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Abstract

A paradigm to build a quantum computer, based on topolog-
ical invariants is highlighted. The identities in the ensemble of
knots, links and braids originally discovered in relation to topo-
logical quantum field theory are shown: how they define Artin
braid group – the mathematical basis of topological quantum
computation (TQC). Vector spaces of TQC correspond to as-
sociated strings of particle interactions, and TQC operates its
calculations on braided strings of special physical quasiparticles
– anyons – with non-Abelian statistics. The physical platform of
TQC is to use the topological quantum numbers of such small
groups of anyons as qubits and to perform operations on these
qubits by exchanging the anyons, both within the groups that
form the qubits and, for multi-qubit gates, between groups. By
braiding two or more anyons, they acquire up a topological phase
or Berry phase similar to that found in the Aharonov-Bohm ef-
fect. Topological matter such as fractional quantum Hall sys-
tems and novel discovered topological insulators open the way to
form system of anyons – Majorana fermions – with the unique
property of encoding and processing quantum information in a
naturally fault-tolerant way. In the topological insulators, due to
its fundamental attribute of topological surface state occurrence
of the bound, Majorana fermions are generated at its heterocon-
tact with superconductors. One of the key operations of TQC –
braiding of non-Abelian anyons: it is illustrated how it can be im-
plemented in one-dimensional topological isolator wire networks.
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1 Introduction

In the last 10-15 years it has been realized that the most fundamen-
tal attributes of quantum mechanics can be configured for quantum
computing and communication. Formally, a quantum computation is
performed through a set of transformations, called quantum gates [1].
Like quantum operators a quantum gate applies unitary transforma-
tion U to a set of quantum bits (qubits) in a quantum state |ψ >. At
the end of the calculation, a measurement is performed on the qubits
(which are in the state |ψ′ >= U |ψ >). During last decade many paths
have been paved to build sets of universal quantum gates, which allows
one to perform any arbitrary calculation without inventing a new gate
each time. The implementation of a set of universal gates is therefore
of crucial importance. It can be shown that it is possible to construct
such a set with gates that act only on one or two qubits at a time.

The great promise of quantum computers (QC) has to be balanced
against the great difficulty of actually building them. The main prob-
lem is quantum decoherence, the inevitable continuous dephasing of
a quantum state due to its interaction with the environment. Small
improvements to current strategies are not sufficient to overcome this
problem and radically new ideas are required. A new paradigm is
to build a quantum computer which will be topologically immune to
quantum decoherence and such platform was recently proposed and
was called topological quantum computation (TQC) [1]. The idea is to
use the topological quantum numbers of small groups of special phys-
ical quasiparticles – anyons – as qubits and to perform operations on
these qubits by exchanging the anyons, both within the groups that
form the qubits and, for multi-qubit gates, between groups. Anyons
are unusual special type quasiparticles unlike the electrons and pro-
tons and having the desired topological properties. The importance
of such a paradigm is that it allows one to make direct contact with
the circuit model of quantum computation and it enables algorithmic
questions to be tackled independently of the details of experimental
implementation, at least initially. TQC suppose to employ many-body
physical systems with the unique property of encoding and processing
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quantum information in a naturally fault-tolerant way.
Research on topological quantum computation has become a highly

interdisciplinary field, with frontiers in physics, mathematics, and com-
puter science [2]. Last years significant theoretical and experimental
developments have been realized, which include major experimental
and theoretical advances in fractional quantum Hall systems that sup-
port the existence of non-Abelian anyons – the physical building block
of topological quantum computation – as well as the predication and
experimental discovery of novel solid-state phase – topological insula-
tors (TI).

The aim of the paper is to review together the latest developments
in a TQC and TI with the goal of underlining the synergy between
computer and material sciences approaches.

2 Mathematical Considerations on Topological
Computation

Knots, links and braids are the mathematical basis of TQC. A repre-
sentation of a knot was defined to be a closed polygonal curve in space
and links are a combination of knots that are intertwined leading to
braids. Thus the representations of braids which are defined to be a set
of n polygonal curves stretching from z = 0 plane (in R3) to the z = 1
plane where the kth curve stretches from (1/2, k/n, 0) to (1/2, k/n, 1)
and the z value is strictly increasing and the curves do not intersect
[3]. Braids clearly have some algebraic properties. There is a clear
identity braid, which is just formed by connecting the start and end
points with straight lines. We can imagine “adding” two braids with
the same number of strands. This addition will be “associative” a(bc)
= (ab)c. Similarly, we could imagine by exactly reversing the way we
did the braiding that we could add two braids which could be manipu-
lated to obtain the identity (an inverse braid). Finally, if we add many
braids together it is clear it will still remain a braid. Thus a group –
Artin braid group – is obtained for which we can establish about how it
may be generated and what equalities are required for combinations of
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those generators so that we can determine if two braids are equivalent
[3].

