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Abstract

In this paper, we introduce a new paradigm - multiset-based
tree model. We show that trees can be represented in the form
of wellfounded multisets. We also show that the conventional ap-
proach for this representation is not injective from a set of trees to
the class of multisets representing such trees. We establish a one-
to-one correspondence between trees and suitable permutations
of a wellfounded multiset, which we call tree structures. We give
formal definitions of a tree structure and a subtree structure of a
tree structure. Finally, we represent membrane structures in the
form of tree structures – a form in which membrane structures
can suitably be represented at programming level.

Keywords: wellfounded multiset, saw-like structure, multi-
set-based tree structure, membrane structure.

1 Introduction

A tree is an acyclic connected graph (having one source or trunk and
several exits or leaves). It can also be defined as a partial order relation
over a finite set with the smallest element. Note that if there is only
one edge from a source node, then we have only one branch on the
node.

Trees have served as handy tools in solving problems involving
decisions and the flow of information. Thus they form a fundamen-
tal concept in graph theory. They are used in many disciplines such
as Mathematics, Management, Economics, Commerce, Biology, Com-
puter Science, Statistics and Probability, just to mention a few.
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In Managerial accounting ([7], p. 502), a tree diagram in the form of
an organizational chart was used to illustrate the organization of Aloha
Hotels and Resorts. In Computer Science [1], the Huffman tree is used
to compress bits so as to reduce the amount of storage that is necessary
in a storage media. In Biology, ([12], p. 57) exploits a tree structure to
represent the basic characteristics of meiosis involving one chromosome
duplication followed by two nuclear and cell divisions. In Probability
[8], the concept of tree measure is applied to represent a sequence of
repeated throws of a coin with either side labelled head or tail. In
English language ([6], p. 24), the classification of nouns is represented
in the form of a tree. As some membranes can contain several other
membranes [10], trees can also be suitably used to study membrane
structures and hence in comprehending membrane computing.

Note that it may be relevant to count the number of nodes in an n-
nary tree – a tree with (n ≥ 2) number of branches emerging from each
of the major branches after them (which is called a tail or a node) or
a general tree, for that matter, with n varying from branch to branch.

In the recent years, the representation of a tree in the form of a
wellfounded (cardinality–bounded) multiset has been arguably used.
It is observed that the said representation is not injective from a set
of trees to the class of multisets representing such trees. In order to
achieve injection, we devise various permutations of the wellfounded
multiset in consideration along with a suitable rule. We begin with a
binary tree and generalize the approach to an n-nary tree as well as a
general tree.

2 Aptness for the Use of Trees and a Multiset
Environment

Unlike other graphs, trees are quite innovative especially in one of the
recently researched areas of computer science – molecular and mem-
brane computing. This is because among all other forms of graphs
(e.g., a loop or a multigraph), only trees can suitably represent mem-
brane structures (without intersections, loops or parallel edges). This
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singular but essential ability of trees is what has inspired us to study
them and to see how they can help us in contributing to the improve-
ment of membrane computing.

There is no provision for a diagrammatic or pictorial input of mem-
brane structures at programming level. Thus, one aim of this paper is
to demonstrate how membrane structures can be represented at pro-
gramming level by devising a discrete approach for such a represen-
tation. It is in line with this that we have employed multiset as an
environment in representing trees, and consequently membrane struc-
tures.

3 Some Basic Concepts

Definition i: Multiset.
A multiset (mset, for short) is a collection of objects in which, unlike
a crisp (Cantorian) set, objects are allowed to repeat finitely in most
of the application areas; although infinite multiplicities are also dealt
with in a theoretical development (see [2] and [3] for details).

A multiset is represented in several ways. The use of square brack-
ets to represent a multiset is quasi-general. Thus, a multiset containing
one occurrence of a, two occurrences of b, and three occurrences of c is
notationally written as [[a, b, b, c, c, c]] or [a, b, b, c, c, c] or [a, b, c]1,2,3 or
[a, 2b, 3c] or [a.1, b.2, c.3] or [1/a, 2/b, 3/c] or [a1, b2, c3] or [a1b2c3]. For
convenience, the curly brackets are used in place of the square brack-
ets. In fact, the last form of representation as a string, even without
using any brackets, turns out to be the most compact one, especially
in computational parlance. The following schematic representation of
a multiset as a numeric-valued or count function abounds, particularly
in the foundational development of multiset theory and its application:

A multiset is a mapping from some ground or generic set of objects
into some set of numbers. For example, a multiset α = [x, y, z]1,2,3 is
a mapping from a ground set D to N, the set of non negative integers,
defined by
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α(t) =





1, if t = x
2, if t = y
3, if t = z
0, for all the remaining t ∈ D.

