
Computer Science Journal of Moldova, vol.19, no.3(57), 2011

Concurrency specification using Event-based

Specification Chart

Dumitru Ciorbă, Victor Beşliu

Abstract

Architecting framework proposed in [1] can be used efficiently
for developing concurrency-intensive systems only if there exist
languages and tools corresponding to the described concepts. In
this article there will be presented an approach based on us-
ing formalism. Theoretical advantages of formal specification are
well known. However, usage of formal specification in practice
ascertains some difficulties, thus their current advantages are not
widely explored. The main focus of our research is to improve
usage of formal method in verification of concurrency. Our vi-
sion consists in adapting the pragmatic approach and relaxing
formalism, by creating graphical specification language based on
events.

Keywords: software architecture, concurrency, formaliza-
tion, specification, CSP#

1 Specification and formal methods

It is well known that methods of formal specification allow [2, 3]: to
describe completely behavior of a system; to analyze in detail and,
consequently, to better understand systems; to facilitate verification,
maintenance and development of system; to reduce number of errors,
etc.

In practice, the methods of formal specifications are not widely used
due to the fact that formal character of specification languages makes
difficult their understanding and usage.

c©2011 by D.Ciorbă, V.Beşliu

231

D.Ciorbă, V.Beşliu

Usually, overall development time using formal methods is ex-
panded so much that the question arises whether to use them or not.
The work [3] reflects unavailability of the majority of IT-experts to the
methods of formal specifications and disadvantages of full formal anal-
ysis of large and complex systems. Despite this, the author of the work
[3], being a proponent of formal specification methods, insists that the
key to achieving good results is exactly the use of formal methods in
early stages of development. Numerous studies [3, 4, 5] have shown
that the earlier discrepancy is detected, the cheaper the error costs
(Figure 1).

Figure 1. Relative cost to correct a defect

But is it always justified the effort for the formal specification of
the system in the early stages of development? In [2] it is insisted that
transition from informal requirements to formal specifications should
not be done too early because of the fact that a greater degree of detail
complicates the specification.

Also, in the above-mentioned work, it is proposed a pragmatic ap-

232

Concurrency specification using Event-based . . .

proach to formal specification, which consists in usage, if necessary, of
several formalisms for specification of different system aspects, increas-
ing expressiveness of formalization, in general, and avoiding restrictions
of specification languages, in particular.

The same approach applies when using UML (Unified Modeling
Language, [6]). However the language is semi-formal, even in the case
of model annotating with OCL-expressions (Object Constraint Lan-
guage, [7]). In addition to UML and ADL (Architecture Description
Language) diagrams, at architectural level, for describing system be-
havior, the formal language needs to be used. Anyway, without doubt,
today it is best used in the IT industry.

The expressiveness of UML models, the “standardization” of the
software development processes, the advantages of the methods of for-
mal specifications and pragmatic approach, incline to improve the spec-
ification phase through complement or extension of existing methods
rather than through development of new universal and common lan-
guage for formal specification.

2 Component-based structure architecting

Structure architecting consists in describing the set of components and
set of connections (connectors) defining components interaction. Struc-
ture view of architecting process focuses on term, which is closely re-
lated to system topology.

Description of architecture as configurations of components and
connectors is very popular, and, in majority of cases, architectural de-
scription languages (ADLs) graphically represent them as “boxes and
lines”.

The ACME language of architecture description must be men-
tioned. ACME is a formal meta-language, which provides a set of
language constructs for describing architectural structure, architectural
types and styles, and annotated properties of the architectural elements
[8].

Publish-subscribe style architecture is represented in Figure 2 using
ACME-like concepts and graphical representations.

233

D.Ciorbă, V.Beşliu

Figure 2. Structure view of a publish-subscribe architecture

Component is an elementary system entity, which represents pro-
cess or data store unit of a system. Thus, components are abstractions
used to model hardware and software elements. A module, library,
class or other encapsulation unit can be an analogue of a component,
abstract description of which can be captured by properties. Compo-
nent functionalities are exposed through ports. Thus, port represents
the interface which describes services (operations) of components that
are provided or requested

Connector makes interaction as explicit concept. All architecture
connectors embody a protocol of communication and synchronization
between participants, which are defined by roles. Connectors have
properties too. Details of interactions can be specified exactly using
properties and another formalisms and tools as “value” (e.g. CSP-
like language Wright or described bellow ESC language). Connectors
and ports can be discoverable at run-time, and define a “transport”
independent communication between components.

