot be guaranteed.

Completeness of the resulting target FS w.r.t the source FS and
the set of transfer rules is ensured by matching the source FS F; with
F}, (the unification of the FSs induced by the source patterns of all
the rules that have successfully applied). Transfer is complete if every
subpart of the source FS F; which requires transferring subsumes a
subpart of Fj.

Oun the other hand, coherence is ensured by the rules themselves:
nothing is introduced in the target FS which is not mentioned in the
target part of the transfer rules which have applied. Therefore, every
subpart of the target F'S must be subsumed by the FS induced by the
path descriptions in the target part of those transfer rules.

Reentrancy An important point about the control of transfer con-
cerns reentrancy. Reentrancy is a powerful mechanism commonly em-
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ployed in unification-based grammars: it occurs when two attributes
in an FS share the same value. Typically, reentrancies are used to
express linguistic phenomena such as agreement or control, that is in
cases where it is not enough to state that the values are similar, but
where we want those attributes to bind the same object. The treat-
ment of reentrancy in the mapping between FSs requires special care.
The approach taken here is to ignore reentrancies which occur in the
source FS unless they are explicitly mentioned in transfer rules.

When a reentrant feature is not explicitly mentioned as being reen-
trant in a transfer rule, the effect is equivalent to unfolding the source
FS, with the consequence that the target FS is also unfolded, i.e. the
feature is not reentrant in the target F'S. When the F'S is unfolded, the
two instances of the feature receive the same translation because the
same set of transfer rules will apply to them, but they do not necessar-
ily bind the same variable. The reentrancy then becomes a question to
be solved during the generation of the target language. If the target
language grammar can create a reentrancy from the variables present
in the target F'S used as input to generation, i.e. can determine that
two variables actually bind the same FS, then this reentrancy doesn’t
have to be mentioned in the transfer component. However, this an
unlikely situation, even if a large amount of semantic information is
included in the descriptions.

If a transfer rule mentions a reentrant feature in both L1 and L2, as
in the example of (21), where two attributes share a variable, then this
reentrancy is automatically preserved in the target F'S. This example is
not meant to provide an analysis of German and French modal verbs,
but simply to illustrate the point that the same analysis can be given
in the two languages, and preserved through transfer.
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(21) :T: wollen-vouloir
:L1: <* head sem pred>
<* head sem args> = [Ag,Vg]
<Vf head sem pred> = Rg
<Vf head sem args> = [Ag|Tg]
:L2: <* head sem pred> =
<* head sem args> =
<Vf head sem pred> = Rf
<Vf head sem args> = [Af|Tf]
:X: Rg <=> Rf
Ag <=> Af
Tg <=> Tf

wollen

ouloir

In the gern-aimer rule given in (16), there is a reentrant feature on
only one side of the rule, namely in L2. This reentrancy will be created
during transfer between German and French, but transfer from French
into German will ignore it.

Thus, in effect, the user can “make or break” reentrancy. This
allows us to deal with cases where the phenomena of control and
anaphora are different across languages, and we consider that it is
neither necessary nor desirable to automatically keep reentrancies in
translation. This approach contrasts with that of the MiMo2 system
(van Noord et al. 1990), where reentrancies in the source F'S are always
preserved in the target FS. It would be possible to do so in ELU: the
approach would cousist in refolding the F'S at the end of transfer, by
adding a separate section of rules which would apply on the target FSs.

Rule Specificity Specificity is a relation between transfer rules
defining a partial order in a set of such rules. This ordering permits a
particular control strategy for the application of the rules which itself
has interesting consequences for the linguistic aspects of transfer.

The relation of specificity is only defined between unidirectional
rules: for a given pair of transfer rules, which rule is more specific
depends on the source/target choice, i.e. on the direction in which
transfer is to be done. When compiling a set of bidirectional transfer
rules, two partially ordered sets (posets) are built, each corresponding

33



D.Estival

to transfer in one of the two directions. The specificity relation
between two transfer rules A and B is defined by:

a) the relation of subsumption between the two FSs produced by
their respective sets of constraint equations for the source lan-
guage, which we write F(A) and F(B).

b) the number of variables mentioned in their respective sets of cor-
respondences, which we write V(A) and V(B).