In other words, a multiset α drawn from a ground set D can be
represented by a cardinal-valued function Cα : D → N.

In general terms, for a given ground set D and a numeric set T , we
call a mapping α : D → T ,





a set, if T = {0, 1} ;
a multiset, if T= N, the set of natural numbers;
a signed multiset(hybrid or shadow set), if T = Z, the set of integers;
a fuzzy(or hazy) set if T = [0, 1] ⊆ R, a two−valuedBoolean algebra.

In view of the above definition, a multiset A can also be represented
by a set of pairs as follows:

A = {〈mA(x1), x1〉, . . ., 〈mA(xj), xj〉, . . .} or
A = {mA(x1) · x1, . . . ,mA(xj) · xj , . . .} or
A = {n1/x1, . . . , nj/xj , . . .}, where mA(xj) = nj = the count or

the multipliciy of xj in A.
Note that there are other forms of representing a multiset (see [2],

[3] and [11] in particular).

Definition ii: Submultiset.
Given a multiset M over a domain set D, a multiset A over D is called
a submultiset of M written as A ⊆ M or M ⊇ A if mA(x) ≤ mM (x)
for all x ∈ D, where mA(x) and mM (x) are the multiplicities of x in
the multisets A and M respectively. Also if A ⊆ M and A 6= M , then
A is called a proper submultiset of M . A multiset is called the ancestor
in relation to its submultiset (see [11], for details).

Definition iii: Dressed epsilon.
For any object x occurring as an element of a multiset A i.e., mA(x) >
0, we write x ∈+ A, where ∈+ (dressed epsilon) is a binary predicate
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intended to be ‘belongs to at least once’, as ∈ is ‘belongs to only once’
in the case of sets. Also, x ∈k

+ A implies ‘x belongs to A at least k
times’, while x ∈k A means x belongs exactly k times to A. x /∈ A
means ‘x does not belong to A’ ([11], for details).

Definition iv: Partial ordering.
A binary relation <· on a set X is called a partial order on X if <·
satisfies the following axioms:

1. x <· x for all x ∈ X. (Reflexivity)

2. x <· y and y <· x ⇒ x = y for all x, y ∈ X. (Anti symmetry)

3. x <· y and y <· z ⇒ x <· z for all x, y, z ∈ X. (Transitivity)

The set X is said to be partially ordered with respect to <·. We
note that for some pair of elements x, y in X, neither x <· y nor y <· x
may hold. If x <· y or y <· x for all x, y in X then X is said to be
totally ordered or linearly ordered or a chain (see [5] for details).

Definition v: The Dershowitz-Manna ordering on multisets.
We follow the Dershowitz-Manna ordering on multiset. Let (S, >) be
a partially ordered set and M(S) be the set of all finite multisets with
elements taken from the set S. Then a partial order À on M(S) can
be defined as follows:

Let M , M ′ ∈ M(S). Then M À M ′ if for some multisets X,Y ∈
M(S), with ∅ 6= X ⊆ M , we have M ′ = (M\X) ∪ Y and (∀ y ∈+

Y )(∃x ∈+ X) x > y.
For example, let S = N, the set of natural numbers including 0 with

the usual ordering >, then under the corresponding multiset ordering
À over N, the multiset {3, 3, 4, 0} is greater than each of the three
multisets {3, 4}, {3, 2, 2, 1, 1, 1, 4, 0} and {3, 3, 3, 3, 2, 2}. (see [4]
for details).

Definition vi: Wellfounded multiset.
A wellfounded multiset is a multiset with an irreflexive and transitive
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ordering defined on it, such that its every submultiset has a minimal
element; in other words, no infinite descending chain occurs. We shall
follow the Dershowitz-Manna ordering on multisets over a set of natural
numbers which has been proved wellfounded (see for the proof in [4]).

Definition vii: An n-nary tree.
Given a non-negative integer n, an n-nary tree is a tree which has
exactly n number of branching on each of its branches. In the case
where the number of branching varies from branch to branch on the
tree, we call such a tree a general tree or simply a tree.

Definition viii: A binary tree.
A binary tree is an n-nary tree for n = 2.

Definition ix: A subtree.
A subtree is a subgraph which is a tree.