234

Concurrency specification using Event-based . . .

3 Event-based behavior architecting

3.1 Event centric development

Event-based behavior architecting permits very flexible interactions be-
tween system active entities, therefore event-driven techniques remain
popular for concurrency for a long time. Matt Welsh [9] had adopted
an event-driven architecture too, in order to support massive degrees
of concurrency. Resulted staged event-driven architecture (SEDA) is
very efficient and has a robust structure.

Event centric architecture in the simplest case defines four basic
entities (Figure 3):

Figure 3. Basic entities of the event-based architecture

• Data (what data is processed);

• Actions (actions taken when processing);

• Components (where actions of processing localized);

• Events (when and in what sequence are actions activated).

235

D.Ciorbă, V.Beşliu

Inexpensive synchronization is an important argument for event-
driven approaches: synchronization is easily obtained by event cooper-
ation [10]. Another key advantage of events is scheduling at application
level. Thus scheduling optimization is possible. Also events allow bet-
ter code locality, which is one of implementation mechanisms of the
fundamental principle of modern software development – Separation of
Concerns (SoC) [11, 12, 13].

3.2 Event-based Specification Chart (ESC)

The main objective of research is to simplify the specification of con-
currency in information system architecting. If events happen in com-
ponent ports and relationships among events are the only things that
interest us, an event-based approach for behavior specification can be
an adequate choice.

Event-based Specification Charts (ESCs) consist in drawings, which
specify events, event orderings, event conflicts, roles and role actions.

An event is an instantaneous, atomic “state” transition in the com-
putation trace. Exactly over these transitions the behavior of a system
is defined. Event ordering in computation trace is determined by the
causal dependency relationship “→” (read as “precede”). The interpre-
tation of “→” as a causal ordering means that, if e1 and e2 are events
in a system and e1 → e2, then existence of the event e1 will cause
occurrence of the event e2 in the future.

Conflict relationship “↔” models mutual exclusion of events, dis-
allowing them to overlap in time. An asymmetric conflict “½”, which
blocks an event while another event happens, is allowed too.

Thus an event e can occur when all its causes have occurred and
no event, which it is in conflict with, has already occurred.

Concurrency and non-determinism are implicit in ESC specifica-
tions, and are determined by causal independence and absence of con-
flicts between concurrent events.

A role defines the behavior of a participant, identified in the col-
laborations between architecture components. Through roles the com-
ponent captures events, which can occur in an order determined by

236

Concurrency specification using Event-based . . .

concurrency and synchronization logic, and exposes actions associated
to these events by role to cloud incidence connectors.

Possibility of localization of interrelated events is realized using
cloud. The cloud of events is a partially ordered set of events, where the
partial ordering is determined by causal, temporal and other relations
between events. A closely related term of event cloud is defined in the
glossary of Event Processing Technical Society too [14].

Basics of the language notations are presented in Figure 4, where
ESC chart describes the following entities:

• Events: e1, e2, e3, e4, e5;

• Causal dependencies: e1 → e2, e1 → e3, e4 → e5;

• Conflict: e3 ↔ e4;

• Clouds: Cloud1, Cloud2;

• Role: Role1.

In order to increase flexibility of specifications two relationship at-
tributes for causal dependencies were introduced: role incidence and
event occurrence.

Role incidence attribute is used to indicate which roles are impli-
cated in event occurrence, and has the following values:

• Same – the causal and dependent events occur involving the same
role;

• All – a special case of same attribute, used when a dependent
event occurs only if the causal event is occurred in every inci-
dent role. Thus the cause event is synchronization between all
component processes interfaced by roles.

• Any – a dependent event occurs, when the causal event mani-
fested itself in any incident role; used as attribute for dependen-
cies between events located in different clouds;

237

D.Ciorbă, V.Beşliu

Figure 4. An ESC diagram

Event occurrence attribute can be used to specify how many times
the dependent event may occur, when the causal event manifests once:

• bound[n] – limits to n number of occurrences of the dependent
event in each incident roles;

• free – the dependent event may occur unlimited times for incident
roles.

Let there be four events ordered by some dependencies (e1 → e2,
e2 → e3, and e2 → e4), which form a system behavior presented in
Figure 5. Role1 and Role2 are synchronized by event e1, because de-
pendency between e1 and e2 has All as value of role incidence attribute.
Event e2 thus will not happen until e1 will not occur in both roles. Also
according to diagram from Figure 5, the event e3 will occur only once

238

Concurrency specification using Event-based . . .

for each incident role (both Role3 and Role4), but the event e4 will
occur unlimited times involving incident roles.

