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Abstract

The paper presents a reformulation of the Karush-Kuhn-
Tucker (KKT) system associated nonlinear programming prob-
lem into an equivalent system of smooth equations. Classical
Newton method is applied to solve the system of equations. The
superlinear convergence of the primal sequence, generated by pro-
posed method, is proved. The preliminary numerical results with
a problems test set are presented.
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1 Introduction

We consider the following nonlinear programming problem:




minimize f (x)
subject to
gi (x) ≥ 0, i = 1, 2, . . . , m,

(1)

where x ∈ Rn, f, gi : Rn → R are assumed to be twice continuously
differentiable. Such problems have proved extremely useful in very
many areas of activity, in science, engineering and management [1,2].

Let the Lagrange function of problem (1) be defined by

L (x, λ) = f (x)−
m∑

i=1

λigi (x) ,
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where λ = (λ1, λ2, ..., λm)T is the Lagrange multiplier vector.
We will denote by x∗ any local solution of the problem (1), and by

A (x) = {i : gi (x) = 0}
the index set of active constraints at x.

The Karush-Kuhn-Tucker system (KKT system for short) associ-
ated with (1) is [3,4] :

∇f (x)−
m∑

i=1

λi∇gi (x) = 0 (stationarity) (2)

gi (x) ≥ 0, i = 1, 2, . . . , m (primal feasibility) (3)

λi ≥ 0, i = 1, 2, . . . ,m (dual feasibility) (4)

λigi (x) = 0, i = 1, 2, . . . , m (complementarity) (5)

This system is the local equivalent to the problem (1) whenever the
inequalities (3) and (4) are satisfied and relations (2) and (5) comply
with the conditions of regularity [3–5].

We assume that the following hypotheses hold for any local solution
x∗.

Assumption A1. The active constraint gradients ∇gi (x∗) , i ∈
A (x∗) are linearly independent (the assumption is called the linear
independence constraint qualification (LICQ)).

Assumption A2. Strict complementarity holds at x∗, i.e. λ∗i > 0
for all i ∈ A (x∗) .

Assumption A3. The strong second order sufficient condition
(SSOSC):

pT∇2
xxL (x∗, λ∗) p ≥ c ‖p‖2 , c > 0, for all p ∈ T (x∗) , (6)

where ∇2
xxL (x∗, λ∗) is the Hessian matrix of the Lagrange function of

the problem (1) and

T (x∗) =
{

p ∈ Rn : p 6= 0, [∇gi (x∗)]T p = 0, i ∈ A (x∗)
}

.
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It is well know that, under Assumptions A1–A3, x∗ is an isolated
local minimum and to solve (1) is equivalent to solve the KKT system
(2) – (5).

KKT system (2) – (5) establishes necessary conditions [5,6] for solv-
ing finite-dimensional variational inequality:

[∇f (x∗)]T (x− x∗) ≥ 0, for all x ∈ Ω, (7)

where Ω = {x ∈ Rn : gi (x) ≥ 0, i = 1, 2, . . . ,m}.
In the particular case when Ω = {x ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}

the variational inequality problem (7) is equivalent to the following
complementarity problem

∇f (x) ≥ 0, x ≥ 0, [∇f (x)]T x = 0.

Furthermore, the KKT system (2)− (5) can be written as a mixed
complementarity problem (MCP) [8]:

[F (z∗)]T (z − z∗) ≥ 0, for all z ∈ B,

where zT =
(
xT , λT

)
, B = {z ∈ Rn × Rm : λ ≥ 0} and

[F (z)]T =
(
[∇xL (z)]T , g1 (x) , g2 (x) , . . . , gm (x)

)
.

The first major achievements obtained in the constrained optimiza-
tion referred to the KKT systems. This has brought to the development
of methods of optimization, a very active area with remarkable results
[1–7]. Conditions (5), also called complementarity conditions, raise
some difficult problems to solve directly the system of equations and
inequalities (2)–(5). Depending on how KKT system (2)–(5) is used
(i.e. how Lagrange multipliers are calculated and how the conditions
of complementarity are ensured), some methods that can be used suc-
cessfully in problems with medium or even large number of variables
have been developed [9]:

• active-set methods [5,7,9,10],
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• barrier/penalty and augmented Lagrangian methods [3,7, 10, 11,
12],

• sequential linear and quadratic programming methods [6,7,13,14],

• interior-point and trust region methods [15–17].