See [4] for details of the aforesaid definitions.

4 The Binary Tree

Dershowitz and Manna ([4]) demonstrated the termination of a pro-
gram to count the tips of a binary tree using a wellfounded multiset
ordering. We describe in brief one of the examples they considered.

Consider a simple program to count the number of tips – ter-
minal nodes (without descendents) – in a full binary tree. Each
tree y that is not a tip has two subtrees, left(y) and right(y).

Typically, a binary tree can be schematically represented as in Figure
1.

In Figure 1, the tree trunk is represented by the largest integer in
the labelling of the tree. One of the branches on a y-shaped (or fan-
shaped) subtree is called an axis. The part of the tree which continues
from the base to a tip without a gap is called a chain. The y-shaped
subtree at the bottom of the tree is called the base of the subtree.
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Figure 1. A binary tree

Notice that in the diagram above the integer label of a branch is
less than the integer label of the node upon which the branch rests.
One of the advantages of representing a tree in this way is reflected in
membrane structures. Thus, the sizes of membranes in a membrane
structure can be used in place of the integer labels, yet retaining the
tree representation of membrane structures. This fact is vindicated
in this paper when we shall be applying tree structures to membrane
computing.

5 Conventional Approach to Representing a
Tree by a Wellfounded Multiset

A conventional method of representing a tree by a wellfounded mul-
tiset seems to have first appeared in [4]. The conventional method
entails that in a wellfounded multiset, any element-multiset represent-
ing a subtree which is built upon another element-multiset represent-
ing another subtree needs to be smaller than the one upon which it is
built. Moreover, there is no permutation governing the arrangement
of the element-multisets of the wellfounded multiset. Rather, one rule
inherent in the representation is that the smaller and larger element-
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multisets have exactly one element in common. This common element
is also the largest element in the smaller element-multiset and cannot
be the largest element in the larger element-multiset. The action of
picking an element-multiset to represent a subtree on the tree is done
exhaustively. Though no definition of this method has been given in
[4], we give the following formal definition to capture the concept.

Definition x.
Formally, given a multiset S over a domain set D, a multiset T (S)
whose elements are submultisets of S is a conventional representation
of a tree if and only if it satisfies the following properties:

1. There exists z ∈1 T (S) such that z = max{y : y ∈+ T (S)},
2. For each u ∈+ T (S) where u 6= max{y : y ∈+ T (S)},∃w ∈+ T (S)

with w À u and x0 ∈+ S such that x0 ∈1 u ∩ w, x0 = max{x :
x ∈+ u} and x0 6= max{x : x ∈+ w}.

In the above definition, the first condition is called the base condi-
tion and z is called the base of a tree. The second condition is called
the join condition and x0 is the join between two subtrees.

6 Wellfounded Multiset Representation of a
Binary Tree (Use of the Conventional Ap-
proach)

A binary tree is represented in the form of a wellfounded multiset whose
elements are multisets containing only three elements. For example,
the wellfounded multiset {{322}, {211}} represents the binary tree in
Figure 2.

Each y-shaped subtree is represented by an element say a in
the multiset; a itself is a multiset with three elements of the form
{a1, a2, a3}. We show that the conventional approach of the represen-
tation is not injective from a set of trees to the class of wellfounded
multisets representing such trees.
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Figure 2. A two-element binary tree

Consider N = {{544}, {433}, {432}, {322}, {322}, {322}, {211},
{211}}. Each element of N has three elements and represents a y-
shaped subtree of the tree in Figure 1.

It is easy to see that N is ordered according to the Dershowitz-
Manna ordering on multisets.

The element {544} represents the first y-shaped subtree with tail
5. The two 4’s in {544} show that we can locate two elements in N ,
each of which has 4 as its largest element. The two elements are {433}
and {432} which give rise to two y-shaped subtrees with tails labelled
4 on the trunk labelled 5.

The three 3’s in these two elements combined show that we can
locate three other elements in N each of which has 3 as its largest
element. These elements are three {322}’s, which give rise to three
y-shaped subtrees with tails labelled 3 on the branch labelled 4.

Next are the six 2’s in the three elements. But, since there are only
two {211}’s in N each of which has 2 as its largest element, there can
only be two y-shaped subtrees each of whose tail is labelled 2.

Also, the 2 in {432} shows that we can locate an element in N
which has 2 as its largest element. This element is {211}, and can give
rise to a y-shaped subtree with tail labelled 2.