It is important to mention that role can be “interpreted” by a pro-
cess or multiple. Thus event e3 may occur once in multiple processes
or will occur multiple times in one process (execution unit).

Figure 5. Synchronized events in ESC

Modern software development requires an incremental refinement
approach. Thus reutilization is an important factor to efficient elabo-
ration, but it is applied to late. Reutilization, usually achieved through
inheritance, is especially present from design to programming activi-
ties. Therefore an effort must be made to apply reusing in behavioral
specification of concurrency-intensive architecture too.

Refinements in ESC language are realized through cloud superposi-
tion (with event specialization) and event substitution.

Cloud superposition superimposes additional behavior on an exist-
ing cloud. Addition behavior preserves independencies and conflicts
between old events, therefore liveness and safety properties will be
preserved. Superposition must be viewed as monotonic inheritance,

239

D.Ciorbă, V.Beşliu

because can be characterized in the following way: new events may be
added; new actions may be associated to new events; new causal depen-
dencies may be added between new events, new causal dependencies
may be added between a specialized event and events from superposi-
tioned cloud; a specialized event may be refined through substitution
by events from a cloud.

Event substitution is a refinement, which replaces an event by mul-
tiple events from a cloud. Substitutions preserve dependencies of re-
placed events, therefore causal ordering is preserving too.

Refinement relations between clouds and events is shown in Figure
6, according to which Role1 is involved by events e1, e3, e4, e5, e7 with
occurring ordering determined by the following final (after refinements)
causal dependencies: e1 → e3, e1 → e4, e1 → e5, e4 → e7, e5 → e7.

Figure 6. Superposition and substitution refinements

240

Concurrency specification using Event-based . . .

3.3 An event structure semantic for ESCs

Every specification language should have a formal semantic, which de-
fines logic for reasoning about behavior and concurrency. A semantic is
indispensable for the development of tools; therefore it is an advantage,
if specification language has direct and simple correspondence to the
logic. This is the way to avoid errors in concurrent specification.

Another important aspect of language design concerns explicit link-
ing of specification to implementation, which is realized at later stages
of developments. So language must be capable to preserve internal
system “structure” (which can be lost with interleaving models [15]),
to express implicitly non-determinism (which is an inherent property
of modern multi-threading programs [16]), and to avoid detailed inter-
nal state description (behavioral approach is preferred for high-level
architectural specification).

According to [15, 17] and aforementioned requirements, a well ac-
cepted branching-time true concurrency semantic model is model of
event structures (Figure 7).

Figure 7. The ESC language as an emanation of branching-time true
concurrency extensional semantic

An event structures model with non-interleaving semantic allows in

241

D.Ciorbă, V.Beşliu

a natural way to describe the relationship between events of the system
[15, 17].

The event structure S = (E,≤, #) consists of a countable set of
events E, partially ordered by causal dependence ≤ ⊆ (E × E), an
irreflexive and symmetric conflict # ⊆ (E×E), satisfying the principle
of inheritance: ∀e, e1, e2 ∈ E; e#e1 ≤ e2 ⇒ e#e2. Thus the concur-
rency relationship co between events e and e1 from E can be defined
as follows: e co e1, iff ¬(e1 ≤ e ∨ e ≤ e1 ∨ e#e1).

Event substitution refinement can be defined as vertex substitution
operation presented in [18] with assumption that substituted event has
no conflict relationship with any events (Figure 8).

Figure 8. Event substitution

In order to describe formally this refinement operation it needs to
assume that

• U(E1, e1) is a subset of E1 upper bounded by e1 ∈ E1 (∀u ∈ E1:
u ≤ e1);

• L(E1, e1) is a subset of E1 lower bounded by e1 ∈ E1 (∀l ∈ E1:
e1 ≤ l);

• dSe denotes a subset of S, including only elements’ upper bound
S (∀s ∈ S; ∀u ∈ dSe; s ≤ u);

242

Concurrency specification using Event-based . . .

• bSc denotes a subset of S, including only elements’ lower bound
S (∀s ∈ S; ∀l ∈ bSc; l ≤ s).

