Octagon Quadrangle Systems nesting 4-kite-designs having equi-indices

Luigia Berardi, Mario Gionfriddo, Rosaria Rota

Abstract

An octagon quadrangle is the graph consisting of an 8-cycle $(x_1, ..., x_8)$ with two additional chords: the edges $\{x_1, x_4\}$ and $\{x_5, x_8\}$. An octagon quadrangle system of order v and index λ [OQS] is a pair (X, \mathcal{B}) , where X is a finite set of v vertices and \mathcal{B} is a collection of edge disjoint octagon quadrangles (called blocks) which partition the edge set of λK_v defined on X. A 4-kite is the graph having five vertices x_1, x_2, x_3, x_4, y and consisting of an 4-cycle $(x_1, x_2, ..., x_4)$ and an additional edge $\{x_1, y\}$. A 4-kite design of order n and index μ is a pair $\mathcal{K} = (Y, \mathcal{H})$, where Y is a finite set of n vertices and \mathcal{H} is a collection of edge disjoint 4-kite which partition the edge set of μK_n defined on Y. An Octagon Kite System [OKS] of order v and indices (λ, μ) is an OQS(v) of index λ in which it is possible to divide every block in two 4-kites so that an 4-kite design of order v and index μ is defined.

In this paper we determine the spectrum for OKS(v) nesting 4-kite-designs of equi-indices (2,3).

Lavoro eseguito nell'ambito del progetto PRIN 2008: Disegni Combinatorici, Grafi e loro applicazioni.

1 Introduction

Let $\lambda \cdot K_v$ be the complete multigraph defined on a vertex set X. Let G be a subgraph of $\lambda \cdot K_v$. A G-decomposition of $\lambda \cdot K_v$ is a

^{©2011} by L. Berardi, M. Gionfriddo, R. Rota

³²⁰

pair $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is a partition of the edge set of $\lambda \cdot K_v$ into subsets all of which yield subgraphs that are isomorphic to G. A Gdecomposition is also called a G-design of order v and index λ ; the classes of the partition \mathcal{B} are said to be the blocks of Σ . Thus, \mathcal{B} is a collection of graphs all isomorphic to G such that every pair of distinct elements of X is contained in λ blocks of Σ .

A 4-kite is a graph $G = C_4 + e$ (Fig.1), formed by a cycle $C_4 = (x, y_1, y_2, y_3)$, where the vertices are written in cyclic order, with an additional edge $\{x, z\}$. In what follows, we will denote such a graph by $[(y_1, y_2, y_3), (x), z]$. We will say that x is the *centre* of the kite, z the *terminal* point, y_1, y_3 the *lateral* points and y_2 the *median* point. A $(C_4 + e)$ -design will also be called a 4-kite-design. It is known that a 4-kite-design of order v exists if and only if: $v \equiv 0$ or 1 mod 5, $v \geq 10$.

Figure 1. 4-kite

A λ -fold *m*-cycle system of order v is a pair $\Sigma = (X, \mathcal{C})$, where X is a finite set of v elements, called *vertices*, and C is a collection of edge disjoint *m*-cycles which partitions the edge set of λK_v , (the complete multigraph defined on X, where every pair of vertices is joined by λ edges). In this case, $|\mathcal{C}| = \lambda v(v-1)/2m$. The integer number λ is also called the *index* of the system. When $\lambda = 1$, we will simply say that Σ is an *m*-cycle system. The spectrum for λ -fold *m*-cycle systems for $\lambda \geq 2$ is still an open problem.

The graph given in Fig.2 is called an *octagon quadrangle* and will be denoted by $[(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)]$. An octagon quad-

rangle system [OQS] is a *G*-design, where *G* is an octagon quadrangle. OQS(v)s have been studied by the authors in [1][2][3][5].

Figure 2. Octagon Quadrangle

Observe that, if we consider an *octagon quadrangle* $Q = [(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)]$, it is possible to partition it into the two 4-kites $K_1(Q) = [(x_1, x_2, x_3), (x_4), x_5], K_2(Q) = [(x_5, x_6, x_7), (x_8), x_1].$

In this paper we study OQSs which can be partitioned into two (C_4+e) -designs (see Fig.3).