It can be observed that there arises a decidability problem as to how
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and on which of the two types of branches, one of which is labelled 4
and three of which are labelled 3, should the two subtrees with tail
labelled 2 be built upon. If one of the two {211}’s is built on any one
of the three {322}’s while the other {211} is built on {432}, we get
the binary tree A in Figure 3 below. If on the other hand each of the
two {211}’s is built on each of any two of the three {322}’s, we get the
binary tree B in Figure 3.

Figure 3. Two different binary trees generated by the multiset N

Thus, our ordered multiset N can yield two different binary trees
and so the conventional method does not give room for a wellfounded
multiset representation of a binary tree in a one-to-one manner.

The above assertion can be generalised in the case of an n-nary
tree. It can similarly be shown for a tree with n varying from branch
to branch on the tree, called a general tree.

7 The Saw Rule

We demonstrate below by considering a suitable permutation of a par-
tially ordered multiset how to represent a rule in which each submultiset
of elements is arranged in an uphill manner, while at the same time
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the multiset of all the elements in the system is arranged in a downhill
manner, called a saw-like permutation.

An uphill multiset of elements is a permutation of a partially or-
dered multiset of elements which ends with the largest element in the
multiset. A downhill multiset of elements is a permutation of a partially
ordered multiset of elements which begins with the largest element in
the multiset. Thus, all the elements in an uphill multiset of elements
or in a downhill multiset of elements may neither be ascending nor
descending.

This rule is called a saw-like permutation because it creates a re-
semblance of a wood saw blade when viewed pictorially using vertical
bars to represent the elements of a permutation of a partially ordered
multiset according to their sizes as in the following figure:

Figure 4. A saw-like structure illustrating a saw-like permutation

The scheme can be interpreted as follows: Each bar in a multiset
of ascending bars is attached to the longest bar immediately before
the multiset. In other words, any two bars in which one is attached to
another must not have any bar longer than the attached bar in between
them. The bars represent the element-multisets of a permutation of a
partially ordered multiset. The left arrow pointing from one bar to
another indicates attachment from the bar on its right to the bar on its
left. In other words, each bar on the right side of an arrow represents
a branch while the corresponding bar on the left represents a node on
the tree. We shall often refer to the element-multisets of a wellfounded
multiset as simply elements.
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While going through the elements of the partially ordered multiset,
we pick the first and largest element represented by the longest bar.
This is followed by the smallest element that can be attached directly
to the largest element. This in turn is followed by another element
only larger than the smallest element, and can be attached directly to
the largest element. Any element that must be attached to an element
which has already been attached to the largest element must come after
the element upon which it is to be attached, even if it happens to be
smaller than the first element attached directly to the largest element.

We continue in this way until we have exhausted all the elements
that can be attached to the largest element. In Figure 4 above, only
two bars have been attached to the first (largest) bar. There is no
doubt that these two bars are trivially in an uphill order according to
their heights.

This gives us a submultiset of elements immediately following the
largest element in an uphill order. Among all the submultisets in an
uphill order which have been attached to an element, this one happens
to be the largest. The last but not the least element (the third bar in
Figure 4 above) in this submultiset turns out to be the second largest
element in the partially ordered multiset, and it is the element upon
which the second submultiset of elements in an uphill order will be
attached starting with the smallest element directly attachable to it.
In Figure 4, the second largest bar (which is the third bar) has only
one bar attached to it. This one bar can be regarded as a submultiset
in an uphill order containing a singleton multiset, though a very trivial
case.

Next is the third largest submultiset of elements in an uphill order.
We continue in this way until all the elements in the partially ordered
multiset belong to a group of elements in an uphill order. Note that
in Figure 4 above, the fifth bar has four bars attached to it, including
the eighth bar, which in turn has two bars attached to it. These four
bars are clearly in ascending order, whereas the six bars (the four bars
with the two bars) make up the multiset of bars attached to the fifth
bar in an uphill order. This is a non trivial example of bars arranged
in an uphill order.
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Every element on the saw-like permutation is called a bar ; every
bar which has an element attached to it is called a column; a column
which is followed by a non-singleton submultiset of descending bars
each of which is less than the column and at least one of which has
a bar attached to it, is called a pillar. A submultiset of consecutive
elements from the same object whose multiplicity is more than one is
called a platform. The first bar on the saw-like permutation is called
its base.