Then after substitution of event b in event structure ES1 by event
structure ES2 (operation which can be noted as in [19] with ES3 =
ES1[b →ES2]) is obtained an event structure ES3=(E3,≤3, #3), where

• E3 = (E1 ∪ E2)− {b}, E1 ∩ E2 = ∅;

• ≤3 = (≤1 − ≤b) ∪ ≤2 ∪ ≤ dU(E1,b)e×bE2c ∪ ≤ bL(E1,b)c×dE2e;

• #3 = #1 ∪#2.

Refinement through cloud superposition formally can be interpreted
as union of two graphs, which anticipates vertex contractions specified
by specialization relationships (dashed arrow in Figure 9).

Figure 9. Cloud superposition

The above-described basic relationships are the ones which permit
event structures to be expressive and natural for concurrency descrip-
tion and explaining. However these arguments are not valid for au-
tomated analysis, because of the difficulty in defining operations like
products and parallel compositions on event structures of the form
(E ≤, #). They encourage the uses of more general structures or even
CCS/CSP like languages from which event structure semantics is then
induced [15].

243

D.Ciorbă, V.Beşliu

3.4 Operational interpretation of ESC specifications

Automated analyses imply an operational interpretation of formal ESC
specifications. The most appropriate for this is the classic process al-
gebra CSP (Communicating Sequential Processes). CSP has an event-
based operational semantic and describes system behavior by sequenc-
ing of events [20]. There are two popular model checkers based on
CSP-like operational semantic and syntax: FDR (Failures/Divergence
Refinement), which is a commercial product expressing models in
machine-readable dialect of CSP (CSPM) [21]; and PAT (Process Anal-
ysis Toolkit) with CSP# as input language [22].

Greater flexibility, expressiveness, openness and freeness offered by
PAT determine a univocal choice for CSP# as interpretation language.
Compared to CSPM , CSP# adds to original language features such
as shared variables, asynchronous communication channels and event
associated programs [23].

Formally, the language of sequential processes (programs) CSP#,
ranged over processes P and Q, is the set of terms generated by the
following BNF (Backus-Naur Form) description (Figure 10), in which
e is a name representing an event with an optional sequential program
prog, X is a set of event names, b is a Boolean expression,ch is a channel,
exp is an expression, and x is a variable.

Figure 10. The BNF description of CSP# language

The easiest way to apply PAT platform as model checker is to create
a “rewriter” from the ESC specification language to CSP# language. In

244

Concurrency specification using Event-based . . .

order to avoid complex CSP# models, rewriting should be anticipated
by refinement operations, which can be understood as operations of
syntactic substitution.

Rewriting from ESC model to CSP# model produces systems com-
posed of multiple processes. In accordance with CSP# language defini-
tion the word process can stand for the behavior pattern of an object,
which can be described in terms of limited set of events. In both lan-
guages each event name denotes an event class; there may be many
occurrences of the same event, involved separately in time by processes
(CSP#) or roles (ESC).

Let Role1 and Role2 be the roles, which act and interact with each
other exactly in accordance with ESC specifications showed in Fig-
ure 11. It is easy to see, that Role1 exposes actions for occurrences
of events a, b and c, ordered by causal dependencies from TheCloud1 ;
and the behavior of Role2 is determined by ordering of occurrences of
events a, b, c (from TheCloud1), and d, e, f (from TheCloud2). Also ac-
cording to specification, event b from TheCloud1 requires simultaneous
participation of the both roles involved.

Figure 11. Event clouds as behavior patterns

245

D.Ciorbă, V.Beşliu

The system behavior is defined by all role behaviors, which can be
described as combination of deterministic CSP processes. When roles
are incident to the same cloud, parallel composition is used. Paral-
lel composition introduces concurrency and synchronization. Using of
the same alphabet assures that processes interact in lock-step synchro-
nization over events with the same name. Interleaving operator may
combine many role behaviors (incident to different event cloud) into
complex one, representing completely concurrent activity.

Thus a CSP# model which describes a behavior equivalent to ESC
specification from Figure 11 consists from five processes (Figure 12): a
composed process System, which corresponds to overall specified sys-
tem; processes R1 and R2, which correspond to roles Role1 and Role2 ;
processes R21 and R22, which combine concurrently behavior of Role2
determined by TheCloud1 and TheCloud2 from ESC specification.

Figure 12. Interleaving and parallel composition in CSP# model

Also parallel composition is used to define a behavior like presented
in Figure 13, according to which Role1 may concurrently involve events
(b and d, b and e, c and e).