Another way of solving KKT system is to use procedures based
on the complementary functions [18,19]. The relationship (3) − (5)
constitutes the essence of nonlinear complementarity problems. The
KKT system (2)− (5) may be equivalently reformulated as solving the
nonlinear system [20, 21]:

∇xL (x, λ) = 0, ϕ (λi, gi (x)) = 0, i = 1, 2, . . . , m, (8)

where ϕ is any NCP function. A function ϕ : R × R → R is called
NCP function if the set of solutions of equation ϕ (a, b) coincides with
the set:

M = {a, b ∈ R : ab = 0, a ≥ 0, b ≥ 0} .

Classical examples of NCP functions are the min function

ϕ (a, b) = min (a, b)

and the Fischer-Burmeister function [22]

ϕ (a, b) =
√

a2 + b2 − a− b.

Other functions of complementarity with applications in optimization
can be found in the works [23, 24]. Most of them are nondifferentiable
at the point (0, 0). There are smooth functions of complementarity, for
example, the function [23, 30]

ϕ (a, b) = 2ab− [min (0, a + b)]2 .

This theme in optimization problems still presents challenges, which
are based mainly on the application of the Newton method for systems
of equations equivalent to system:
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∇xL (x, λ) = 0, gi (x) = 0, i ∈ A (x∗) . (9)

Relations (3)−(5) can be reformulated as the system of equalities by
introducing auxiliary variables y1, y2, ..., ym, so that (see [25,26,31,32]):





[−min (0, yi)]
k − gi (x) = 0,

[max (0, yi)]
k − λi = 0,

i = 1, 2, . . . , m,

(10)

where k ≥ 1. In [31,32] it is considered k = 1, in [25] and [26] take
k = 2, respectively k = 3.

Emphasize the role of regularity condition A2. Only in this case
we can guarantee that in the vicinity of (x∗, λ∗) relations (3)− (5) are
equivalent to the system of equations:

gi (x) = 0, i ∈ A (x∗) ,

λi = 0, i /∈ A (x∗) .

In other words, the Assumption A2, the KKT system (2) − (5)
is locally equivalent to system of equations (9). Both the procedure
(8) and procedure (10) do not require the explicit identification of the
active constraints A (x∗).

In the present paper a KKT system transformation in a system of
smooth equations, which can be solved by classical Newton method is
considered. The paper is organized as follows. In Section 2 we define
the functions that ensure the nonsingularity of Jacobian at a solution.
Section 3 presents the algorithm of Newton method. Superlinear con-
vergence in terms of primal variables is proved in Section 4. Some
numerical results are given in Section 5 and conclusion is drawn in
Section 6.

Throughout this paper, Rn denotes the space of n-dimensional real
column vectors and the superscript ”T ” denotes transpose. For con-
venience, we use (x, λ, y) to denote the column vector

(
xT , λT , yT

)T
.
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Given two vectors x, y ∈ Rn, xT y denotes the Euclidian scalar product
and ‖•‖ denotes the Euclidian vector norm. The identity matrix is
denoted by I. For any α > 0, β > 0, α = o (β) (respectively α = O (β))
means α/β tends to zero (respectively α/β is uniformly bounded) as
β → 0.

2 Smoothing Reformulation of the Karush-
Kuhn-Tucker System

We define two functions u, v : R→ R+ with the following properties:
P1.

u (x) =
{

= 0, for all x ≤ 0,
> 0, for all x > 0,

v (x) =
{

> 0, for all x < 0,
= 0, for all x ≥ 0.

P2. u (x) and v (x) is at least twice continuously differentiable on
R.

P3. u (x) = 0 and v (x) = 0 if and only if u′ (x) = 0, respectively
v′ (x) = 0 for all x 6= 0.