Having demonstrated how the saw-like permutation is used to ar-
range the elements of a partially ordered multiset in the above discus-
sion, we now give a formal definition of the representation of a partially
ordered multiset in order of a saw-like permutation in the following def-
inition:

Definition xi.
A permutation P (S) of a partially ordered multiset S of order n is said
to be in order of a saw-like permutation if and only if y1 > yi in P (S),
for all i = 2, 3, . . . , n.

If such a permutation exists, we say that P (S) is arranged in order
of a saw-like permutation or P (S) is a saw-like permutation of the
elements of S. We shall see later in this paper that this construction
is of immense help in defining a tree structure.

8 Representation of a Tree by a Saw-like Per-
mutation of a Wellfounded Multiset (The
Saw Rule)

To resolve the aforesaid issue of the representation not being injective
from a set of trees to the class of multisets representing such trees as
indicated in section six above, we demonstrate by considering saw-like
permutations, how to represent a tree by a permutation of a wellfounded
multiset. We called this the saw rule. We show below how to represent
a binary tree using the saw rule and also how the injection is achieved
using this rule. In this case, consider the following illustrations to bring

15



D. Singh, C.M. Peter

our point home:
Let us consider the following two permutations N1 and N2 of N :
N1 = [{544}, {423}, {322}, {211}, {433}, {322}, {322}, {211}] and
N2 = [{544}, {423}, {211}, {322}, {211}, {433}, {322}, {322}]
The element {544} of N1 represents the first y-shaped subtree

(called the base) with tail 5. The two 4’s in {544} show that we can
locate at most two elements in N1 each of which has 4 as its largest
element. The two elements are {423} and {433}.

The element {423} is smaller than {544} and so can give rise to a
y-shaped subtree with tail labelled 4.

The 3 in {423} shows that we can locate at most an element in N1

which has 3 as its largest element, and since the next element {322}
is smaller than {423} it can give rise to a y-shaped subtree with tail
labelled 3.

The two 2’s in {322} show that we can locate at most two elements
each of which has 2 as its largest element. Since there is only one such
element which has 2 as its largest element and smaller than {322} then
it can give rise to a subtree with tail labelled 2.

The next element {433} is larger than {322} and so no subtree
representing {433} can arise on {322}. However, {544} is the smallest
element larger than {433}, going backwards. Since only one of the two
elements having 4 as their largest element has its subtree on {544},
there can arise another subtree with tail labelled 4 on {544} (since
{544} has two 4’s in it).

The two 3’s in {433} show that we can locate at most two elements
each of which has 3 as its largest element. Since the next two elements
satisfy this condition, and are smaller than {433}, then there can arise
two subtrees with tails labelled 3.

The last two 2’s in the last {322} show that we can locate at most
two elements each of which has 2 as its largest element. Since we have
only one of such elements which is {211} having 2 as its largest element,
there can arise only one subtree with tail labelled 2 coinciding with only
one of the axes labelled 2.

The permutation N1 of N can be seen to have constructed the
one and only tree A in Figure 3 above and no other. Similarly, N2
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determines only the binary tree B in Figure 3. We call N1 and N2

tree structures. The following figures are saw-like structures of N1 and
N2 equivalent to the one in Figure 4, for a clear understanding of the
concept.

Figure 5. A saw-like structure illustrating N1

Figure 6. A saw-like structure illustrating N2

Notice in Figures 5 and 6, that a bar (representing a subtree on the
tree) can only be attached to a larger bar (representing a node on the
tree) where the larger bar is a multiset containing the largest element of
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the smaller multiset representing the smaller bar. Such largest element
must not be the largest in the larger bar. Notice also that a bar has
not been attached to another bar of equal size (or height in this case).

Not all wellfounded multisets, even with the conventional method,
can represent a tree. This is seen from the multiset [{544}, {432}, {211},
{432}, {211}, {211}] since the supposed subtree structure [{211}] of the
last element {211} does not have a branch to rest upon. The saw rule
ensures, firstly, that a wellfounded multiset can suitably represent a
tree; secondly, that every tree can be represented in the form of a
wellfounded multiset (this is the only property that the conventional
method ensures) and thirdly, that this representation is injective from
a set of trees to the class of multisets representing such trees.

Remark.
It is important to observe that in order to construct a tree using a
unique permutation of a given wellfounded multiset, the use of the saw
rule in building an element upon a preceding element is not only that
the subsequent element be smaller than the preceding one, but also
that its largest element must belong to the preceding element, and that
the multiplicity of such subsequent element in an uphill submultiset of
elements must not be greater than the number of occurrences of such
largest element in the preceding element.