After model “rewriting”, the role process R1 behaves like the sys-
tem composed of processes R11, R12 and R13, interacting in lock-step
synchronization as described above (Figure 14).

Last translations may not be optimal, because the processes de-
scribing the behavior Role1 are obtained by finding in the cloud’s DAG
all the paths that begin from source events and end at the sink events.
The equivalence of ESC model and CSP# model can be proved, if both
models satisfy the same state graph (Figure 15). This equivalence is

246

Concurrency specification using Event-based . . .

Figure 13. A cloud with concurrent events

Figure 14. One cloud can impose multiple processes for behavior defi-
nition

analogical to Milner’s principle of observational congruence [20].
It is easy to see from the state graph (Figure 15) that two indepen-

dent events (c and e, d and b, b and e) which can occur at the same
state, can be performed in any order without affecting the reached state
(in literature this is often identified as ‘diamonds’ of concurrency [17]).

In Figure 16 represented role behaviors are defined by two clouds,
which include conflicting events. Conflict relationship is used to spec-
ify mutual exclusion between events. Inheritance principle of conflict
relationship acts in cloud boundary. Circle in the upper-left corner of
cloud shape means that the cloud is a singleton: at the same time only
one role incident to cloud can involve events from this cloud.

247

D.Ciorbă, V.Beşliu

Figure 15. Complete state graph (generated by PAT)

It is obvious that conflict relationship imposes a choice between
processes including conflicting events. Selection in CSP model will
be done in the conflict process specifically designed for this. Conflict
process must be defined by role events. Deterministic choice realized
in CSP by a special operator – external choice, can help us to engage
in execution only one “conflicting” process. Thus specification shown
in Figure 16 can be translated as presented in Figure 17.

In the system described in Figure 17, the lock-step synchronization
admits execution of one process at a moment. Using global variables
and guarded processes, and splitting alternative process in two (sub)
processes can permit occurrence of one conflicting event in multiple
role processes (Figure 18).

4 Conclusion

The Event-based Specification Charts (ESC) specification language was
created to easily design model of concurrent processes using events.
Thus, the proposed language involving event-driven techniques, does
not replace the existing verification methods and tools. On the con-
trary, the main objective of the language is to improve usage of formal
methods in verification.

248

Concurrency specification using Event-based . . .

Figure 16. Conflict between events from singleton clouds

Figure 17. Conflict relationship and external choice

Event-based specification charts have many advantages. They are
easily understood, even by the non-specialist. They permit to concen-
trate on causality or independence of events. They offer reutilization
mechanisms of events.

Language constructs semantically are interpreted by means of event
structure model, which is more suitable for modeling “true paral-
lelism”. Hoare’s CSP language provides operational interpretation for
ESC models: partial order is modeled by the sequencing; conflict rela-
tion is modeled by nondeterministic choice, etc.

Major factor reducing the use of formal language is poor integration
of formal tools with modern development environments. Now we intend
to develop a tool for specification of concurrency, integrated into Visual

249

D.Ciorbă, V.Beşliu

Figure 18. Multiple role processes with conflicting events

Studio IDE, using Visual Studio Visualization and Modeling SDK, in
order to increase the quality of software development. Formal checks
will be made by PAT, which provides an API just for this.

References

[1] D. Ciorba, V. Besliu. Architecting software concurrency. Com-
puter Science Journal of Moldova. Chisinau : s.n., 2011. Vol. 19,
1(55), pp. 92–108. http://www.math.md/files/csjm/v19-n1/v19-
n1-(pp92-108).pdf. ISSN 1561-4042.

[2] M. Heisel. A pragmatic approach to formal specification. [ed.] H.
Kilov and W. Harvey. Object-oriented behavioral specification.
Boston / Dordrecht / London : Kluwer Academic Publishers,
2006.

[3] A. Hall. Realising the Benefits of Formal Methods. Journal of Uni-
versal Computer Science. 2007, Vol. 13, 5.

[4] LKP Consulting Group. The Real Cost of Software Defects.
[http://www.lkpgroup.com/Cost%20of%20Software%20Defects.
pdf] Atlanta, US : s.n., May 2006.

250

Concurrency specification using Event-based . . .

[5] Intel Corporation. Intel R© Fast Track Initiative:
New Tools for Enabling the Latest Technologies.
[http://www.intel.com/partner/ft webinar/Intel-FastTrack-
SAT-Whitepaper FINAL 4-14-2010.pdf] 2010.