For any pair of rules, either one of the rules is more specific than
the other, or they are not comparable. Given any two rules A and B
for transfer from L1 to L2, we then define the partial ordering relation
(i.e. a transitive, reflexive and anti-symmetric relation, denoted by ’<’)
of specificity (“is more specific than”) as in (22).

(22) For two transfer rules A and B, A < B iff
i) B=A or
ii) F(B) # F(A) & F(B) subsumes F(A), or
iii) F(B) =F(A) & V(B) < V(A)

The partial ordering of the transfer rules defines a set of applicable
rules w.r.t. the previous point during transfer, i.e. a subset of the trans-
fer rules which contains the most specific rules whose source language
descriptions subsume the source FS at that point. A control strategy
which incorporates this partial ordering of rules therefore finds all the
rules that can apply to the object for transfer such that for each suc-
cessful rule there is no more specific rule that can succeed. The only
condition that needs to be added to the recursive application of rules
is (23):

(23) If a rule R; succeeds, no rule R; s.t. R; < Ry, is tried.

The motivation for defining the relation of specificity between trans-
fer rules and for using the ordering it defines as part of the control
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strategy is that it provides an elegant and consistent way of blocking
a general interpretation when there is a specific translation which is
more appropriate. For instance, cheval - Pferd is the general rule, but
cheval blanc - Schimmel is more specific and should block it. If the
partial ordering of the transfer rules according to the relation of speci-
ficity is integrated into the control of transfer, then the grammar writer
does not have to worry about blocking rules: the more general rules
are automatically blocked and cannot apply when a more specific rule
succeeds. The most general rules of the transfer system are the atomic
transfer rules and any transfer rule which is more general than any
other rule involving either its L1 or L2 root.

However, it is worth noting that in this respect, the system behaves
differently when performing analysis/generation and when performing
transfer. The strategies used for analysis and for generation do not
prevent the application of a general rule when a more specific one
succeeds. If a grammar rule can apply, then it does and all the valid FSs
which can be built in accordance with the applicable rules are returned.
The control strategy of transfer based on the specificity relation defined
here therefore amounts to a strong claim about translation namely that,
unlike in the grammars, in the transfer component, more specific rules
override less specific ones. This may prove to be too strong and may
have to be relaxed.

Nonetheless, even if this claim was too strong, and it turned out
that we must allow the application of the more general as well as of
the more specific rules, there are a number of advantages in ordering
the transfer rules according to the relation of specificity. ELU is a
development tool and this ordering, which formally defines the start
and the end of the transfer process, helps the user in keeping track
of failures during testing. Secondly, the partial ordering of the rules
defines an ordering of the results, which could itself be a research tool:
if we had to allow the more general rule (e.g. cheval blanc - weifles
Pferd) to apply, we could order its result w.r.t. the more specific rule
(e.g. cheval blanc - Schimmel) which also succeeds. This ordering of the
results might then reveal generalizations to be made, and give insights
for further refinements of the rules.
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5 Conclusion

Unification gives a clean declarative formalism with well-understood
properties. In particular the essential properties of bidirectionality and
locality of the rules present obvious advantages in natural language
processing. For M'T, reversible grammars represent a considerable sav-
ing of time and increase of efficiency for development and maintenance,
even if mastering the generation process still presents some difficulty.

In developing ELU to build a prototype for a machine translation
system, we have made precise the concept of transfer as a mapping
between FSs and shown that the unification paradigm can be extended
to transfer without losing the essential properties of bidirectionality and
locality in the rules. With its unification-based transfer component,
ELU provides a formal basis for experimentation with different theories
of translation.

The properties of a reversible transfer component are now better
understood, but the full range of its implications and consequences are
still being investigated. For instance, the definition of bidirectionality
we gave for transfer is necessarily different from the definition of bidi-
rectionality for grammars. Another area of research is the ordering of
the transfer rules as part of the control strategy adopted here.
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