For example, in [. . .{543}, {211}. . .], the subtree representing [{211}]
cannot be built upon the subtree representing [{543}] since the
largest element 2 of {211} does not belong to {543}. But in
[. . .{543}, {411}. . .], [{411}] can be built upon [{543}] since the largest
element 4 of {411} is in {543}. Again, we cannot build any subtree
using [. . .{543}, {411}, {411}, {411}. . .] since 4 does not appear up to
three times in {543}. However, [. . .{5444}, {411}. . .] represents a sub-
tree. Such an element as 4 in this case is called a join in a tree structure.
We use square brackets for a tree structure since a tree structure is a
list – an ordered sequence of elements with repetitions allowed.

To avoid misinterpretation, we shall not use a tree and a tree struc-
ture interchangeably. As mentioned in the introduction, a tree is an
acyclic connected graph. On the other hand, a tree structure is a
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multiset representation of a tree by exploiting the saw rule, e.g., N1

and N2 above. Notwithstanding the fact that there is a one-to-one cor-
respondence between the two, this distinction is useful especially when
we shall be applying the concept of tree structures to membrane com-
puting. The same argument goes for a subtree and a subtree structure.

Having discussed the representation of a binary tree in order of
a saw-like permutation of a wellfounded multiset (called a tree struc-
ture), we consider it necessary to generalize our discussion to capture
the concepts of an n-nary tree structure (corresponding to a tree with
exactly n branches on each node of the tree) and a general tree (corre-
sponding to a tree with n varying from branch to branch on the tree).
Therefore, based on the discussions above, we now give the following
formal definitions:

Definition xii.
Let S be a partially ordered multiset over a domain set D. A permu-
tation P (τ(S)) of a wellfounded multiset τ(S) of cardinality m, whose
elements are submultisets of S is called an n-nary tree structure if and
only if it satisfies the following properties:

1. For all y ∈+ P (τ(S)) ∃n ∈ N such that C(y) = n, where C(y)
denotes the cardinality of y.

2. y1 À yi in P (τ(S)) for all i = 2, 3, . . . , m.

3. For all i, j ∈ N with yi À yj for i < j, if @ k ∈ N such that
yi À yk À yj for i < k < j then ∃ x0 ∈1 yi ∩ yj such that
x0 = max{x : x ∈+ yj} and x0 6= max{x : x ∈+ yi}, where
yi, yk, yj ∈+ P (τ(S)), i = 1, 2, . . . , m− 1, k = 2, 3, . . . ,m− 1 and
j = 2, 3, . . . , m.

In other words, it says that yi yields yj via x0 or yj is an imme-
diate successor of yi or yi is an immediate predecessor of yj , and
we denote this by yi

{x0}
³ yj .

4. For each z ∈ P (τ(S)) and for a given x ∈+ S the multiset
Y = {y : z {x}³ y} is such that C(Y ) ≤ mz(x), where C(Y ) is
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the cardinality of Y and mz(x) is the multiplicity of x in z.

In the above definition, the first condition is known as the equal car-
dinality condition. The second condition is known as the base condition
(or the saw rule condition) and y1 is the base of the tree structure. The
third condition is the join condition and x0 is the join between two sub-
tree structures. The fourth condition is the parallelism condition. The
parallelism condition ensures that the multiplicity of a join in a node is
greater than or equal to the number of subtree structures (or branches)
joinable to the node using such join.

Definition xiii.
Let S be a partially ordered multiset over a domain set D, a permu-
tation P (τ(S)) of a wellfounded multiset τ(S) of cardinality m, whose
elements are submultisets of S, is called a general tree structure if and
only if it satisfies the following properties:

1. y1 À yi in P (τ(S)) for all i = 2, 3, . . . , m.

2. For all i, j ∈ N with yi À yj for i < j, if @ k ∈ N such that
yi À yk À yj for i < k < j then ∃ x0 ∈1 yi ∩ yj such that
x0 = max{x : x ∈+ yj} and x0 6= max{x : x ∈+ yi}, where
yi, yk, yj ∈+ P (τ(S)), i = 1, 2, . . . , m− 1, k = 2, 3, . . . ,m− 1 and
j = 2, 3, . . . , m.

In other words, it says that yi yields yj via x0 or yj is an imme-
diate successor of yi or yi is an immediate predecessor of yj , and
we denote this by yi

{x0}
³ yj .