The functions u (x) and v (x) so defined form a complementarity
pair in the sense that the two functions are complementary to one
another (if one is zero at a point, then the other is necessarily nonzero
at that point):

{
u (x) = 0 ⇐⇒ v (x) > 0,
v (x) = 0 ⇐⇒ u (x) > 0,

(11)

i.e. u (x)× v (x) = 0 for all x ∈ R.
The following can serve as an example of functions u (x) and v (x)

that satisfy properties P1 - P3:

{
u (x) = xβ max (0, x) = 1

2

(
xβ+1 + |x|xβ

)
,

v (x) = (−1)γ+1 xγ min (0, x) = (−1)γ+1

2

(
xγ+1 − |x|xγ

)
,

(12)
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where β ≥ 2, γ ≥ 2 are any fixed parameters.
The functions u (x) and v (x) as defined by the formulas (12) are

continuously differentiable:

u′ (x) =
β + 1

2
(xβ + |x|xβ−1),

u′′ (x) =
β (β + 1)

2
(xβ−1 + |x|xβ−2),

v′ (x) =
(−1)γ+1 (γ + 1)

2
(
xγ + |x|xγ−1

)
,

v′′ (x) =
(−1)γ+1 γ (γ + 1)

2
(
xγ−1 + |x|xγ−2

)
.

By entering the auxiliary variables y1, y2, . . . , ym the KKT system
(2) − (5) may be transformed into an equivalent system of smooth
nonlinear equations:





∇xL(x, λ) = 0,
u(y1)− g1(x) = 0,

...
u(ym)− gm(x) = 0,

v(y1)− λ1 = 0,
...

v(ym)− λm = 0.

(13)

It is easily found that λi > 0 for all i ∈ A(x∗). Indeed, according
to (11) if gi (x) = 0, i.e. u (yi) = 0, then λi = v (yi) > 0. Therefore
(x∗, λ∗) ∈ Rn × Rm solves KKT system (2) − (5) or system (9) if and
only if (x∗, λ∗, y∗) ∈ Rn×Rm×Rm solves the system of equations (13).

For any y = (y1, y2, . . . , ym)T ∈ Rm define

U (y) = (u (y1) , u (y2) , . . . , u (ym))T ,

339



Vasile Moraru

V (y) = (v (y1) , v (y2) , . . . , v (ym))T ,

U ′ (y) = diag
(
u′ (y1) , u′ (y2) , . . . , u′ (ym)

)
,

V ′ (y) = diag
(
v′ (y1) , v′ (y2) , . . . , v′ (ym)

)
.

Matrices U ′ (y) and V ′ (y) are diagonal matrices of dimension m ×m
with elements u′ (yi) , respectively v′ (yi), i = 1, 2, . . . ,m.

We denote the Jacobian matrix of a mapping

G (x) = (g1 (x) , g2 (x) , . . . , gm (x))T : Rn → Rm

by G′ (x):

G′ (x) =




[∇g1 (x)]T

[∇g2 (x)]T
...

[∇gm (x)]T




Let F ′ (x, λ, y) denote the Jacobian of

F (x, λ, y) =




∇xL (x, λ)
u(y1)− g1(x)

...
u(ym)− gm(x)

v(y1)− λ1
...

v(ym)− λm




.

Then the Jacobian matrix F ′ (x, λ, y) has the form

F ′ (x, λ, y) =



∇2

xx(Lx, λ) − [G′ (x)]T On×m

−G′ (x) Om×n U ′ (y)
Om×n −Im V ′ (y)


 ,
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where Im is the identity matrix of order m and O represents the null
matrix, with subscripts indicating their dimensions.

The matrix F ′ (x, λ, y) has order (n + 2m)× (n + 2m).
The next theorem is true:

Theorem 1. Under the Assumption A1-A3 for z∗ = (x∗, λ∗, y∗)
Jacobian matrix F ′ (z∗) is nonsingular.

Proof. Let d = (p, q, r) ∈ Rn × Rm × Rm satisfy F ′ (z∗) d = 0.
Then

∇2
xxL (x∗, λ∗) p− [

G′ (x∗)
]T

q = 0, (14)

−G′ (x∗) p + U ′ (y∗) r = 0, (15)

−q + V ′ (y∗) r = 0. (16)

By multiplying equation (14) on the left side by pT we have

pT∇2
xxL (x∗, λ∗) p = pT

[
G′ (x∗)

]T
q = qT

[
G′ (x∗)

]T
p. (17)

There is at least an index k such that u (y∗k) = 0 (because otherwise
the gi (x∗) > 0 for any i = 1, 2, . . . ,m, i.e. x∗ is a point of unconstrained
minimum). As gk (x∗) = u (y∗k) = 0 yields k ∈ A (x∗). As we have that
Property P3 and u′ (y∗k) = 0, which together with (15) gives us