Let us define k as the exchange of the kth curve with (k+1)st curve
where the kth curve passes over the (k + 1)st one (Fig 1). It is easy to
observe the following set of identities:

σiσj = σjσi for |i− j| < 3; σiσi+1σi = σi+1σiσi+1 (1)

The first of equations (1) indicates that two disjoint exchanges are
commutative and the second can be seen in Fig.1. The abovementioned
conditions are all which are required to define general braid group. In
TQC, vector spaces correspond to associated strings of particle inter-
actions being interrelated by recouping transformations that generalize
the usual QC mapping. A full representation of the Artin braid group
on each space is defined in terms of the local interchange phase gates
and the recoupling transformations [1].

Figure 1. Two braids continuously deformed into each other without
cutting any of the strands illustrating the second equality (1).

These gates and transformations have to satisfy a number of iden-
tities in order to produce a well-defined representation of the braid
group. These identities were discovered originally in relation to topo-
logical quantum field theory.
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At first sight, a TQC does not seem much like a computer at all.
It works its calculations on braided strings – but not physical strings
in the conventional sense. Rather, they are what physicists refer to as
world lines, representations of particles as they move through time and
space. However TQC are based on non-Abelian statistics and a special
type of particles – anions – is required, which can appear in physical
systems as the result of many-body interactions.

3 Topological Computation with Anyons

In conventional computing the bits of zeroes and ones are created by
switching an electric current on and off in a CMOS transistor. Or-
dinary quantum computation uses simple quantum two level systems
(e.g. electron or nuclear spins, atomic hyperfine states, etc.) as quan-
tum bits (’qubits’) with one-and two-qubit unitary operations serving
as universal quantum gates. Physical basis of TQC is more subtle and
uses the anions – excitations in a two-dimensional electronic system
that behave a lot like the particles and antiparticles of high-energy
physics. They are able to carry charges that are fractions of the fun-
damental charge of the electron and its spin can take on any real value
(Fig2).

Figure 2. Groups of particles have quantum numbers

This is of course related to their statistics and the fact that they are
neither fermions nor bosons. There are no physical processes that can
create or destroy isolated anyons, that is important if we intend to
use them in a quantum computer. If the anyons could spontaneously
appear or disappear any quantum operation using them would fail.
They also have antiparticles, with which they can interact to combine
or annihilate. Anyons can also combine with other anyons that are
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not their antiparticles. Fundamental attribute of a group of anyons is
its quantum topological number. By braiding two anyons, they acquire
up a topological phase similar to that occurring in the Aharonov-Bohm
effect – that is the phase given to a charge, which the particle accu-
mulates when it travels around a solenoid. Just like Aharonov-Bohm
effect phase the topological phase only depends on how many times the
anyons wrap around each other and not the path they follow. In the
one dimensional representation of the braid group, we obtain σj = eiθj

for identical anyons, where θj is the topological phase added by the σj

operation [2].
Alternatively, we could extend to multidimensional representation,

which allows us to have non-abelian anyons as well, which are more
suitable for quantum computing than abelian anyons. We now must
consider how anyons can combine and split. Each model of anyons
will have different fusion rules. The fusion rules determine the total
charge, c, when a and b combine. These are written as a× b = ΣcNcab,
where Ncab is a nonnegative integer and the sum is over the complete
set of labels of the composite. The composition rules are symmetric
(a × b = b × a) so the possible charges do not depend on which side
the anyon came from. Note that if Ncab is zero, the charge c cannot
be formed, while if it is one there is a unique way of obtaining c, and
Ncab can also be greater than one. Thus Ncab represents the number of
distinguishable ways that a charge c can obtain. The distinguishable
ways, that a and b can combine to form c, then represent an orthonor-
mal basis for a Hilbert space, which is called a fusion space.

The next idea that is introduced is the R matrix, which is the braid
operator, and the F matrix, which is the fusion operator. The following
step is to use the topological quantum numbers of small groups of
anyons as qubits and to perform operations on these qubits exchanging
the anyons, both within the groups that form the qubits and, for multi-
qubit gates, between groups. Thus the summary of TQC basis includes:

• Uses 2D systems which have quasiparticles with NonAbelian
Statistics.

• Quantum Information is encoded in nonlocal topological degrees
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of freedom that do not couple to any local quantity.

• States can be manipulated by dragging (braiding) quasiparticles
around each other.

• The operations (gates) performed on the qubits depend only on
the topology of the braids.

4 Topological states of Condensed Matter

More than three decades ago there was established that spin-orbit in-
teraction (SOI) has an important pattern on band structure of solid
state matter. Among different qualitative features induced by SOI the
band inversion of electronic spectrum near the Fermi level has been
discovered in different types of semimetals and narrow-gap semicon-
ductors. In the context of low dimensional structure investigations the
band spectrum inversion was shown to generate new type of interface
gapless states with linear spectrum at the heterocontact boundaries
[4]. Last years investigations [5] have reopened the interest to mate-
rials with inverted band spectra. Due to new type of the symmetry
break like that characteristic for the quantum Hall effects, the elec-
tronic states were shown to have topological nature and materials have
been named topological insulators (TI). In TI a new state of matter
appears, distinguished from a regular band insulator by a nontrivial
time-reversal topological invariant, which characterizes its band struc-
ture and leads to new physics and phenomena.