3. For each z ∈ P (τ(S)) and for a given x ∈+ S the multiset
Y = {y : z {x}³ y} is such that C(Y ) ≤ mz(x), where C(Y ) is
the cardinality of Y and mz(x) is the multiplicity of x in z.

The first condition is the base condition. The second condition is
the join condition and the third condition is the parallelism condition.

In the above two definitions, the tree structure P (τ(S)) is said to
be built over the multiset S with D as its domain. We define the root
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set of the tree structure P (τ(S)) as the set R = {x ∈ D : x ∈+ y ∀ y ∈+

P (τ(S))}. If there is no confusion about which multiset S is intended,
we simply write τ for P (τ(S)).

The process by which a subtree structure yields another subtree
structure in a tree structure is called a succession.

That is, if y1
{x1}
³ y2 and y2

{x2}
³ y3 then y3 is a successor (not an

immediate successor) of y1 and we write y1
{x1,x2}

³ y3 (y1 yields y3 via
the set {x1, x2}).

There are immediate successions between y1 and y2 and between y2

and y3. There is also a succession between y1 and y3, however, this is
not an immediate succesion.

Definition xiv.
Given a tree structure τ over a multiset S, a tree structure σ over S
is called a subtree structure of τ if and only if ∀ y, z ∈+ σ and x ∈+ S
such that z {x}³ y, ∃ a, b ∈+ τ with y ⊆ a and z ⊆ b such that b{x}³ a.

In other words, a tree structure σ is a subtree structure of a tree
structure τ if and only if it inherits all its immediate successions from
the tree structure τ .

The following are some immediate consequences of this defini-
tion: A subtree structure of a tree structure may not necessarily
be a submultiset of the tree structure and vice versa. There are
subtree structures of a tree structure whose members are not ele-
ments of the tree structure. For example, for the tree structure
τ = [{544}, {423}, {322}, {211}, {433}, {322}, {322}, {211}], the sub-
tree structure [{54}, {43}, {32}] of τ is not a submultiset of τ since all of
its elements do not belong to τ . The submultiset [{544}, {322}, {211}]
of τ does not represent any subtree structure of τ , since it does not
form a tree structure. The multiset [{544}, {433}, {21}] is neither
a submultiset of τ nor a subtree structure of τ while the multiset
[{544}, {423}, {322}] is both a submultiset of τ and a subtree struc-
ture of τ .
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9 Tree Structure Based Representation of Mem-
brane Structures

In this section, we apply the aforesaid technique to represent membrane
structures. Membrane structures can be represented in the form of a
tree ([10], p. 8). Let us consider the schematic representation of a
membrane structure as in Figure 7. It is customary to label the largest
membrane with the number 1, the next larger membrane with the
number 2 and so on.

In our example, in order to have an intuitively clearer representa-
tion, we shall identify the membranes by their membrane sizes. For
instance, a membrane labelled 2 will be identified by the membrane
size M2.

The schematic representation of the membrane structure (µ) in Fig-
ure 7 can be discussed as follows: M1 contains M2, M3, M5 and M8;
M2 contains M4 and M6; M3 contains M7 while M8 is empty. Also the
ordering relations M2 > M3 > M5 and M6 > M4 hold.

Let S = {Mi : i = 1, 2, . . . , 9}. The size of a membrane is defined
as the sum of the multiplicities of all the objects in the membrane
([9], p. 6). The domain set of the multisets consisting of the sizes of
membranes in a membrane structure as elements, is wellfounded with
the usual ordering, being a subset of the set N of natural numbers.
Thus, S is wellfounded and it follows that a multiset having elements
of S as elements of its elements is also wellfounded ([4]).

We note that the membrane sizes may change during the process of
transition. In particular, the above relations may not hold especially
for elementary membranes. However, this does not change the fact
that the tree structure representations still apply. Figure 8 is the tree
representation of the membrane structure in Figure 7.

The tree structure representation of the tree in Figure 8 is denoted
by µ.

µ = [{M1M2M3M5M8}{M3M7}{M2M4M6}].
We now present the above representation in greater details. The

contents of the membranes are represented by a letter such as aij of
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Figure 7. A membrane structure

Figure 8. A tree representation of the membrane structure in Figure 7
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the jth element in the ith membrane, while the mth rule in the kth

membrane is represented by rl
km, l being the rules’ priorities if any.

The membrane structure can further be expanded to show the contents
of each membrane in the initial configuration of the system.