[∇gk (x∗)]T p = 0 for all k ∈ A (x∗) , (18)

i.e. p ∈ T (x∗).
For s /∈ A (x∗) we have u (y∗s) 6= 0 and so v (y∗s) = 0 where the

v′ (y∗s) = 0; then from the (16) result qs = 0. This together with
the relationship (18) gives us qT G′ (x∗) p = 0. From equation (16)
together with the Assumption A3 we have p = 0. So, from equations
(14)− (16) one obtains
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m∑

i=1

qi∇gi (x∗) = 0, (19)

u′ (y∗i ) ri = 0 for all i = 1, 2, . . . ,m, (20)

qi = v′ (y∗i ) ri for all i = 1, 2, . . . , m. (21)

We have λ∗i = 0, v (y∗i ) = 0, v′ (y∗i ) = 0, u′ (y∗i ) = 0 for all i /∈ A (x∗).
From (20) and (21) qi = 0, ri = 0, for all i /∈ A (x∗). It is true that

∑

i∈A(x∗)

qi∇gi (x∗) = 0,

where, under the Assumption A1, qi = 0 for all i ∈ A (x∗). For
i ∈ A (x∗) we have v′ (y∗i ) 6= 0 and from (21) it results that ri = 0.
Thus, the Assumption A1-A3 implies that p = 0, q = 0, r = 0.
Therefore, the Jacobian matrix F ′ (x∗, λ∗, y∗) is nonsingular.

3 Local Newton method

The best-known method for solving nonlinear systems of equations is
the Newton method [27,28,29]. Newton’s method has very attractive
theoretical and practical properties, because of its rapid convergence:
under the nonsingularity of the Jacobian matrix it will converge locally
superlinearly. If in addition, the Jacobian is Lipshitz continuous, then
the convergence is quadratic.

Let
(
x(0), λ(0), y(0)

)
be given sufficiently close to (x∗, λ∗, y∗). Given

that x(k), λ(k), y(k) is the k-th iterate of the Newton method for the
system (13), a new estimate x(k+1), λ(k+1), y(k+1) is defined by solving
the following linear system:
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



∇2
xx(Lx(k), λ(k))(x− x(k))− [

G′ (x(k)
)]T

(λ− λ(k)) =
= −∇x(Lx(k), λ(k)),

−G′(x(k))(x− x(k)) + U ′(y(k))(y − y(k)) =
= −U(y(k)) + G(x(k)),

−λ + λ(k) + V ′(y(k))(y − y(k)) = −V (y(k)) + λ(k).

(22)

The system (22) consists of (n + 2m) equations and (n + 2m) un-
knowns. From the last equation of the system (22) we have

λ = V (y(k)) + V ′(y(k))(y − y(k)). (23)

Substituting (23) in the first equation, the system (22) becomes





∇2
xxL

(
x(k), λ(k)

) (
x− x(k)

)− [
G′ (x(k)

)]T
V ′ (y(k)

) (
y − y(k)

)
=

= −∇f
(
x(k)

)
+

[
G′ (x(k)

)]T
V

(
y(k)

)
,

−G′ (x(k)
) (

x− x(k)
)

+ U ′ (y(k)
) (

y − y(k)
)

=
= −U

(
y(k)

)
+ G

(
x(k)

)
.

(24)
The system (24) is from (n + m) equations with (n + m) unknowns.
According to Theorem 1, in the neighborhood of z∗ the system of

equations (24) admits the unique solution
(
x(k+1), y(k+1)

)
.

On the other hand, we see that system (13) can be transformed
into an equivalent system which only contains x and y:

{ ∇xL (x, V (y)) = 0,
−G (x) + U (y) = 0.

(25)

Linearizing the system (25), we obtain the same system of linear
equations (24), except that in the Hessian matrix ∇2

xxL
(
x(k), λ(k)

)
we

have λ(k) = V
(
y(k)

)
.

From (23) it follows that
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λ(k+1) = V
(
y(k)

)
+ V ′

(
y(k)

)(
y(k+1) − y(k)

)
=

= V
(
y(k+1)

)
+ o

(∥∥∥y(k+1) − y(k)
∥∥∥
)

.

So, both local direct linearization of the system (13) and linearization
of the system (25) are close enough. The difference may appear only if
you are not near the solution.

Thus we can define the following algorithm.

Algorithm 1. Local version of Newton’s method.