The most robust observable consequence of a nontrivial topological
character of these materials is the presence of gapless helical edge states
(interface states of inverted heterocontacts), protected by time-reversal
symmetry and robust to perturbations that do not break this symmetry
(Fig.3). Like the quantum Hall state the “bulk” of the electron gas of
TI is an insulator, but along its surface, the states are gapless with a
spectrum described by a Dirac cone like graphene and characterized by
prohibiting backscattering. Topological nature of boundary states of
TI leads to a fundamental attributes each momentum of the state along
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the surface has only a single spin state at the Fermi level, and the spin
direction rotates as the momentum moves around the Fermi surface
ensuring a non-trivial Berry’s phase. These two defining properties of
TI – the spin-momentum locking of surface states and π Berry’s phase
– are crucial for the generation of the anyons.

Figure 3. The electronic band structures of topological insulators with
a robust metallic state at the surface and insulating properties in the
bulk.

At the same time, the spectrum and characteristics of topological
surface states, depending on geometrical configuration, can be manip-
ulated by different factors: electrical and magnetic fields, strain and
deformation etc. For this reason TI are being explored with a view
towards applications, as a potential platform for TQC [5].

5 Majorana Fermions of Topological Insulator
– a new physical approach for TQC

In condensed matter physics, Majorana fermions can arise due to a
paired condensate that allows a pair of fermionic quasiparticles to “dis-
appear” into the condensate. They have been predicted in a number of
physical systems. Majorana zero modes must always come in pairs (for
instance, a 1D superconductor has two ends [2]), and a well separated
pair defines a degenerate two level system – a qubit, whose quantum
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state is stored nonlocally. The state can not be measured with a local
measurement on one of the bound states and this is crucial, because
the main difficulty with making a quantum computer is preventing the
system from accidentally measuring itself.

In two dimensions a number of chiral Majorana edge modes can
appear, which resemble chiral modes in the quantum Hall effect, but
for the particle-hole redundancy. A spinless superconductor with px +
ipy symmetry is the simplest model 2D topological superconductor, in
which Majorana bound states appear at the core of vortices

Combining topological insulators with ordinary superconductors
leads to an exquisitely correlated interface state that, like a topological
superconductor, is predicted to host Majorana fermion excitations and
its properties has proposed to be for fault tolerant quantum information
processing [5]

Majorana fermion can be created in several ways using topolog-
ical insulators [5]. The most direct proposal using a 3D topological
insulator is to consider the proximity effect from an ordinary s-wave
superconductor. A magnetic vortex core in such a system will carry
a zero-energy Majorana fermion state localized near the vortex in the
interface layer (Fig.5).

Figure 4. Majorana bound states in topological isola-
tor/superconductor heterojunction and its braiding.

There are analogous ways to create a Majorana fermion using strong
spin-orbit quantum wells rather than topological insulators. Recently,
a network of 1D semiconductor quantum wires has been proposed [6]
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as a suitable platform to create, transport, and fuse Majorana fermions
at the wire ends. The wire network consists of wire segments in the
TS state (shown in red with numbers in Fig. 5) connected by segments
in the non-topological superconducting (NTS) state (shown in blue
without numbers in Fig. 5).

Figure 5. Schematic of entanglement generation and manipulation in
quantum wire topological qubits using superconductor Josephson junc-
tions.

Local gates allow Majorana fermions to be transported, created,
and fused as outlined in Fig. 5. As one germinates pairs of Majorana
fermions, the ground state degeneracy increases as does our capacity to
topologically store quantum information in the wire. Specifically, 2N
Majoranas generate N ordinary zero-energy fermions whose occupa-
tion numbers specify topological qubit states. Adiabatically braiding
the Majorana fermions would enable manipulation of the qubits, but
it is not possible in a single wire [6]. The Majorana fermion states
are transported by shifting the end points of the TS segments by ap-
plying locally tunable external gate potentials (which control chemical
potential).

6 Conclusions

There is a great deal of progress that has been made in the theory
of topological quantum computing. Anyons and their braids in the
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topological matter, such as fractional quantum Hall systems and novel
discovered topological insulators, excellently simulate quantum gates
to arbitrary accuracy. Combining topological insulators with ordi-
nary superconductors leads to an exquisitely correlated interface state
that, like a topological superconductor, is predicted to host Majorana
fermion excitations and its properties has proposed to be for fault tol-
erant quantum information processing.

A network of topological insulator quantum wires in the vicinity
of an s-wave superconductor allows universal TQC. Such approach en-
ables the Majorana fusion rules to be probed, along with networks that
allow for efficient exchange of arbitrary numbers of Majorana fermions.
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