µ = [{M1[a11a12a13r
1
11r

2
12r

3
13]M2[a21a22r21]M3[a31a32r31]

M5[a51a52a53r51]M8[]}{M3M7[a71r
1
71r

2
72]}

{M2M4[a41r41]M6[a61a62r61]}].

The subscripts used for the labelling of the elements are just for
illustration purpose and will not appear in the example we shall give
below. The contents of membrane Mi have been grouped in the square
brackets immediately following the membrane. If a membrane is con-
tained in Mi, such containment follows the rule governing attachment
in the tree structure. An empty membrane is denoted by an empty
square bracket. Elementary membranes appear only once in the tree
structure.

The first membrane is the skin membrane and is the only non-
elementary membrane which is allowed to appear once in the tree struc-
ture. Any other membrane which is neither the skin membrane nor an
elementary membrane will appear more than once, since it contains
some other membranes.

10 Computation (An Example)

The following is the example, given in ([9], pp. 10-11), of a transi-
tion in a (cooperative) super-cell system. In this example we substi-
tute membrane structures by tree structures (saw-like permutations of
wellfounded multisets). Also, membranes are represented by subtree
structures having both objects and rules (with associated rule priori-
ties) as members. However, a membrane or a susbtree structure may
exist having only rules as its members. The original tree structure rep-
resenting the membrane structure is the initial configuration prior to
the transitions.
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Let us consider the following super-cell system of degree 4.

Π = (V, µ,M1, . . ., M4, (R1, ρ1), . . ., (R4, ρ4), 4),
V = {a, b, c, d},
µ = [{M1M2M4}{M2M3}],
M1 = [aacr1

11r
1
12r13],

M2 = [ar21],
M3 = [cdr31],
M4 = [r41],
R1 = {r11 : c → (c, in4), r21 : c → (b, in4), r13 : a → (a, in2)b, dd →

(a, in4)},
ρ1 = {r11 > r13, r12 > r13},
R2 = {r21 : a → (a, in3), ac → δ},
ρ2 = ∅,
R3 = {r31 : a → δ},
ρ3 = ∅,
R4 = {r41 : c → (d, out), b → b},
ρ4 = ∅.

C0 : µ = [{M1[aacr1
11r

1
12r13]M2[ar21]M4[r41]}{M2M3[cdr31]}]

In the initial configuration C0 we can apply a rule in membrane M1

and one in membrane M2. If we use the rule c → (b, in4) in membrane
M1, the rule b → b can be applied non-stop and the computation will
never end. Therefore, we will not use the rule c → (b, in4), but the
rule c → (c, in4). Since both these rules can be applied and they have
priorities over the rule a → (a, in2)b, this latter rule cannot be used.
Hence, the object c is sent from membrane M1 to membrane M4 and
at the same time the object a is sent from membrane M2 to membrane
M3.

C1 : µ = [{M1[aar1
11r

1
12r13]M2[r21]M4[cr41]}{M2M3[acdr31]}].

No rule can be applied on c in membrane M1, hence the rule a →
(a, in2)b can be used. It will be used for both copies of a in membrane
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M1, and so two copies of a will be sent to membrane M2 and two copies
of b will remain in membrane M1. At the same time, the rule a → δ
will be used in membrane M3, dissolving it, and the rule c → (d, out)
will be used in membrane M4, sending a copy of d to membrane M1.
As a result of these operations, membrane M1 will contain the string
bbd, membrane M2 will contain the string aacd, while membrane M4

will contain no string; membrane M3 no longer exists, therefore the
rule a → (a, in3) in membrane M2 is useless for now.

C2 : µ = [{M1[bbdr1
11r

1
12r13]M2[aacdr21]M4[r41]}].

The rule ac → δ can be used in membrane M2, dissolving it and
releasing the remaining objects ad. Thus, membrane M1 will contain
the string abbdd.

C3 : µ = [{M1[abbddr1
11r

1
12r13]M4[r41]}].

It is now possible for the first time to use the rule dd → (a, in4)
from membrane M1. It consumes the two copies of d and sends a copy
of a to membrane M4. No further rule can be applied, and the “life”
of the super-cell stops here.

C4 : µ = [{M1[abbr1
11r

1
12r13]M4[ar41]}].

11 Conclusion

The paper is an attempt to indicate that a multiset-based tree model
may prove useful in membrane computing and by extension to other
computing devices, especially of biological orientation.

Moreover, the application of the saw-like permutation can be ex-
ploited in describing various algebraic properties of a tree structure,
and hence, that of a membrane structure.
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