2 Definitions

Let $\Sigma = (X, \mathcal{B})$ be an OQS of order v and index λ . We say that Σ is 4-kite nesting, if for every octagon quadrangle $Q \in \mathcal{B}$ there exists at least a 4-kite $K(Q) \in \{K_1(Q), K_2(Q)\}$ such that the collection \mathcal{K} of all these 4-kites K(Q) form a 4-kite-design of order μ . This kite system is said to be nested in Σ . We will call it an octagon 4-kite system of order v and indices (λ, μ) , briefly also OKS or $OKS_{\lambda,\mu}, OKS_{\lambda,\mu}(v)$.

If Ω is the family of all the 4-kites $\{K_1(Q), K_2(Q)\}$ contained in the octagon quadrangles $Q \in \mathcal{B}$, we observe that also the family $\mathcal{K}^c =$

Figure 3. Decomposition of an OQ into two 4-kites

 $= \Omega - \mathcal{K}$ forms a 4-kite-design of index $\mu' = \lambda - \mu$. If, for every octagon quadrangle $Q \in \mathcal{B}$, both families of 4-kites $\Omega_1 = \{K_1(Q) : Q \in \mathcal{B}\},$ $\Omega_2 = \{K_2(Q) : Q \in \mathcal{B}\}$ form a 4-kite design of index μ , we will say that the OQS is an octagon bi-kite system.

3 The new concept of G-Designs with equiindices

In this section we give a new concept, which considers the possibility for a G-design to have more indices. We consider the case of two indices and order v = 4h + 1, because these will be considered in what follows, but the definition can be extended for the case with k indices, $k \ge 2$, and order every admissible v.

Definition of G-design with two equi-indices

Let G be a graph and let v = 4h + 1 an integer. A G-design of equi-indices λ, μ is a pair $\Sigma = (X, \mathcal{B})$ where $X = Z_v$ and

 \mathcal{B} is a collection of graphs, all isomorphic to G, called blocks and defined in a subset of Z_v , such that for every pair of distinct element $x, y \in Z_v$:

1) if the distance (difference) between x, y is equal to 1,2,...,h, then the pair x, y is contained in exactly λ blocks of Σ ;

2) if the distance (difference) between x, y is equal to h+1, h+2, ..., 2h, then the pair x, y is contained in exactly μ blocks of Σ .

This definition generalizes the well known concept of G-design and it can be done in many different ways and conditions. For them we keep the usual terminology.

Example 1

Let v = 13. In Z_{13} the set of all the possible differences is $\Delta = \{1, 2, 3, 4, 5, 6\}$. Partition Δ into the following two classes: $A = \{1, 2, 3\}, B = \{4, 5, 6\}$. It is possible to define a K_3 -design (Steiner Triple System) of order v = 13 and equi-indices $(\lambda, \mu) = (1, 2)$, as follows:

$$\begin{aligned} \forall \{x, y\} &\subseteq Z_{13}, \ x \neq y, \ |x - y| = 1, 2, 3 \Longrightarrow \lambda = 1, \\ \forall \{x, y\} &\subseteq Z_{13}, \ x \neq y, \ |x - y| = 4, 5, 6 \Longrightarrow \mu = 2, \end{aligned}$$

where $\lambda = 1$ and $\mu = 2$ mean respectively that the pair x, y is contained in exactly one or two blocks of the system.

The blocks

$$\{i, i+1, i+5\}, \{i, i+2, i+7\}, \{i, i+3, i+7\}, \{i,$$

for every $i \in Z_{13}$,

define such a system.

Octagon Quadrangle Systems nesting 4-kite-designs having

Example 2

Let v = 9. In Z_9 the set of all the possible differences is $\Delta = \{1, 2, 3, 4\}$. Partition Δ into the following two classes: $A = \{1, 2\}$, $B = \{3, 4\}$. It is possible to define a $(K_4 - e)$ -design of order v = 9 and equi-indices $(\lambda, \mu) = (3, 2)$, as follows:

$$\forall \{x, y\} \subseteq Z_9, x \neq y, |x - y| = 1, 2 \Longrightarrow \lambda = 3,$$

$$\forall \{x, y\} \subseteq Z_{13}, x \neq y, |x - y| = 3, 4 \Longrightarrow \mu = 2,$$

where $\lambda = 3$ and $\mu = 2$ mean respectively that the pair x, y is contained in exactly three or two blocks of the system.