Step 1. Let x(0) ∈ Rn, y(0) ∈ Rm, λ(0) = V
(
y(0)

)
, ε > 0 and

k = 0.
Step 2. If

max
{∥∥∥∥

[
G′(x(k))

]T
V (y(k))−∇(fx(k))

∥∥∥∥ ,
∥∥∥U(y(k))−G(x(k))

∥∥∥
}

< ε,

STOP.
Otherwise, let x(k+1) ∈ Rn, y(k+1) ∈ Rm be a solution of

linear system (24).
Step 3. Let the multiplier vector

λ(k+1) = V (y(k)) + V ′(y(k))
(
y(k+1) − y(k)

)
,

and k = k + 1.
Go to Step 2.

Remark 1. The Algorithm 1 generates a sequence of pairs(
x(k), y(k)

)
– the solution of system of linear equations (24) which

consists of (n + m) equations with (n + m) unknowns. The Lagrange
multiplier λ is determined as a function of y through the formula (23).
Therefore the algorithm can be considered a primal-dual method.

Remark 2. After reformulation, Algorithm 1 can be used for
solving the complementarity problems and variational inequality prob-
lems.
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Remark 3. As it is well known, Newton method possesses just
local convergence, it is very sensitive to the choice of initial approxi-
mations and is not convergent if it is not sufficiently close to the solu-
tion. There are several ways to modify the method to ensure its global
convergence:

• Damped Newton’s method [27],

• The Levenberg-Marquardt scheme,

• Trust-regions approach [5,28].

4 Primal superlinear convergence

Newton’s method for solving system of linear equations (24) has the
advantage of high convergence of couple

(
x(k), y(k)

)
. In the following we

show that the rate of convergence for the sequence of primal variables{
x(k)

}
is also superlinear.

In addition to the Properties P1-P3, we assume that the func-
tions u (x) and v (x) satisfy the following Property P4:

P4.

u (x)× v′ (x) = u′ (x)× v (x) = 0 for all x ∈ R.

It is not difficult to see that the functions from example (12) also
satisfy the Property P4.

Theorem 2. Let us suppose that the standard Assumptions
A1-A3 are satisfied. Assume also that functions u (x) and
v (x) satisfy the Properties P1-P4. Then the sequence

{
x(k)

}
generated by Algorithm 1 for problem (1) converges locally to
x∗ superliniarly.

Proof. The linear system (24) together with (23) are equivalent
to the system (22). Let x(k+1), λ(k+1) and y(k+1) be solution for the
system equations (22). It is easy to follow the relations obtained from
the first equation of system (22):
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−∇2
xxL

(
x(k), λ(k)

)(
x(k+1) − x(k)

)
= ∇xL

(
x(k), λ(k+1)

)
=

= ∇xL
(
x∗, λ(k+1)

)
+

[
∇xL

(
x(k), λ(k+1)

)
−∇xL

(
x∗, λ(k+1)

)]
=

= ∇xL
(
x∗, λ(k+1)

)
+∇2

xxL
(
x∗, λ(k+1)

)(
x(k+1) − x∗

)
+

+o
(∥∥∥x(k) − x∗

∥∥∥
)

= ∇xL (x∗, λ∗) +∇2
xλL (x∗, λ∗)

(
λ(k+1) − λ∗

)
+

= ∇xL (x∗, λ∗) +∇2
xλL (x∗, λ∗)

(
λ(k+1) − λ∗

)
+

+∇2
xxL

(
x∗, λ(k+1)

)(
x(k+1) − x∗

)
+ o

(∥∥∥x(k) − x∗
∥∥∥
)

=

=
[
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
+∇2

xxL (x∗, λ∗)
(
x(k+1) − x∗

)
+

=
[
∇2

xxL
(
x∗, λ(k+1)

)
−∇2

xxL (x∗, λ∗)
] (

x(k) − x∗
)

+

+o
(∥∥∥x(k) − x∗

∥∥∥
)

=
[
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
+

+∇2
xxL (x∗, λ∗)

(
x(k+1) − x∗

)
−∇2

xxL (x∗, λ∗)
(
x(k+1) − x(k)

)
+
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+o
(∥∥∥x(k) − x∗

∥∥∥
)

,

where we have

[
∇2

xxL (x∗, λ∗)−∇2
xxL

(
x(k), λ(k)

)](
x(k+1) − x∗

)
=

[
G′ (x∗)

]T ×
(26)

×
(
λ(k+1) − λ∗

)
+∇2

xxL (x∗, λ∗)
(
x(k+1) − x∗

)
+ o

(∥∥∥x(k) − x∗
∥∥∥
)

.