[6] Object Management Group Inc. UML 2.3. The Object Man-
agement Group. [Online] May 9, 2010. [Cited: Nov 21, 2010.]
http://www.omg.org/spec/UML/2.3/.

[7] Object Management Group Inc. Object Constraint Lan-
guage (OCL). [Online] Feb 2010. [Cited: Nov 21, 2010.]
http://www.omg.org/spec/OCL/.

[8] A. Kompanek. Modeling a System with Acme.
[http://www.cs.cmu.edu/∼acme/html/WORKING-
%20Modeling%20a%20System%20with%20Acme.html] s.l. :
Carnegie Mellon University, 1998.

[9] M. Welsh. An Architecture for Highly Concurrent, Well-
Conditioned Internet Services. Ph.D. Thesis. Berkeley : University
of California, August 2002.

[10] M. Fowler. Event Collaboration. Development of Fur-
ther Patterns of Enterprise Application Architec-
ture. [Online] Jun 19, 2006. [Cited: Dec 05, 2010.]
http://martinfowler.com/eaaDev/EventCollaboration.html.

[11] W. Hürsch, C. Lopes. Separation of Concerns. College of Com-
puter Science, Northeastern University. Boston, USA : s.n., 1995.
Technical report.

[12] C. Constantinides, T. Elrad. On the Requirements for Concurrent
Software Architectures to Support Advanced Separation of Con-
cerns. OOPSLA’2000, Workshop on Advanced Separation of Con-
cerns in Object-Oriented Systems. 2000.

[13] G. Kiczales, et al. Aspect-Oriented Programming. Proceedings of
ECOOP’97. s.l.: Springer-Verlag, 1997.

251

D.Ciorbă, V.Beşliu

[14] Event Processing Technical Society. Event Processing Glossary.
[http://www.ep-ts.com/] [ed.] D. Luckham and R. Schulte. July
2008.

[15] G. Winskel, M., Nielsen. Models for Concurrency.
[http://www.daimi.au.dk/PB/463/PB-463.pdf] November 1993.
DAIMI PB-463.

[16] R. Carver, K. Tai. Modern multithreading: implementing, testing,
and debugging multithreaded Java and C++/Pthreads/Win32 pro-
grams. [http://books.google.ro/books?id=Wuex4orZgOEC] s.l.:
John Wiley and Son, 2006. ISBN 0-471-72504-8.

[17] V. Sassone, M. Nielsen, G, Winskel. Models for Concurrency: To-
wards a Classification. Theoretical Computer Science. 1996. Vol.
170, 1-2, pp. 297–348.

[18] T. Basten. Parsing Partially Ordered Multisets. International
Journal of Foundations of Computer Science. s.l. : World Scientific
Publishing Company, December 1997. Vol. 8, 4, pp. 379–407.

[19] U. Goltz, R. Gorrieri, A. Rensink. Comparing Syntactic and Se-
mantic Action Refinement. Information and computation. s.l.:
Academic Press, Inc., 1996. 125, pp. 118–143.

[20] C. Hoare. Communicating Sequential Processes.
[http://www.usingcsp.com/] s.l.: Prentice Hall International,
2004.

[21] Formal Systems (Europe) Ltd. Failures-Divergence Refinement.
FDR2 User Manual. [http://www.fsel.com/fdr2 manual.html].
Octomber 2010.

[22] Y. Liu, J. Sun, J. Dong. Developing Model Checkers Using PAT.
[ed.] A. Bouajjani and W. Chin. Automated Technology for Verifi-
cation and Analysis – 8th International Symposium, ATVA 2010.
Singapore : Springer, September 2010. Vol. 6252, pp. 371–377.

252

Concurrency specification using Event-based . . .

[23] J. Sun, et al. Integrating Specification and Programs for System
Modeling and Verification. [ed.] W. Chin and S. Qin. Proceedings
of the third IEEE International Symposium on Theoretical As-
pects of Software Engineering (TASE’09). s.l.: IEEE Computer
Society, 2009. pp. 127–135.

Dumitru Ciorbă, Victor Beşliu Received May 28, 2011

Technical University of Moldova
Automation and Information Technology Department
Str. Studenţilor, 7/3, corp 3, 504 Chişinău, MD-2068
Phone: (+373 22) 509908
E–mail: victor.besliu@ati.utm.md, besliu@mail.utm.md, vbesliu@yahoo.com
E–mail: diciorba@yahoo.com, dumitru.ciorba@ati.utm.md

253