If we indicate by [x, y, (z, t)] a block of a $(K_4 - e)$ -design, where (z, t) are the only two vertices non adjacent in $(K_4 - e)$, then the blocks

$$\{i,i+2,(i+1,i+4)\},\{i,i+4,(i+1,i+6)\},$$

for every $i \in Z_9$,

define such a system.

4 Strongly Balanced 4-kite-Designs

It is known that a G-design Σ is said to be *balanced* if the *degree* of each vertex $x \in X$ is a constant: in other words, the number of blocks of Σ containing x is a constant.

In [4] the authors have introduced the following concept.

Let G be a graph and let $A_1, A_2, ..., A_h$ be the orbits of the automorphism group of G on its vertex-set. Let $\Sigma = (X, \mathcal{B})$ be a G-design.

We define the degree $d_{A_i(x)}$ of a vertex $x \in X$ as the number of blocks of Σ containing x as an element of A_i .

We say that:

 $\Sigma = (X, \mathcal{B})$ is a strongly balanced G-design if, for every i = 1, 2, ..., h, there exists a constant C_i such that

$$d_{A_i}(x) = C_i,$$

for every $x \in X$.

It follows that:

Theorem 4.1. A strongly balanced G-design is a balanced G-design.

Proof Clearly, if $\Sigma = (X, \mathcal{B})$ is a balanced *G*-design, then for each vertex $x \in X$ the relation $d(x) = \sum_{i=1}^{h} d_{A_i}(x)$ holds. Hence, there exists $k \in N$ such that d(x) = k, for every $x \in X$.

We say that a *G*-design is *simply balanced* if it is balanced, but not strongly balanced.

Theorem 4.2. If $\Sigma = (X, \mathcal{B})$ in a balanced OQS of order v and index λ , then Σ is strongly balanced.

Proof If G is an octagon quadrangle $[(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)]$, the automorphism group of its vertices has the two orbits $A_1 = \{x_1, x_4, x_5, x_8\}$, $A_2 = \{x_2, x_3, x_6, x_7\}$. For every vertex $x \in X$, denote by C_x the number of blocks of Σ containing x as a central vertex, i.e. in a position of degree three, and by M_x the number of blocks of Σ containing x as a median vertex, i.e. in a position of degree two. Since Σ is balanced, it follows that:

$$C_x + M_x = d(x) = \frac{8 \cdot |\mathcal{B}|}{v} = 4 \cdot \lambda \cdot (v - 1);$$
$$4 \cdot C_x = \frac{8 \cdot |\mathcal{B}|}{v} = 4 \cdot \lambda \cdot (v - 1).$$

Hence:

$$C_x = M_x = 2 \cdot \lambda \cdot (v - 1),$$

and the statement is so proved.

If Ω is a balanced 4-kite-design, it is possible that Ω is not strongly balanced. In Fig.4 there is a *simply balanced* 4-kite- design of order 11. We can see that all the vertices x have degree d(x) = 5, but the vertex 2 has *median-degree* equal to *three*, while the vertex 3 has *median-degree* equal to *zero*.

Figure 4. Simply balanced 4-kite-design of order 11

5 Necessary existence conditions

In this section we prove some necessary conditions for the existence of 4-kite-designs.

Theorem 5.1. Let $\Omega = (X, \mathcal{B})$ be an $OKS_{\lambda,\mu}(v)$. Then

- i) $\lambda = 2 \cdot \mu;$
- *ii*) $(\lambda, \mu) = (2, 1)$ or (4, 2) or (6, 3) or (8, 4) implies $v \equiv 0, 1 \mod 5, v \ge 8$;
- *iii*) $(\lambda, \mu) = (10, 5)$ *implies* $v \equiv 0, 1 \mod 2, v \ge 8$.