Taking into consideration the Properties P1-P3 from the last equa-
tion of system (22) and from (23), one obtains:

λ
(k+1)
i gi

(
x(k+1)

)
=

[
v

(
y

(k)
i

)
+ v′

(
y

(k)
i

)(
y

(k+1)
i − y

(k)
i

)]
×

×gi

(
x(k+1)

)
+

[
∇gi

(
x(k+1)

)]T (
x(k+1) − x(k)

)
+

(
x(k+1) − x(k)

)
=

=
[
v

(
y

(k)
i

)
+ v′

(
y

(k)
i

)(
y

(k+1)
i − y

(k)
i

)]
×

×
[
u

(
y

(k)
i

)
+ u′

(
y

(k)
i

)(
y

(k+1)
i − y

(k)
i

)]
+ o

(∥∥∥x(k) − x∗
∥∥∥
)

.

So,

λ
(k+1)
i gi

(
x(k+1)

)
= o

(∥∥∥x(k) − x∗
∥∥∥
)

for any i. (27)

On the other hand,

λ
(k+1)
i gi

(
x(k+1)

)
= λ∗i gi (x∗) + gi (x∗)

(
λ

(k+1)
i − λ∗i

)
+
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+λ∗i [∇gi (x∗)]T
(
x(k+1) − x∗

)
+ o

(∥∥∥x(k+1) − x∗
∥∥∥
)

.

From here and from (27), taking into consideration the Assumption
A2, we have for all i ∈ A (x∗):

[∇gi (x∗)]T
(
x(k+1) − x∗

)
= −δ

(k)
i , (28)

where

−δ
(k)
i = o

(∥∥∥x(k+1) − x∗
∥∥∥
)

+ o
(∥∥∥x(k+1) − x(k)

∥∥∥
)

.

As the system of vectors {∇gi (x∗)}, i ∈ A (x∗), is linearly independent
(Assumption A2), there is a vector γ(k) ∈ Rn such that:

[∇gi (x∗)]T γ(k) = δ
(k)
i (29)

and
∥∥∥γ(k)

∥∥∥ = o
(∥∥∥x(k+1) − x∗

∥∥∥
)

+ o
(∥∥∥x(k+1) − x(k)

∥∥∥
)

.

Let now

p(k) = x(k+1) − x∗ + γ(k) ∈ Rn.

Then (28) and (29) shows that

[∇gi (x∗)]T p(k) = 0 for all i ∈ A (x∗) ,

i.e. p(k) ∈ T (x∗). We also notice that

[
p(k)

]T [
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
= 0. (30)

Indeed

[
p(k)

]T [
G′ (x∗)

]T
(
λ(k+1) − λ∗

)
=

=
∑

i∈A(x∗)

(
λ

(k+1)
i − λ∗i

)
[∇gi (x∗)]T p(k) = 0.
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From (29) and (30) we have

[
p(k)

]T [
∇2

xxL (x∗, λ∗)−∇2
xxL

(
x(k), λ(k)

)](
x(k+1) − x∗

)
=

=
[
p(k)

]T
∇2

xxL (x∗, λ∗)
(
x(k+1) − x∗

)
+ o

(∥∥∥x(k+1) − x∗
∥∥∥
)∥∥∥p(k)

∥∥∥ .

Finally, the last relationship together with Assumption A2, gives
us

c
∥∥∥p(k)

∥∥∥
2
≤

[
p(k)

]T
∇2

xxL (x∗, λ∗) p(k) =

[
p(k)

]T [
∇2

xxL (x∗, λ∗)−∇2
xxL

(
x(k), λ(k)

)] (
x(k+1) − x∗

)
+

+
[
p(k)

]T
∇2

xxL (x∗, λ∗) γ(k) + o
(∥∥∥x(k) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ =

= o
(∥∥∥x(k+1) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ + O
(∥∥∥p(k)

∥∥∥
∥∥∥γ(k)

∥∥∥
)

+ o
(∥∥∥x(k) − x∗

∥∥∥
)
×

×
∥∥∥p(k)

∥∥∥ = o
(∥∥∥x(k+1) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ + o
(∥∥∥x(k) − x∗

∥∥∥
)∥∥∥p(k)

∥∥∥ ,

where
∥∥∥p(k)

∥∥∥ = o
(∥∥∥x(k+1) − x∗

∥∥∥
)

+ o
(∥∥∥x(k) − x∗

∥∥∥
)

.