Proof Let $\Omega = (X, \mathcal{B})$ be and let $\Sigma = (X, \mathcal{K})$ the 4-kite system of index μ , nested in it. It follows that:

$$\begin{split} |\mathcal{B}| &= |\mathcal{K}|, \\ |\mathcal{B}| &= v(v-1) \cdot \lambda/20, \\ |\mathcal{K}| &= v(v-1) \cdot \mu/10. \end{split}$$

Hence: i) $\lambda = 2 \cdot \mu$. For ii) and iii), it suffices to consider that:

$$|\mathcal{K}| = v(v-1) \cdot \mu/10.$$

Theorem 5.2. Let $\Sigma = (Z_v, \mathcal{B})$ be a 4-kite-design of equi-indices (λ, μ) , with v odd. Then

i)
$$|\mathcal{B}| = (\lambda + \mu) \cdot v \cdot (v - 1)/20 \in N;$$

ii) $(\lambda, \mu) = (2, 3)$ implies $v \equiv 1 \mod 4, v \ge 5$.

Proof i) Let $\Sigma = (Z_v, \mathcal{B})$ be a 4-kite-design of equi-indices (λ, μ) , with v odd. It follows:

$$|\mathcal{B}| = (\frac{\lambda}{2} \cdot \binom{v}{2} + \frac{\mu}{2} \cdot \binom{v}{2})/5 = \frac{\lambda + \mu}{10} \cdot \binom{v}{2},$$

which must be a positive integer. ii) Directly from i).

The ii) of Theorem 5.2 will be used in the next section.

6 Main Existence Theorems

In this section we prove the conclusive Theorems of this paper. In what follows, if $B = [(a), b, c, (d), (\alpha), \beta, \gamma, (\delta)]$ in a block of a system Σ defined in Z_v , then the *translates* of B are all the blocks of type $B_j = [(a+j), b+j, c+j, (d+j), (\alpha+j), \beta+j, \gamma+j, (\delta+j)]$, for every $j \in Z_v$. B is called a base block of Σ .

Theorem 6.1. There exists an OKS of order v and equi-indices (2,3), with v odd, if and only if :

 $v \equiv 1 \mod 4, v \ge 9.$

Proof \Rightarrow Let $\Sigma = (Z_v, \mathcal{B})$ be an OQS of order v and equi-indices (2, 3), with v odd. Since every block contains eight vertices, from Theorem 5.2.*ii*), it follows

$$v \equiv 1 \mod 4, v \geq 9.$$

 $\leftarrow \text{ Let } v = 4h + 1, \ h \in N, \ h \ge 2.$ Consider the following octagon quadrangles:

$$B_1 = [(0), h, 3h + 1, (1), (2h + 1), 3h, h + 1, (2)],$$

$$B_2 = [(0), 1, 3h + 1, (2), (2h + 1), 3h - 1, h + 1, (3)],$$

0	0	\mathbf{O}
Э	4	9

$$B_3 = [(0), 2, 3h + 1, (3), (2h + 1), 3h - 2, h + 1, (4)],$$

.....

$$B_i = [(0), i - 1, 3h + 1, (i), (2h + 1), 3h - (i - 1), h + 1, (i + 1)],$$

.....

$$B_{h-1} = [(0), h-2, 3h+1, (h-1), (2h+1), 3h-(h-2), h+1, (h)],$$

$$B_h = [(0), h-1, 3h+1, (h), (2h+1), h+1, 3h+2, (1)].$$

Consider the system $\Sigma = (X, \mathcal{B})$, defined in $X = Z_v$, having $B_1, ..., B_i, ..., B_h$ as base blocks. This means that $B_1, B_2, ..., B_i, ..., B_h$ belong to \mathcal{B} and also all the *translates*.