So,
∥∥∥x(k+1) − x∗

∥∥∥ =
∥∥∥p(k) − γ(k)

∥∥∥ ≤
∥∥∥p(k)

∥∥∥ +
∥∥∥γ(k)

∥∥∥ =
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= o
(∥∥∥x(k+1) − x∗

∥∥∥
)

+ o
(∥∥∥x(k) − x∗

∥∥∥
)

.

The last relationship implies that
∥∥∥x(k+1) − x∗

∥∥∥ = o
(∥∥∥x(k) − x∗

∥∥∥
)

,

This completes the proof.

5 Test examples

In this section, we give some numerical results. The algorithm de-
scribed in this paper was implemented by a Maple code and tested on
a selection of problems from [2] and [33]. As functions u(x) and v(x),
there were taken the concrete functions (12), where β = γ = 2.

Example 1. (Problem:16 [33, p. 39]).





f (x) = 100
(
x2 − x2

1

)2 + (1− x1)
2 → min

s.t. x1 + x2
2 ≥ 0, x2

1 + x2 ≥ 0,
−2 ≤ x1 ≤ 0.5, x2 ≤ 1.

The starting points: x(0) = (−2, 1) , y(0) = (−1, 1).
The optimal solution:

x∗ = (0. 5, 0. 25) , f (x∗) = 0.25,A (x∗) = (4) ,

y∗ = (0. 82548, 0. 7937, 1. 3572,−1.0, 0. 90856),
λ∗ = (0.0, 0.0, 0.0, 1.0, 0.0) .

Example 2. (Problem:43 [33, p. 66]).





f (x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4 → min
s.t. 8− x2

1 − x2
2 − x2

3 − x2
4 − x1 + x2 − x3 + x4 ≥ 0,

10− x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 ≥ 0,
5− 2x2

1 − x2
2 − x2

3 − x2
4 − 2x1 + x2 + x4 ≥ 0.
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The starting points: x(0) = (0, 0, 0, 0) , y(0) = (−1, 1,−1).
The optimal solution:

x∗ = (0.135 90, 1. 092 7, 1. 857 8, − 1. 138 7 ) , f (x∗) = −43.716,
y∗ = (−1. 010 3, 0.817 48,−1. 103 4),
λ∗ = (1. 031 1, 0.0, 1. 343 3) , A (x∗) = (1, 3)

Example 3. (Problem:64 [33, p. 86]).




f (x) = 5x1 + 50000
x1

+ 20x2 + 72000
x2

+ 10x2 + 144000
x3

→ min
s.t. 1− 4

x1
− 32

x2
− 120

x3
≥ 0, 0.00001 ≤ x1 ≤ 300,

0.00001 ≤ x2 ≤ 300, 0.00001 ≤ x3 ≤ 300.

The starting points: x(0) = (1, 1, 1) , y(0) = (−1, 1,−1, 1, 1, 1, 1).
The optimal solution:

x∗ = (108.73, 85.126, 204.32) , f (x∗) = 6299.8424,

y∗ = (−13.160, 4.773 0, 5.761 6, 4.399, 5.989 6, 5.889 9, 4.573 7) ,

λ∗ = (2279.0, 0, 0, 0, 0, 0, 0) , A (x∗) = (1) .

6 Conclusion

We have presented and tested smoothing Newton methods for solv-
ing nonlinear optimization problems, with requirements compared to
those of the classical Newton method. The basic idea of the methods
is to replace the KKT system by a system which is appropriate and
equivalent to the one on which we apply Newton’s method. It is shown
that by reasonable choice of functions u (x) and v (x) we obtain effec-
tive methods for solving the nonlinear programming problems. The
methods are simple and can be applied with different functions u (x)
and v (x) that satisfy the Properties P1-P4. The numerical results
show that the proposed method produces fast local convergence. From
the practical point of view, the possibility to relax the assumptions of
strict complementarity conditions (Assumption A2) remains an open
question.
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