It is possible to verify that Σ is an OQS of order v = 4h + 1 and index $\lambda = 5$. Further, if we divide every block $Q = [(x_1), x_2, x_3, (x_4), (x_5), x_6, x_7, (x_8)]$, into the two 4-kites

$$K_1(Q) = [(x_1, x_2, x_3), (x_4), x_5],$$

$$K_2(Q) = [(x_5, x_6, x_7), (x_8), x_1],$$

we can verify that the collection of all the *upper* 4-kites form a 4-kite-design $\Sigma_1 = (Z_v, \mathcal{B}_1)$ of equi-indices ($\lambda = 2, \mu = 3$), while the collection of all the *lower* 4-kites form a 4-kite-design $\Sigma_2 = (Z_v, \mathcal{B}_2)$ of equi-indices ($\lambda = 3, \mu = 2$).

Observe that:

i) in Σ_1 all the pairs $x, y \in Z_v$ associated with the index $\lambda = 2$ have difference |x - y| belonging to $A = \{1, 2, ..., h\}$, while the pairs associated with $\mu = 3$ have difference belonging to $B = \{h + 1, h + 2, ..., 2h\}$;

ii) in Σ_2 all the pairs $x, y \in Z_v$ associated with the index $\lambda = 3$ have difference |x - y| belonging to A, while the pairs associated with $\mu = 2$ have difference belonging to B.

Octagon Quadrangle Systems nesting 4-kite-designs having ...

This proves that Σ is an OKS of order v = 4h + 1, $h \ge 2$, where the two 4-kite-designs nested in it have equi-indices (2,3) and (3,2) respectively.

Theorem 6.1 permits to prove the following Theorems:

Theorem 6.2. There exists a 4-kite-design of order v and equi-indices (2,3), with v odd, if and only if :

$$v \equiv 1 \mod 4, v \geq 5.$$

Proof The statement follows directly from Theorem 6.1 and considering that the design Σ_5 , defined in Z_5 and having for blocks all the translates of the *base* 4-kite:

[(2, 1, 3), (0), 4],

is a 4-kite-design of order 5 and equi-indices (2,3).

Theorem 6.3. For every $v \equiv 1 \mod 4$, $v \geq 5$, there exists a strongly balanced 4-kite-design of order v.

Proof See Theorems 6.1 and 6.2.

References

- L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle systems, Discrete Mathematics, 310 (2010), 1979–1985.
- [2] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle systems with an upper C_4 -system and a large spectrum, Computer Science Journal of Moldova (Discrete Mathematics), 54 (2010), 303–318.
- [3] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle systems with upper C₄-systems, Journal of Statistical Planning and Inference, 141 (2011), 2249–2255.

- [4] L.Berardi, M.Gionfriddo, R.Rota, *Balanced and strongly balanced* P_k -designs, Discrete Mathematics, to appear.
- [5] L.Berardi, M.Gionfriddo, R.Rota, *Perfect octagon quadrangle systems II*, Discrete Mathematics, to appear.
- [6] L.Gionfriddo, Two constructions for perfect triple systems, Bull. of ICA, 48 (2006), 73–81.
- [7] L.Gionfriddo, *Hexagon quadrangle systems*, Discrete Maths. 309 (2008), 231–241.
- [8] L.Gionfriddo, *Hexagon biquadrangle systems*, Australasian J. of Combinatorics 36 (2007), 167–176.
- [9] L.Gionfriddo, *Hexagon kite systems*, Discrete Mathematics, 309 (2009), 505–512.
- [10] L.Gionfriddo, *Perfect dodecagon quadrangle systems*, Discrete Mathematics, to appear.
- [11] S. Kucukcifci, C.C.Lindner, Perfect hexagon triple systems, Discrete Maths., 279 (2004), 325–335.
- [12] C.C.Lindner, A.Rosa, Perfect dexagon triple systems, Discrete Maths. 308 (2008), 214–219.

Luigia Berardi, Mario Gionfriddo, Rosaria Rota Received June 28, 2011

Luigia Berardi Dipartimento di Ingegneria Elettrica e dell'Informazione, Universitá di L'Aquila E-mail: *luigia.berardi@ing.univaq.it*

Mario Gionfriddo Dipartimento di Matematica e Informatica, Universitá di Catania E-mail: gionfriddo@dmi.unict.it

Rosaria Rota Dipartimento di Matematica, Universitá di RomaTre E-mail: rota@mat.uniroma3.it